外文翻译--航空材料超声辅助车削的仿真与实验研究中文版-精品

合集下载

【机械类文献翻译】基于三维设计的浮动式制动卡钳的车床夹具的研制

【机械类文献翻译】基于三维设计的浮动式制动卡钳的车床夹具的研制

【机械类文献翻译】基于三维设计的浮动式制动卡钳的车床夹具的研制机械专业中英文文献翻译英文原文Development of the 3D-Designed Lathe Fixture of a Float BrakeCaliper122PAN Jin-kun, ZUO Wan-li, LU Dong-sheng1School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R.China2College of Mechanical& Power Engineering, Nanjing University of Technology, Nanjing 210009,P. R. ChinaAbstract,According to the technique requests of the brake caliper in the process of production, a special fixture of float brake caliper has been developed based on 3D design in this paper. The development process and verified data from 3D modeling and kinematics simulation for this special fixture show that this 3D-designed process can conveniently forecast the assembly interference of the fixture and accurately add the mass of lead brick before the prototype is made. In this way the flutter caused by the unbalanced lathe fixture can be eliminated and the precision of run-out tolerance in cylinder hole compared with machine tool spindle can be improved, thus the processing quality of thecylinder hole in a brake caliper can be greatly guaranteed. Key words: 3D design; brake calipers; lathe fixture1 IntroductionIn the production of the float disc brake caliper of an automobile, due to the complexity of its structure, a special fixture is needed for installing and clamping the brake caliper. According to the technique requests of the brake caliper in the processing, a special fixture of float brake caliper is developed based on 3D design in this paper andits 3D model is assembled virtually. Through the[1]mechanism simulation function of 3D design software, the balance of a lathe fixture is analyzed .The results show that the design process can expediently forecast some factors which affect the[2]quality of technical equipment such as assembly interference and the machining stability of thelathe fixture before the proto type is made. This design process can not only avoid the design errors in the traditional design, but also improve the design quality of products. 2 3D design of the special lathe fixtureThe manufacture object of the special fixture is the brake caliperof a float disc brake, shown as Figure 1; its machining surface is the cylinder hole of the brake. The figure shows: when the cylinder hole is being processed, its axis and the machine spindle rotation axis must be in coincidence. Due to irregular shape structure of the brake caliper,the flutter which is caused by the unbalance mass posed by the fixture and the work piece would affect the machining accuracy and roundness of the cylinder hole size in the actual processing, and some precision requirement of geometric tolerance such as parallelism between the two cylinder holes. To avoid the problems in the design process of the lathe fixture of the brake caliper, a special fixture is developed based on 3D design in this paper.According to the shape structural characteristics of the brakecaliper and the clamping机械专业中英文文献翻译requirements of the lathe fixture, the cylinder hole should be completed after a clamping of the lathe fixture in the whole processing. The flange needs the mounting hole of machine tool spindle and location hole of the fixture on both sides of the center as a middle ware connecting the machine tool spindle and the fixture. It is ensured that the axis of the processing cylinder hole of the caliper body which is located and clamped on the fixture and the machine spindle axis of[3]rotation need coincidence , as shown in Figure 2.The modeling process of other parts of the special fixture is not depicted in detail in this paper,please refer to Reference[4] . Then these parts are assembled into two components, up and down, as shown in Figure 3 and Figure 4. The whole fixture is divided into two components when it is being assembled. This can avoid the parts being missed or installed wrongly in the assembly process. In the component down, as thebenchmark of flange, the counter balance is fixed with bolts. The counter balance would be regulated in balance when the fixture is produced. In the component up, as the benchmark of the fixture, the locating plate is fixed with seven bolts. Then as the benchmark of the locating plate, the upper half part of two threaded studs are rotated into the locating plate, and the pressure plate is clamped on the threaded studs by bolts. In the fixture, the pressure plate is in direct contact with the work piece, so it is under great stress. Therefore, the material of 45Mn2 is selected, which needs treatment of quenching and tempering. Matching block need not to be fixed into the fixture during the initial assembly and the mass of matching block is determined by the result of motion simulation.Figure 1 Brake calipers Figure 2 FlangeFigure 3 Component down Figure 4 Component upAfter the assemblies of component up and component down are completed, they are combined in a new component unit, with the bolts and nuts, as shown in Figure 5 shows. Due to机械专业中英文文献翻译[5]adopting hierarchical assembly , it is rational in the practical production process and the parts management is easy, which can effectively shorten the design cycle.Figure 5 Component unit13 Balance analysis of the kinematics of the special lathe fixtureThe mass of each part needs to be determined before the process of kinematics simulation of the special lathe fixture. As is shown in Figure 6, the material and density of each part is defined by menu command [mechanism] / [quality attributes], as Table 1 shows, the volume and mass of part are calculated out by 3D design software. We select carbon steel as the material of other3standard parts such as the bolts and nuts, its density is 7.85g / cm. In the process of defining themass on Pro /E, unit conversion also needs attention.Figure 6 Dissection figure of the fixtureTable 1 Material and density of the main parts of fixture3Number Part name Material Density (g/cm)1 counter balance A3 7.852 flange HT200 7.23 fixture HT200 7.2机械专业中英文文献翻译4 matching block lead 11.375 locating 45 7.856 pressure plate 45Mn2 7.85Establishing component unite, and then, component unit1 would be assembled on the main shaft as the benchmark of machine spindle axis by the way of “connection-pin connection”, as isshown in Figure7. After entering a mechanic model, the gravity is set in a default value. In the column of “direction”, we set X: -1, other: 0. Added in a motor, its rotation rate is 360 r/min. Then a“run” is established with its settings, “dynamic type” and “opening gravity” in the column of“external load”. Till then, the kinematics simulation process can run. In order to reduce flutter of[6,7]the cylinder hole, the balance of a special fixture is taken as the key analysis in this paper .Theobjective of balance analysis is to make the holistic centroid ofthe fixture and the work piece in the machine spindle axis of rotation. Thus, we should determine the holistic centroid of the fixture and the work piece first. Then the distance between holistic and spindle axis can be obtained. The distance between the holistic and spindle axis should incline to zero as far as possible by adjustment of the mass of the matching block.The detailed locations of centroids in three directions of X, Y, Z can be obtained through the measuring function of Pro /E. Because of setting the machine spindle axis of rotation as the Z axis, the distance of the centroid relative to the centre rotation can be determined onlyin need of the maximum of the centroid at the direction of X or Y. The measurement results of fixture simulated motion without a matching block is shown in Figure 8. When the fixture turned about 90?, the maximum deviation distance of the centroid is – 22.08 mm in the direction of X. Only by doingthat can we know that the centroid is not on the axis; as a resultit does not meet the balance requirement.Figure 7 Component unite Figure 8 Position curve of centroid without matching blockIn order to meet the balance requirement a matching block need to be added to adjust the centroid, as shown in Figure 4. After adding the matching block, return to analyze and then re-measure. The result is that the centroid is still not on the axis, but the distance of the centroid机械专业中英文文献翻译relative to the axis is shortened. In the case of increasing the thickness of the matching block, the modification and measurement is executed again and again in the simulation process. Through a number of tests, an ideal distance of the centroid relative to the axis is obtained. The value is 1.5-710mm, as Figure 9 shows, so it can be considered that the centroid is on the axis, and the result ,satisfies the balance requirements.According to the simulation result with a matching block, a lead brick whose thickness is 305310mm, mass is 4.23 kg is casted in the specified groove of fixture to meet mm, volume is 3.72 ,the balance requirements.The comparison of measured data of run-out tolerance between the new design and the old design is shown in Table 2.Figure 9 Position curve of centroid with matching blockTable 2 Measured data of run-out toleranceMeasurement time New design Old design1 0.016mm 0.048mm2 0.017mm 0.050mm3 0..015mm 0.046mm4 0.018mm 0.047mm5 0.020mm 0.046mm4 ConclusionsAccording to the technological requirements of the cylinder of brake caliper in the processing, Pro /E is adopted in the development of 3D design, and the kinematics simulation research is done on the fixture combined with its mechanical simulation functions. The development process and verified data from 3D modeling and kinematics simulation for this special fixture show that 3D-designed process can conveniently forecast the assembly interference of the fixture and accurately add the mass of lead brick before the prototype is made. In this way we can eliminate the flutter caused by the unbalanced lathe fixture and improve the precision of run-out tolerance in the cylinder hole compared with the machine tool spindle, thus ensuring the processing quality of 机械专业中英文文献翻译the cylinder hole in the brake caliper.References[1] Zhu L Y, Li B, Pro /ENGINEER motion simulation and finite element analysis. Beijing: Posts& Telecom Press, 2004( In Chinese)[2] Ding JH, Wu G Q, Application of Pro /E software in product development. Machine Building& Automation, (7) : 17 ~ 18, 22, 2006 ( In Chinese)[3] Anon, Adhesives and automobiles. Assembly Headquarters, ( 1) :52~ 59, 2008 [4] Wan Z J, Luo X G, Automobile Oil-Pipe-Check-Tool Design Based on Pro /E Model. Automobile Technology & Material, ( 7) : 17 ~18, 22, 2006( In Chinese)[5] Qin G H, Zhang W H. Advanced design methods for machine tool fixture. Beijing: Aviation Industry Press, 2006( In Chinese) Brief BiographiesPAN Jin-kun is a lecturer in the School of Mechanical Engineering, Nanjing Institute of Technology. His research interest is in mechanical design and theory.ZUO Wan-li is a postgraduate student in College of Mechanical and Power Engineering of Nanjing University of Technology. His research interest is in mechanical design and theory. LU Dong-sheng is a postgraduate student in College of Mechanical and Power Engineering of Nanjing University of Technology. His research interest is in mechanical design and theory.机械专业中英文文献翻译中文译文[1]基于三维设计的浮动式制动卡钳的车床夹具的研制122潘金坤,左万里,路东升1南京工程学院机械工程学院,南京 211167,中华人民共和国2南京工业大学机械与动力工程学院,南京210009,中华人民共和国摘要:根据制动卡钳在生产过程中的技术要求,本文研究的是一个基于三维设计的浮动式制动卡钳的专用夹具。

Sci收录机械工程期刊

Sci收录机械工程期刊

刊名简称ACTA MECH SINICA-PRC ADV APPL MECHADV VIB ENGAPPL THERM ENG ARCH CIV MECH ENG ASHRAE J ATOMIZATION SPRAY BWK-ENERGIE-FACHMAG CHINA OCEAN ENG CHIN J MECH ENG-EN DRY TECHNOLENG FAIL ANALENG COMPUT-GERMANY EXP HEAT TRANSFER EXP TECHNIQUESEXP THERM FLUID SCI EXP FLUIDSFATIGUE FRACT ENG M FLOW MEAS INSTRUM FORSCH INGENIEURWES HEAT TRANSFER ENG HVAC&R RESIEEE-ASME T MECH IND LUBR TRIBOLINT J AUTO TECH-KOR INT J CRASHWORTHINES INT J ENGINE RESINT J FATIGUEINT J HEAT FLUID FL INT J HEAT MASS TRAN INT J HEAVY VEH SYST INT J IMPACT ENGINT J MACH TOOL MANU INT J MECH SCIP LINN SOC N S WINT J OPTOMECHATRONI INT J PLASTICITYINT J PRECIS ENG MAN INT J PRES VES PIP INT J REFRIGINT J STRUCT STAB DY INT J SURF SCI ENG INT J THERM SCIINT J VEHICLE DESISI BILIM TEK DERGJ ADV MECH DES SYST J COMPUT NONLIN DYN J ELECTRON PACKAGINGJ ENG GAS TURB POWER J ENG MATER-T ASME J ENG MECH-ASCEJ ENG THERMOPHYS-RUS J ENHANC HEAT TRANSF J FLUID STRUCTJ FLUID ENG-T ASME J FRICT WEAR+J HEAT TRANS-T ASME J HYDRAUL ENG-ASCE J JPN SOC TRIBOLOGIS J MANUF SCI E-T ASME J MECH DESIGNJ MECH SCI TECHNOL J MICROELECTROMECH S J OFFSHORE MECH ARCT J POROUS MEDIAJ PRESS VESS-T ASME J SANDW STRUCT MATER J SOL ENERG-T ASME J SOUND VIBJ STRAIN ANAL ENGJ BALK TRIBOL ASSOC J BRAZ SOC MECH SCI J THERM SCIJ THERMOPHYS HEAT TR J TRIBOL-T ASMEJ TURBOMACHJ VIB ACOUSTJ VIB CONTROLJ VIBROENGLAT AM J SOLIDS STRU LUBR SCIMACH SCI TECHNOL MEC INDMECH ENGMECH SYST SIGNAL PR MECH MACH THEORY MECHATRONICS NANOSC MICROSC THERM NONLINEAR DYNAM PROBABILIST ENG MECH P COMBUST INSTP I MECH ENG A-J POW P I MECH ENG B-J ENG P I MECH ENG C-J MEC P I MECH ENG D-J AUT P I MECH ENG E-J PRO P I MECH ENG F-J RAIP I MECH ENG G-J AER P I MECH ENG J-J ENG P I MECH ENG K-J MUL PROF ENGPROG ENERG COMBUST RAPID PROTOTYPING J SCI IRANSHOCK VIBSMART STRUCT SYST SOUND VIB STROJARSTVOSTROJ VESTN-J MECH E STRUCT ENG MECH STRUCT INFRASTRUCT E THEOR APPL FRACT MEC T FAMENAT CAN SOC MECH ENG TRIBOL LUBR TECHNOL TRIBOL INTTRIBOL LETTTRIBOL TVEHICLE SYST DYN WEARWIND ENERGY刊名全称ACTA MECHANICA SINICAADVANCES IN APPLIED MECHANICSAdvances in Vibration EngineeringAPPLIED THERMAL ENGINEERINGArchives of Civil and Mechanical EngineeringASHRAE JOURNALATOMIZATION AND SPRAYSBWKCHINA OCEAN ENGINEERINGChinese Journal of Mechanical EngineeringDRYING TECHNOLOGYENGINEERING FAILURE ANALYSISENGINEERING WITH COMPUTERSEXPERIMENTAL HEAT TRANSFEREXPERIMENTAL TECHNIQUESEXPERIMENTAL THERMAL AND FLUID SCIENCEEXPERIMENTS IN FLUIDSFATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURESFLOW MEASUREMENT AND INSTRUMENTATIONFORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCHHEAT TRANSFER ENGINEERINGHVAC&R RESEARCHIEEE-ASME TRANSACTIONS ON MECHATRONICSINDUSTRIAL LUBRICATION AND TRIBOLOGYINTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGYINTERNATIONAL JOURNAL OF CRASHWORTHINESSInternational Journal of Engine ResearchINTERNATIONAL JOURNAL OF FATIGUEINTERNATIONAL JOURNAL OF HEAT AND FLUID FLOWINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERInternational Journal of Heavy Vehicle SystemsINTERNATIONAL JOURNAL OF IMPACT ENGINEERINGINTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTUREINTERNATIONAL JOURNAL OF MECHANICAL SCIENCESINTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERINGInternational Journal of OptomechatronicsINTERNATIONAL JOURNAL OF PLASTICITYInternational Journal of Precision Engineering and Manufacturing INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPINGINTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID International Journal of Structural Stability and DynamicsInternational Journal of Surface Science and Engineering INTERNATIONAL JOURNAL OF THERMAL SCIENCESINTERNATIONAL JOURNAL OF VEHICLE DESIGNISI Bilimi ve Teknigi Dergisi-Journal of Thermal Science and Technology Journal of Advanced Mechanical Design Systems and ManufacturingJournal of Computational and Nonlinear DynamicsJOURNAL OF ELECTRONIC PACKAGINGJOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE A JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASM JOURNAL OF ENGINEERING MECHANICS-ASCEJournal of Engineering ThermophysicsJOURNAL OF ENHANCED HEAT TRANSFERJOURNAL OF FLUIDS AND STRUCTURESJOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASMEJournal of Friction and WearJOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASMEJOURNAL OF HYDRAULIC ENGINEERING-ASCEJOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTSJOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE AS JOURNAL OF MECHANICAL DESIGNJournal of Mechanical Science and TechnologyJOURNAL OF MICROELECTROMECHANICAL SYSTEMSJOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF TH JOURNAL OF POROUS MEDIAJOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME JOURNAL OF SANDWICH STRUCTURES & MATERIALSJOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASMEJOURNAL OF SOUND AND VIBRATIONJOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGNJournal of the Balkan Tribological AssociationJournal of the Brazilian Society of Mechanical Sciences and Engineering JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERSJournal of Thermal ScienceJOURNAL OF THERMOPHYSICS AND HEAT TRANSFERJOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASMEJOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASMEJOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASMEJOURNAL OF VIBRATION AND CONTROLJournal of VibroengineeringLatin American Journal of Solids and StructuresLubrication ScienceMACHINING SCIENCE AND TECHNOLOGYMecanique & IndustriesMECHANICAL ENGINEERINGMECHANICAL SYSTEMS AND SIGNAL PROCESSINGMECHANISM AND MACHINE THEORYMECHATRONICSNanoscale and Microscale Thermophysical EngineeringNONLINEAR DYNAMICSPROBABILISTIC ENGINEERING MECHANICSPROCEEDINGS OF THE COMBUSTION INSTITUTEPROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OPROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL O PROFESSIONAL ENGINEERINGPROGRESS IN ENERGY AND COMBUSTION SCIENCERAPID PROTOTYPING JOURNALScientia IranicaSHOCK AND VIBRATIONSmart Structures and SystemsSOUND AND VIBRATIONSTROJARSTVOSTROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERINGSTRUCTURAL ENGINEERING AND MECHANICSStructure and Infrastructure EngineeringTHEORETICAL AND APPLIED FRACTURE MECHANICSTransactions of FAMENATRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING TRIBOLOGY & LUBRICATION TECHNOLOGYTRIBOLOGY INTERNATIONALTRIBOLOGY LETTERSTRIBOLOGY TRANSACTIONSVEHICLE SYSTEM DYNAMICSWEARWIND ENERGY刊名中文翻译ISSN大类名称力学学报0567-7718物理应用力学进展0065-2156工程技术先进震动工程0972-5768工程技术实用热力工程1359-4311工程技术1644-9665工程——土木、机械、美国供暖、制冷与空调工程师学会志0001-2491工程技术-化学、机械、雾化与喷射1044-5110工程技术燃料、热能与动力1618-193X工程技术中国海洋工程0890-5487工程技术机械工程学报英文版1000-9345工程干燥技术0737-3937工程技术工程事故分析1350-6307工程技术计算机在工程中的应用0177-0667工程技术实验传热0891-6152工程技术实验技术0732-8818工程技术实验热力和流体科学0894-1777工程技术流体力学实验0723-4864工程技术工程材料及结构的疲劳与断裂8756-758X工程技术流动测量和仪表设备0955-5986工程技术工程研究0015-7899工程技术传热工程0145-7632工程技术国际供暖、通风、空调、制冷研究杂志1078-9669工程技术IEEE-ASME机械电子学汇刊1083-4435工程技术工业润滑与摩擦学0036-8792工程技术国际汽车技术杂志1229-9138工程技术国际防撞性能杂志1358-8265工程技术国际发动机研究杂志1468-0874工程技术国际疲劳杂志0142-1123工程技术国际热与流体流杂志0142-727X工程技术国际传热与传质杂志0017-9310工程技术国际重型机动车系统杂志1744-232X工程技术国际冲击工程杂志0734-743X工程技术国际机床与制造杂志0890-6955工程技术国际机械科学杂志0020-7403工程技术国际近海和极地工程师杂志0370-047X环境科学国际机电光杂志1559-9612工程技术国际塑性力学杂志0749-6419工程技术国际精密工程与制造杂志1229-8557工程技术国际压力容器与管道杂志0308-0161工程技术国际制冷杂志0140-7007工程技术国际结构稳定性与动力学杂志0219-4554工程技术国际表面科学与工程杂志1749-785X工程技术国际热科学杂志1290-0729工程技术国际机动车设计杂志0143-3369工程技术d Technology 1300-3615工程技术先进机械设计系统和制造1881-3054工程技术计算和非线性动力学1555-1423工程技术电子封装杂志1043-7398工程技术燃气轮机与动力工程杂志0742-4795工程技术工程材料与工艺杂志0094-4289工程技术工程材料与工艺杂志0733-9399工程技术工程热物理学报1810-2328物理强化传热杂志1065-5131工程技术流体与结构杂志0889-9746工程技术流体工程学杂志0098-2202工程技术摩擦磨损1068-3666工程技术传热杂志;美国机械工程师学会汇刊0022-1481工程技术水力工程杂志0733-9429工程技术摩擦学0915-1168工程技术制造科学与工程杂志;美国机械工程师学会汇1087-1357工程技术机械设计杂志;美国机械工程师学会汇刊1050-0472工程技术韩国机械工程师学会国际杂志1738-494X工程技术微机电系统杂志1057-7157工程技术0892-7219工程技术海上机械与极地工程杂志;美国机械工程师学会多孔介质杂志1091-028X工程技术压力容器技术杂志;美国机械工程师学会汇刊0094-9930工程技术夹层结构与材料杂志1099-6362工程技术太阳能工程杂志;美国机械工程师学会汇刊0199-6231工程技术声音和振动杂志0022-460X工程技术工程设计应变分析杂志0309-3247工程技术巴尔干摩擦学协会1310-4772工程技术机械科学与工程1678-5878工程技术中国机械工程学会会刊0257-9731工程技术热科学杂志1003-2169工程技术热物理学与热传导杂志0887-8722工程技术摩擦学杂志;美国机械工程师学会汇刊0742-4787工程技术涡轮机械杂志;美国机械工程师学会汇刊0889-504X工程技术振动与声学杂志;美国机械工程师学会汇刊1048-9002工程技术振动与控制杂志1077-5463工程技术1392-8716工程技术固体和结构1679-7817工程技术润滑科学0954-0075工程技术机械加工科学与技术1091-0344工程技术机械公司与工业1296-2139工程技术机械工程0025-6501工程技术机械系统与信号处理0888-3270工程技术机构学与机械原理0094-114X工程技术机械电子学0957-4158工程技术纳米尺度和微尺度热物理学工程1556-7265工程技术非线性动力学0924-090X工程技术概率工程力学0266-8920工程技术电力系统1540-7489工程技术机械工程师学会会报;A辑:动力与能源杂志0957-6509工程技术机械工程师学会会报;B辑:工程制造杂志0954-4054工程技术机械工程师学会会报;C辑:机械工程学杂志0954-4062工程技术机械工程师学会会报;D辑:机动车辆工程杂志0954-4070工程技术机械工程师学会会报;E辑:加工机械工程杂志0954-4089工程技术0954-4097工程技术机械工程师学会会报;F辑:铁路与快速运输杂志机械工程师学会会报;G辑:航空航天工程杂志0954-4100工程技术机械工程师学会会报;H辑:工程医学杂志1350-6501工程技术机械工程师学会会报;J辑:工程摩擦学杂志1464-4193工程技术专业工程0953-6639工程技术能源与燃烧科学进展0360-1285工程技术快速样机成型杂志1355-2546工程技术1026-3098工程技术撞击与振动1070-9622物理撞击与振动1738-1584工程技术声音和振动1541-0161物理机械制造0562-1887工程技术机械工程杂志0039-2480工程技术结构工程与力学1225-4568工程技术结构和基础设施工程1573-2479工程技术理论与应用断裂力学0167-8442工程技术1333-1124工程技术加拿大机械工程学会汇刊0315-8977工程技术摩擦学及润滑技术1545-858X工程技术国际摩擦学0301-679X工程技术摩擦学通讯1023-8883工程技术摩擦学汇刊1040-2004工程技术车辆系统动力学0042-3114工程技术磨损0043-1648工程技术风能1095-4244工程技术主办机构及国家期/年大类分区中国科学院主管、中国力学学会和中国科学院力学研究所Bimonthly4 ELSEVIER ACADEMIC PRESS INC 美国 Annual1 KRISHTEL EMAGING SOLUTIONS PVT LTD 印度Quarterly4 PERGAMON-ELSEVIER SCIENCE LTD 英国Monthly 3 WROCLAW UNIV TECHNOLOGY 波兰Quarterly4(72/112)Monthly 4(51/116) AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, I美国Bimonthly 4 SPRINGER-V D I VERLAG GMBH;德国Monthly 4 CHINA OCEAN PRESS;中国Quarterly 4中国Bimonthly 4 TAYLOR & FRANCIS INC 美国Monthly 3 PERGAMON-ELSEVIER SCIENCE LTD 英国Bimonthly 4 SPRINGER;USA Quarterly 4 TAYLOR & FRANCIS INC;USA Quarterly 4 WILEY-BLACKWELL PUBLISHING, INC;USA Bimonthly 4 ELSEVIER SCIENCE INC;USA Bimonthly 3 SPRINGER, 233 SPRING ST;USA Monthly 3 WILEY-BLACKWELL PUBLISHING;USA Monthly 4 ELSEVIER SCI LTD;英国Quarterly 4 SPRINGER HEIDELBERG;德国Bimonthly 4 TAYLOR & FRANCIS INC;美国Monthly 4Bimonthly4 AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, IIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC;USA Quarterly 2 EMERALD GROUP PUBLISHING LIMITED;英国Bimonthly4 KOREAN SOC AUTOMOTIVE ENGINEERS;SOUTH KOREA Bimonthly4 TAYLOR & FRANCIS LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 ELSEVIER SCI LTD;英国Monthly 3 ELSEVIER SCIENCE INC;美国Bimonthly3 PERGAMON-ELSEVIER SCIENCE LTD;英国Biweekly 2 INDERSCIENCE ENTERPRISES LTD;瑞士Quarterly 4 PERGAMON-ELSEVIER SCIENCE LTD;英国Monthly 3 ELSEVIER SCI LTD;英国Monthly 3 PERGAMON-ELSEVIER SCIENCE LTD;英国Monthly 3INT SOC OFFSHORE POLAR ENGINEERS;美国Quarterly4 TAYLOR & FRANCIS INC;美国Quarterly4 PERGAMON-ELSEVIER SCIENCE LTD;英国Monthly1 KOREAN SOC PRECISION ENG;韩国Quarterly3 ELSEVIER SCI LTD, THE BOULEVARD;英国Monthly 3 ELSEVIER SCI LTD;英国Bimonthly3 WORLD SCIENTIFIC PUBL CO PTE LTD;新加坡Quarterly4 INDERSCIENCE ENTERPRISES LTD;瑞士Bimonthly4Monthly 3 ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVINDERSCIENCE ENTERPRISES LTD;瑞士Bimonthly4 TURKISH SOC THERMAL SCIENCES TECHNOLOGY;土耳其Semiannual 4 JAPAN SOC MECHANICAL ENGINEERS;日本Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASCE-AMER SOC CIVIL ENGINEERS;美国Monthly4 MAIK NAUKA/INTERPERIODICA/SPRINGER;美国Quarterly4 BEGELL HOUSE INC;美国Quarterly4 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD;英国Bimonthly3 ASME-AMER SOC MECHANICAL ENG;美国Bimonthly4 ALLERTON PRESS INC;美国Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Monthly3 ASCE-AMER SOC CIVIL ENGINEERS;美国Monthly3 JAPAN SOC TRIBOLOGISTS;日本Monthly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Monthly4 KOREAN SOC MECHANICAL ENGINEERS;韩国Monthly4 IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC Bimonthly2 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 BEGELL HOUSE INC;美国Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 SAGE PUBLICATIONS LTD;英国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD;英国Weekly 3 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 SCIBULCOM LTD;保加利亚Quarterly4 ABCM BRAZILIAN SOC MECHANICAL SCIENCES & ENGINEERING;Q uarterly4Bimonthly CHINESE SOC MECHANICAL ENGINEERS;中国机械工程学会SCIENCE PRESS;中国Quarterly4 AMER INST AERONAUT ASTRONAUT;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 SAGE PUBLICATIONS LTD;英国Monthly4 JOURNAL VIBROENGINEERING;立陶宛Quarterly4 LATIN AMER J SOLIDS STRUCTURES;巴西Quarterly4 JOHN WILEY & SONS LTD;英国Monthly4 TAYLOR & FRANCIS INC;美国Quarterly4 EDP SCIENCES S A;法国Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Monthly4 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD;英国Bimonthly2 PERGAMON-ELSEVIER SCIENCE LTD;英国Bimonthly3 PERGAMON-ELSEVIER SCIENCE LTD;英国Bimonthly3 TAYLOR & FRANCIS INC;美国Quarterly3 SPRINGER;荷兰Monthly3 ELSEVIER SCI LTD;英国Quarterly3 ELSEVIER SCIENCE INC;美国Annual 2 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Monthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Monthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Monthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Quarterly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Quarterly4PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Quarterly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Semimonthly4 PERGAMON-ELSEVIER SCIENCE LTD;英国Bimonthly1 EMERALD GROUP PUBLISHING LIMITED;英国Bimonthly4 SHARIF UNIV TECH;伊朗Bimonthly4 IOS PRESS;荷兰Bimonthly4 TECHNO-PRESS;韩国Quarterly3 ACOUSTICAL PUBL INC;美国Monthly4 UREDNISTVO CASOPISA STROJARTVO;克罗地亚Tri-annual 4Monthly4 ASSOC MECHANICAL ENGINEERS TECHNICIANS SLOVENIA;南斯拉TECHNO-PRESS;韩国Semimonthly 4 TAYLOR & FRANCIS LTD;英国Quarterly 4 ELSEVIER SCIENCE BV Bimonthly 4Semiannual 4 UNIV ZAGREB FAC MECHANICAL ENGINEERING & NAVAL ARCHITECSME TRANS., C/O P J ZSOMBOR-MURRAY,;加拿大Quarterly 4 SOC TRIBOLOGISTS & LUBRICATION ENGINEERS;美国Monthly4 ELSEVIER SCI LTD;英国Monthly3 SPRINGER/PLENUM PUBLISHERS;美国Monthly3 TAYLOR & FRANCIS INC;美国Quarterly 4 TAYLOR & FRANCIS LTD;英国Monthly4 ELSEVIER SCIENCE SA;瑞士Monthly3 JOHN WILEY & SONS LTD;英国Quarterly 3是否为TOP期刊SCI/SCIE/EI目前内容2011年影响因子N Engineering, Computing & Technology0.86Y5N0.328N 2.064N0.855N0.392N0.526N SCI/SCIE Engineering, Computing & Technology0.056N SCIE Engineering, Computing & Technology0.468N SCIE0.208N SCI/SCIE Engineering, Computing & Technology 2.084N SCIE Engineering, Computing & Technology 1.086N SCIE0.739N SCIE0.537N SCIE0.257N SCIE 1.414N SCI/SCIE 1.735N SCI/SCIE0.847N SCIE0.8N SCIE0.268N SCIE0.892N SCIE0.683N SCI/SCIE 2.865N SCIE0.35N SCIE0.606N SCIE0.789N SCIE0.969N SCI/SCIE 1.546N SCI/SCIE 1.927Y SCI/SCIE 2.407N SCIE0.2N SCI/SCIE 1.701N SCI/SCIE 2.169N SCI/SCIE 1.231 SCIEN SCIE0.556Y SCI/SCIE 4.603N SCI/SCIEN SCIE0.989N SCI/SCIE 1.817N SCIE0.45N SCIE0.414N SCIE 2.142N SCIE0.457N SCIE0.229N SCIE0.205N SCIE0.827N SCIE0.694N SCI/SCIE0.679 N SCI/SCIE0.954 N SCI/SCIE0.99 N SCIE0.259 N SCIE0.275 N SCI/SCIE 1.567 N SCI/SCIE0.747 N SCIE0.409 N SCI/SCIE 1.83 N SCI/SCIE 1.429 N SCIE0.009 N SCIE0.727 N SCIE 1.017 N SCIE0.448 N SCI/SCIE 2.098 N SCIE0.427 N SCI/SCIE0.516 N SCI/SCIE0.516 N SCIE0.561 N SCI/SCIE0.846 N SCI/SCIE 1.588 N SCI/SCIE 1.085 N SCIE0.158 N SCIE0.2 SCIEN SCIE0.31 N SCI/SCIE0.739 N SCI/SCIE 1.196 N SCIE0.542 N SCIE 1.022 N SCIE1N SCIE0.346 N SCIE0.4 N SCIE0.53 N SCIE0.804 N SCIE0.221 N SCIE0.209 N SCIE 1.824 N SCI/SCIE 1.366 N SCI/SCIE 1.255 N SCI/SCIE 1.032 N SCI/SCIE 1.247 N SCI/SCIE 1.245 N SCIE 3.633 N SCIE0.7 N SCI/SCIE0.725 N SCI/SCIE0.473 N SCI/SCIE0.636 N SCI/SCIE0.393 N SCIE0.436N SCIE0.488 N SCIE0.733 N SCIE0.566 N SCIE0.000 0 Y SCI/SCIE14.22 N SCIE 1.023 N SCIE0.348 N SCIE0.26N SCIE 1.231 N SCIEN SCIEN SCIE0.398 N SCIE0.863 N SCIE0.966 N SCIE0.99N SCIE0.103 N SCIE0.188 N SCIE0.114 N SCI/SCIE 1.553 N SCI/SCIE 1.582 N SCI/SCIE0.854 N SCIE0.722 N SCI/SCIE 1.872 N SCIE2010年影响因子2009年影响因子2008年影响因子5年平均影响因子0.7490.8650.9390.8653.000 5.500 5.000 6.3570.1250.0000.0001.826 1.922 1.3492.3890.3830.5150.0000.4040.1880.2520.3630.9280.7540.4940.5780.0310.0990.0690.0310.3020.2600.4300.4030.1940.0000.0001.662 1.048 1.3932.1510.7700.9450.441 1.0540.6250.704 1.155 1.0000.4500.4880.5350.7980.5050.5000.2680.4341.267 1.234 1.037 1.6011.599 1.817 1.8542.0100.8940.8350.9340.9180.8080.7210.819 1.1770.3480.3910.1700.3080.9370.8410.792 1.1120.658 1.2240.637 1.0342.577 2.331 1.614 2.8520.3970.1780.2310.3620.5110.5170.5150.6150.6070.5530.4120.8520.9470.9030.0001.806 1.602 1.556 1.8221.802 1.498 1.3352.2471.899 1.947 1.8942.9130.2130.2220.2090.4001.522 1.301 1.398 1.7451.919 1.956 1.5762.5641.266 1.288 1.077 1.4950.6820.3540.0000.6245.082 4.791 3.875 4.7381.060 1.2070.0001.518 1.2560.862 1.2931.439 1.537 1.4582.0890.6440.7210.5370.6220.4140.5000.0000.3511.667 1.770 1.6832.3900.3580.4800.3890.5170.1790.2080.0000.2620.2100.0000.2590.5710.5570.000 1.1710.5820.7810.8270.8390.4820.6350.7350.8420.6950.8150.938 1.1070.9560.9800.792 1.1440.2090.0000.0000.4000.3140.4380.5481.482 1.256 1.380 1.7450.4400.4520.6280.9070.2040.0000.0000.9420.959 1.421 2.2861.227 1.478 1.272 1.8620.0330.0480.0610.0210.5670.5990.740 1.1170.6170.869 1.532 1.4830.4120.3740.2580.4012.157 1.922 2.226 2.5120.2770.2890.4470.5070.7070.6840.6120.6470.2930.3510.4490.4760.7730.5910.6460.7900.6440.8260.662 1.1641.334 1.414 1.364 1.7320.8970.7480.6260.9920.1610.1030.0000.2560.1210.0000.2120.1650.0000.2390.8230.6870.6470.7500.4490.7020.722 1.2640.3450.391 1.2970.9400.3900.7080.7280.9780.8630.8960.656 1.205 0.3230.3570.0000.5790.1880.0000.5880.0000.0000.4590.4330.6840.9090.1030.0650.0000.2500.2860.2770.2801.7622.075 1.984 2.4711.210 1.407 1.437 1.5400.944 1.198 1.434 1.4961.903 1.900 1.000 1.0101.741 1.658 1.295 1.4381.252 1.221 1.105 1.2451.797 3.256 1.906 3.5330.7990.6550.6090.7930.6990.4120.2810.7900.4510.4160.3170.5600.4410.4020.3420.7020.5200.4320.4630.4880.3890.4340.4070.6540.4800.7730.3660.5790.7210.6300.4900.8220.3460.3700.2790.7430.0300.0450.0710.00310.36211.0248.00017.1330.7200.662 1.086 1.285 0.2540.1230.0000.2600.0950.4650.4161.316 1.064 1.137 1.2480.1590.1890.3210.2220.0480.0000.4660.5330.2350.3740.4290.4380.5000.8120.5920.847 1.1910.9761.0730.771 1.011 1.0870.1430.2080.0000.2810.1950.1330.2280.1100.0690.1450.0981.560 1.690 1.423 1.8691.574 1.664 1.385 1.732 0.6690.3440.5780.7580.7520.6590.724 1.0191.635 1.771 1.5092.2601.716 1.342 1.271备注。

超声波加工中英文对照外文翻译文献

超声波加工中英文对照外文翻译文献

超声波加工中英文对照外文翻译文献超声波加工中英文对照外文翻译文献(文档含英文原文和中文翻译)超声波加工综述摘要超声波加工适合切削不导电、脆性材料,例如工程陶瓷。

与其他非传统加工,如激光束、电火花加工等不同,超声波加工不会导致工件表面热损伤或显著的残余应力,这对脆性材料尤其重要。

超声波加工的基本原理,包括材料去除原理,各类操作参数对材料切除率、刀具磨损、工件精确度要求都有叙述,并着重表述了在加工工程陶瓷上的应用,制造复杂的三维立体陶瓷的问题也在叙述当中。

1 概述超声波加工及其应用超声波加工是一种非传统机械切削技术,通常与低材料去除率有关,它并不被加工材料的导电率和化学特性所限制,它用于加工金属和非金属材料,非常适合于脆性大,硬度高于40HRC[6–12]的材料,比如无机玻璃、硅片、镍、钛合金等等 [13–24],有了它,76um 的小孔也能加工,但是被加工的孔深度与直径之比限制在 3 比 1 之内 [8, 12]。

超声波加工的历史可以追溯到 1927 年,R. W. Wood 和 A. L. Loomis 发表的论文,1945年。

有关于超声波的第一项专利给了 L. Balamuth,现在超声波加工已经分化很多领域,超声波钻削、超声波切削、超声波尺寸加工、超声波研磨技术和悬浮液钻孔法,然而,在 20世纪 50 年代初只普遍知道超声波冲磨或 USM[8,25, 28, 30, 31]。

在超声波加工中,高频率的电能通过换能器/增幅器被转变为机械振动,之后通过一个能量集中装置被传送出去, 例如变幅杆/刀具组件[1, 17, 18, 30, 32]。

这导致刀具沿着其纵向轴线以振幅 0-50μm 高频率振动(通常≥20KHz)[16, 33, 34],典型额定功率范围从50~3000W[35]不等,在某些机器上可以达到 4kw。

一个受控静负载被施加于刀具和磨料悬浮液(由研磨材料的混合物组成、例如碳化硅,碳化硼等等,悬浮在水或油中)被泵传送到切削区域,刀具的振动导致磨料颗粒悬浮在刀具和工件表面间,通过微型片冲击工件表面从而去除材料[19]。

《基于Chebyshev-Ritz法的超声珩齿振动系统三维振动特性分析与实验研究》范文

《基于Chebyshev-Ritz法的超声珩齿振动系统三维振动特性分析与实验研究》范文

《基于Chebyshev-Ritz法的超声珩齿振动系统三维振动特性分析与实验研究》篇一一、引言随着科技的发展,超声珩齿技术已经成为现代机械加工领域的重要手段。

其工作原理主要是利用高频振动进行磨削和修整,而振动系统的三维振动特性直接决定了珩齿的加工效果和精度。

因此,对超声珩齿振动系统的三维振动特性进行分析与研究显得尤为重要。

本文将采用Chebyshev-Ritz法对超声珩齿振动系统进行深入研究,并通过实验验证其分析结果的准确性。

二、Chebyshev-Ritz法理论介绍Chebyshev-Ritz法是一种基于数值逼近理论的算法,主要用于求解偏微分方程的近似解。

在超声珩齿振动系统的研究中,该方法可以有效地对系统的三维振动特性进行数值分析和模拟。

其基本原理是通过将偏微分方程的解空间离散化,然后利用Chebyshev多项式对离散后的解进行逼近,从而得到近似解。

三、超声珩齿振动系统三维振动特性分析1. 模型建立:首先,根据超声珩齿振动系统的实际结构和工作原理,建立三维模型。

模型中应包括各个部件的几何尺寸、材料属性、约束条件等参数。

2. 理论分析:利用Chebyshev-Ritz法对模型进行数值分析和模拟。

通过求解偏微分方程,得到系统在不同频率和振幅下的三维振动特性。

3. 结果分析:对分析结果进行后处理,提取出系统三维振动的关键参数,如振幅、频率、相位等。

通过对比不同参数下的振动特性,可以了解系统在不同工况下的工作状态和性能。

四、实验研究1. 实验准备:根据理论分析的结果,设计实验方案。

准备实验所需的设备、材料和工具,如超声珩齿机、传感器、数据采集器等。

2. 实验过程:在实验过程中,应严格控制实验条件,如温度、湿度、压力等。

同时,要确保传感器和数据采集器的正常工作,以获取准确的实验数据。

3. 数据分析:对实验数据进行处理和分析,与理论分析的结果进行对比。

通过对比分析,可以验证Chebyshev-Ritz法在超声珩齿振动系统三维振动特性分析中的准确性和可靠性。

外文资料翻译---多轴数控加工仿真的自适应固体

外文资料翻译---多轴数控加工仿真的自适应固体

毕业设计(论文)外文资料翻译系(院):机械工程学院专业:机械设计制造及其自动化姓名:学号:1091101630外文出处:Computer-Aided Design & Applications,V ol. 2, Nos. 1-4, 2005, pp95-104附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文多轴数控加工仿真的自适应固体香港T. Yau1, Lee S. Tsou2 and Y u C. Tong31中正大学,imehty@.tw2中正大学,lstsou@.tw3 中正大学,pu@.tw摘要:如果在一个复杂的表面的加工中,通常会产生大量的线性NC段来近似精确的表面。

如果没有发现,直到切割不准确的NC代码,则会浪费时间和昂贵的材料。

然而,准确和视图独立验证的多坐标数控加工仍然是一个挑战。

本文着重介绍了利用自适应八叉树建立一个可靠的多轴模拟程序验证模拟切割期间和之后的路线和工件的外观。

体素模型的自适应八叉树数据结构是用来加工工件与指定的分辨率。

隐函数的使用刀具接触点的速度和准确性的检验,以代表各种刀具的几何形状。

它允许用户做切割模型和原始的CAD模型的误差分析和比较。

在加工前运行数控机床,以避免浪费材料,提高加工精度,它也可以验证NC代码的正确性。

关键词:数控仿真加工,固体素模型,自适应1.介绍NC加工是一个基本的和重要的用于生产的机械零件的制造过程。

在理想的情况下,数控机床将运行在无人值守模式。

使用NC仿真和验证是必不可少的,如果要运行的程序有信心在无人操作。

因此,它是非常重要的,在执行之前,以保证NC路径的正确性。

从文学来说,数控仿真主要分为三种主要方法,如下所述。

第一种方法使用直接布尔十字路口实体模型来计算材料去除量在加工过程。

这种方法在理论上能够提供精确的数控加工仿真,但使用实体建模方法的问题是,它是计算昂贵。

使用构造实体几何仿真的成本刀具运动的O(N 4)的数量的四次幂成正比。

超声振动精密车削加工的试验研究

超声振动精密车削加工的试验研究

超声振动精密车削加工的试验研究
李文杰
( 西安航 空职业技 术 学 院 ,陕西西安 7 1 0 0 8 9 )
摘要 :分析超声振动精密车削的加工机制 ,以 4 5钢为例 ,采用 正交试验 方法对影 响超声振 动精 密车削质量 的因素进行 了大量的对 比试验研究 ,确定 了对 4 5钢进行精密加工 的合理 的切削参数 ,分析 了影响表面加工质量的一些因素 ,同时总结 了超 声振动车削在精密加工 方面的优越性 和规律性 。 关键词 :超声振动车削 ;精密加工 ;表面粗糙度
2 0 1 3年 2月
机床 与液压
MACHI NE TOOL & HYDRAUL I CS
F e b . 2 0 1 3
第4 1 卷 第 3期
Vo 1 . 4l No . 3
DO I :1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1—3 8 8 1 . 2 0 1 3 . 0 3 . 0 2 4
中图分类号 :T G 6 6 3 文献标识码 :A 文章编号 :1 0 0 1 — 3 8 8 1( 2 0 1 3 1 3— 0 8 6— 3
Ex pe r i me nt a l Re s e a r c h o n Ul t r a s o ni c Vi br a t i o n Pr e c i s i o n Tur n i n g
良好 的表面加工质量 。
量 ,在很大程度上可 以代替 磨削对 零件进 行精加 工 , 从而为实现精密加工提供了一条新的途 径和方法 。
2 试 验设 备和 工件
2 . 1 试验 设备
1 超声 振 动精密 车削 加工 的机 制分析
( 1 )超声振 动车削 时 ,刀具 在有 规 律 的高频 振 动状态下进行切削 ,切削速度的大小 和方 向在不断变 化 ,是一种高速冲击和切削的联合作用 ,具有振动 冲 击 和变速 、断续切削 的特点 ,大大减小了切削力、摩 擦因数和切削热 ,为实现精密加工提供 了条件 ; ( 2 )超声 振 动切 削加强 了刀 刃 的切 割作 用 和穿

超声波无损探伤技术中文翻译稿

超声波无损探伤技术中文翻译稿

Nondestructive MaterialT esting withUltraso ni c s 使用超声波对材料进行的非破坏性检测Int roduction to the Basic Principles基本原理介绍UNION ELECTRIC STEEL CORPORATION 美国联合电钢(戴维)轧辊公司安多利国际有限公司翻译2007年3月06日Contents 内容安多利国际有限公司Introduction介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41.Why use ultrasonics for nondestructive material testing?为什么使用超声波进行非破坏性材料检测? . . . . . . . . . . .52.Ultrasonic testing tasks 超声波检测任务 . . . . . . . . . . . . . . . . . . . . . . .53.Detection of discontinuities 不连续的发现 . . . . . . . . . . . . . . . . . . . . . .64.Method of testing and instrument technology 检测方法和仪器技术. . .10 4.1The ultrasonic flaw detector 超声波裂纹检测仪 . . . . . . . . . . . . . . . . . . . .10 4.2Near r esolution . 近场的处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.3The pr obe 探头. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .16 4.4Refraction and mode conversion 折射和模式的转变. . . . . . . .17 4.5Characteristics of angle-beam probes角度探头的特性. . . . . . . . . . . . . . . . . .194.6The TR pr obe TR探头 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205.Locating discontinuities 断裂的定位. . . . . . . . . . . . . . . . . . . . . . . . . .225.1Calibration of the instrument 仪器校准 . . . . . . . . . . . . . . . . . . . . . . .22 5.1.1Calibration with a straight-beam probe平行光束探头的校准 . . . . . . . . . . . . . . . . . . .22 5.1.2Calibration with a TR pr obe TR探头的校准 . . . . . . . . . . . . . . . .. . . . . . . .24 5.1.3Calibration with an angel-beam probe 角度探头的校准 . . . .. . . . . . . .. . .265.1.4Locating reflectors with an angle-beam probe 使用角度探头对反射器进行定位 . .286.Evaluation of discontinuities 断裂的评估 .. . . . . . . . . . . . . . . . . . . . . .296.1Scanning method 扫描方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 6.2Evaluation of small discontinuities: The DGS method对小断裂的评估:DGS方法. . . . .30 6.3Sound attenuation 消音. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 6.4The refer ence block method 叁考程序块方法. . . . . . . . . . . . . . . . . . . . . .34 6.4.1Comparison of echo amplitudes 回声振幅的比较 . . . . . . . . . . . . . . . . . . . .346.4.2Distance amplitude curve 振幅曲线的距离. . . . . . . . . . . . . . . . . . . . . . . . ..357.Documentation 文件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378.Diagnosis of indications (outlook)指示的分析诊断. . . . . . . . . . . . . . . . . . . . . .40 Refer ence list 参考清单. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41前言因时间仓促,加之专业技术欠缺,本译文一定会有很多不准确的地方。

基于超声振动辅助车削的建模与仿真研究

基于超声振动辅助车削的建模与仿真研究

Modeling and Simulation 建模与仿真, 2023, 12(2), 1512-1522 Published Online March 2023 in Hans. https:///journal/mos https:///10.12677/mos.2023.122141基于超声振动辅助车削的建模与仿真研究钱兆峰,王 艳上海理工大学机械工程学院,上海收稿日期:2023年2月13日;录用日期:2023年3月21日;发布日期:2023年3月28日摘要超声振动辅助车削相对于传统车削加工有提高车削效率、提高刀具使用寿命、提高材料加工表面完整性等优点。

本文分析了车削加工中的振动机理,阐述了超声振动对传统车削加工的影响,同时以钛合金(TC4)为研究对象,基于振动学理论,建立了一种表征传统车削振动系统的解析模型,并使用ABAQUS 软件建立了二维车削有限元切削仿真模型,开展了传统车削与超声振动辅助车削两种工艺的TC4切削仿真模拟。

仿真结果表明,当超声振幅在4 μm~12 μm 内时,超声振动辅助车削加工相较于传统车削加工,刀具受到的径向力下降了11.4%~20%,TC4加工表面最大压应力下降了7.8%~19.4%,且加工表面压应力和径向力均随着超声振幅的提高而下降。

关键词车削,钛合金(TC4),超声振动,ABAQUSModeling and Simulation Research Based on Ultrasonic Vibration Assisted TurningZhaofeng Qian, Yan WangSchool of Mechanical Engineering, University of Shanghai for Science and Technology, ShanghaiReceived: Feb. 13th , 2023; accepted: Mar. 21st , 2023; published: Mar. 28th , 2023AbstractCompared with traditional turning, ultrasonic vibration assisted turning has the advantages of improving turning efficiency, improving tool life and improving surface integrity of material processing. In this paper, the vibration mechanism in turning is analyzed, and the influence of ul-trasonic vibration on traditional turning is expounded. At the same time, taking titanium alloy (TC4) as the research object, an analytical model characterizing the vibration system of traditional turning is established based on the theory of vibration. The two-dimensional turning finite ele-ment cutting simulation model is established by using ABAQUS software, and the TC4 cutting si-钱兆峰,王艳mulation of traditional turning and ultrasonic vibration assisted turning is carried out. The simu-lation results show that when the ultrasonic amplitude is within 4 μm~12 μm, compared with the traditional turning, the radial force of the tool is reduced by 11.4%~20%, and the maximum com-pressive stress of the TC4 machined surface is reduced by 7.8%~19.4%. The surface compressive stress and radial force decrease with the increase of ultrasonic amplitude.KeywordsTurning, Titanium Alloy (TC4), Ultrasonic Vibration, ABAQUSThis work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言钛合金(TC4)是一种难加工材料,具有材质较轻、强度硬度高、耐热性强、抗腐蚀性好等优点[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ultrasonically assisted turning of aviation materials :simulations andexperimental studyV.I.Babitsky,A.V.Mitrofanov V.V.Silberschmidt,AbstractUltrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration(frequency f=20KHz amplitude a =15μm ) superimposed on the cutting tool movement.An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration through out the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented.The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state,cutting forces and contact conditions at the workpiece/ tool interface.KEYWORDS:Ultrasonic,machining,Turning,Finite element modelling,Microstructure航空材料超声辅助车削的仿真与实验研究莱斯特,拉夫堡大学机械工程专业摘要超声辅助切削现代航空材料,即把f=20KHz,a=15μm的振动加载在切削刀具的运动上。

设臵一个自响应控制系统来维持切削过程中的稳定运行。

利用高速光学成像方法来试验比较超声切削和常规切削得到的工件的表面粗糙度和圆度。

利用奈米压痕方法分析工件便面微结构。

利用有限元分析进行数学仿真分析铬镍铁合金利用常规切削和超声振动切削加工之后的拉应力/压应力,加工过程中的切削力以及工件与刀具的相互作用。

关键词:超声波加工;车削;有限元模拟;微观结构1 绪论车削就是利用锋利的楔形切削刀具把工件表层材料从圆柱形工件上去除的加工过程。

这项技术被用于各种金属材料的加工已有几百年的历史了。

然而,在最近几十年里,各种合金和复合材料的广泛应用于各个工程领域。

有许多新材料已经很难用已有的普通的(CT)车削工艺去加工了,常规加工方法在应用于航天领域的镍钛合金不锈钢的加工中,即使是相对较低的切削速度,也能引起较高的的切削温度,随之而来的就是更严重的刀具磨损。

这些棘手的材料出现,使得先进加工方法更加的刻不容缓。

图 1高频超声波振动叠加在常规切削刀具上(图1),早在19世纪60年代就已经被关注和研究,事实证明,不但对于超硬合金材料的加工,而且对像陶瓷、玻璃这样的脆性材料的加工上,这种方法都是行之有效的。

超声振动辅助车削(UAT)比起常规加工工艺来,切削力相当于以前的【1-4】倍,表面光洁度提高将近50%,并且噪音降低。

至于加工脆性材料例如玻璃和陶瓷材料,当前技术需要长时间的昂贵的后期精加工才能保证光学材料所要求的表面质量。

而UAT则可以在刀具低损耗和低切削力的同时,获得镜面加工面。

不过到目前为止,UAT还没有被广泛应用于工业领域,其中很重要的原因是超声切削过程中的灵敏度很高,导致了切削效率的降低,当更换刀片或者切削载荷改变时.然而,这种不足最近已经随着自响应控制系统的发明改变了。

这个系统使得超声切削过程稳定而且可以方便的控制。

这个新型控制系统的详细说明在【9.10】.本论文的试验部分则比较研究了自响应控制系统的UAT与常规切削另外一个重要的UAT的问就是力学机械学问题,我们只有很少的研究资料关于工件与刀具相互作用区域以及他们对所加工材料结构的影响【3.6.11】。

这些著作大部分研究超声波加工机装臵的力学问题而不是加工材料对超声切削的响应问题。

当有一个清晰地认识到这一过程,UAT加工肯定会得到进一步发展。

本文的主要目的是研究与数值模拟的UAT过程中的材料力学。

2 实验研究研究UAT的实验装臵如图1所示。

工件被固定在万能车床上匀速旋转高频电脉冲输入到超声换能器,激发耐压陶瓷套的振动。

振幅在集中器中加强并且传送到集中器末端的刀具夹具上。

切割刀具的振动频率20KHZ,振幅可达30um.振动可加载在横向和纵向方向上的工件表面上(如图1b所示)这种自动调节控制的切割系统在【9.10】中有详细说明。

我们做了一系列的试验来比较UAT与CT在加工航空材料上的区别。

详细说明在【5】中。

实验材料是广泛应用于航空领域的鉻镍铁合金和高耐热镍基合金。

这些材料耐磨性高,常规切削时,切削温度高,导致刀具钝化。

车削获得的表面质量是金属切削中的关键因素,加工过程中的任何变动都会影响到它实验标本的表面光洁度主要由表面平均粗糙度和圆度来衡量,使用Tay-Hobson-Talysurf 4测量仪,以下是主要技术参数:切削深度d=0.8mm,进给速度S=0.05mm/rev,切削速度V=17m/min。

UAT与CT参数设臵相同。

图 2图 2.a中展示了典型的INCONEL718加工过程的轴向剖面图。

显然,UAT加工的工件表面粗糙度降低了将近50%,而且表面轮廓更加圆整,从轴向轮廓看外表面更加圆滑。

而且还获得了另外一个工件圆度重大改进(图2.b):CT的圆度峰谷差为4.2um,然而UAT能达到1.89um,因此,当超生振动波加载在刀具运动上的时候,表面圆度能提高将近40%。

值得注意的是其他研究者也得到了类似的结论【7.12】在切线方向上加载振动显然,这些进步变化的原因就是切削过程的不同,由超声波振动引起的刀具与切屑的高频碰撞,这导致了材料变形过程的改变和摩擦力的改变,以及车床刀具工件组成的系统的动态变化【6,11】主要原因在于高频超声波超乎自然频率。

除了表面质量之外,机械加工面的微结构也是一个试验指标。

INCONEL718工件切削用量相同(V=3.6m/min,d=0.1mm,s=0.03mm/rev )的情况下,在切线方向加载超生振动和没有加载的情况相对比。

然后,利用MicroMaterials Ltd生产的纳米测试平台来测验表层结构。

根据测试结果,由切削过程中的高温变形引起的硬化层厚度,UAT是CT的一半(40和80)再者,UAT硬化层的平均硬度(大约15GPa)是CT的一半,非常接近未处理材料(7GPa)材料硬度也增加了,残余塑性变形也增加了。

因此,纳米压痕试验显示,UAT加工残余应力低,我们可以从中得出结论,UAT加工工艺精度更高。

3 UAT数值分析有限元仿真是一个仿真加工过程的主要工具它被用于仿真切削过程已经有30多年了。

现有仿真金属车削的概况在【13,14】中有详细介绍。

然而,据作者所知,迄今为止还没有没有专门的UAT模型。

本文所涉及的二维有限元仿真模型基于MSC Marc[15]代码。

正交切削过程如下。

在切割和进给方向上这个切削过程的刀具都是正常的图1b显示了工件和刀具的相对运动,圆柱形零件的转动轴跟平面是垂直的。

工件恒速度转动,而这个工具与高频振动统一起来频率f=20Khz,振幅为15um,与试验中设臵相同。

另外一个参数是切削余量为t1=0.1mm(符合切削深度),刀具前角为r=10度,切削速度V=9m/min.在每个振动周期内,都是这样的参数。

材料常数从【16】中得出.利用运动学分析刀具左右两侧和底部Vx|AH=V, Vx|FG=V, Vx|HG=V, VY|HG=0.温度边界条件分析主要是包括热从工件表面和刀具以及周围环境的对流其中K表示传导率,H表示热传导系数,T1表示环境温度,在接触面内,切屑传给刀具的热通量可由下式表示:q=H(Tchip-Ttool).H为热传导系数,Tchip和Ttool分别为切屑和刀具表面温度。

该模型的建立考虑到了以下影响应力与应变的因素:(1)刀具与切屑接触面的相互摩擦(2)非线性的材料特性,包括材料应变率对材料屈服应力的影响。

(3)热-机械耦合效应也就是机械的以及热传导的内在联系。

图 3UAT的有限元模拟在一个周期振动主要可分为四个阶段。

在第一阶段(图3a)、刀具靠近切屑;第二阶段,刀具开始接触切屑和切除的工作达到最大特征是生成过程中应力达到最大标志着的第二阶段(图3b)的结束。

接下来是卸载:刀具速度的方向改变,并且向后移动,这个工具的速度超过了切削速度(由于切屑回弹效应)。

在这一阶段里,在这个过程中弹性应变下降。

最后一个阶段,刀具与切屑完全分离(图3c)刀具和切屑的间歇接触是CT和UAT 的最大区别。

如图3c所示,CT过程中应力状态几乎是不变的。

最高的应力集中剪切区域分布在如图1所示BE 线两侧。

紧挨着前刀面EK。

与之相反的是,UAT的应力状态变化周期非常短暂。

最大值时与CT是一样的,在超声震动切削的其他阶段(图3a和c),当刀具不与切屑接触的时候,材料的平均应力和相互作用力都比CT小很多。

通常是几倍的减少。

对这一现象的详细研究可在资料【1,3,4】中找到。

4 切屑形成过程的研究切屑的形成过程是金属切削加工过程中最重要的,因此研究切屑在加载超声震动周期内的形成很有意义。

在UAT与CT加工Inconel718的比较实验中:柯达Ektapro HS运动分析仪4540用于实时观测刀具与切屑的相互作用。

UAT的变形主要集中在沿着刀尖附近在工件表面上,刀具下边也是同样情形。

这个观察结果与奈米压痕实验得出的结论相同。

最后表明,加载超声波的切削使得切屑形成更加有规律,因而带状切屑的形成增多。

相比之下,CT产生的多为节状切屑,主要由于不规则震动引起。

扫描电子显微镜研究UAT与CT产生的切屑的微结构验证了这一结论,UAT有微小锯齿状,而CT多为节状。

相关文档
最新文档