最新微元法及定积分的几何应用教案
定积分的应用元素法教案

上连续, 则对应于小区间
的体积元素为
dV A(x) d x 因此所求立体体积为
b
V a A(x) d x
A( x)
ax
bx
特别 , 当考虑连续曲线段
轴旋转一周围成的立体体积时, 有
V bπ[ f (x)]2 dx a
y
y f (x)
当考虑连续曲线段
O ax b x
绕 y 轴旋转一周围成的立体体积时,
b
A a f (x) dx
y y f1(x) y f2 (x)
右下图所示图形面积为
b
A a f1(x) f2 (x) dx
O axxdx b x
例1. 计算两条抛物线 图形的面积 .
解: 由
得交点 (0, 0) , (1, 1)
1
AdA (
x x2)dx
0
1 3
在第一象限所围
y
y2 x y x2
O
x
例2. 计算抛物线 y2 2x 与直线 y x 4 所围图形 的面积 .
解: 由
得交点
(2, 2) , (8, 4)
y
ydy y
y2 2x (8, 4)
为简便计算, 选取 y 作积分变量,
则有
A
d
A4
2
(
y
4
1 2
y
2
)
d
y
O
yx4 x
(2, 2)
18
例3. 求椭圆
所围图形的面积 .
0
0
几个常见极坐曲线
a
ra
0 2
x2 y2 a2
r a sin 0
x2 (y a)2 a2 24
第十讲 微元法思想与定积分应用

y
y f2(x)
oa
A
A
y f1( x)
b xoa
bx
b
A a f ( x)dx
b
A a[ f2( x) f1( x)]dx
极坐标情形
r ( )
d
r 1( )
r 2( )
o
x
o
x
A 1 [ ( )]2 d 2
A
123
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
133
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
143
小结
1.定积分的实质:特殊和式的极限.
分、粗、和、精 2.定积分的思想和方法:
分割 求和 取极限
化整为零
求近似以直(不变)代曲(变)
积零为整
dx的乘积,就把 f ( x)dx 称为量U 的元素且记作
dU ,即dU f ( x)dx ;
3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b ,
即为所求量U .
5、定积分应用的常用公式
(1) 平面图形的面积
直角坐标情形
y
y f (x)
y f (x)
y
A?
oa
bx
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
微元法及其应用说课教案

微元法及其应用课程名称:适应对象:一、教学目标1.1 知识目标①理解微元法的思想、方法;②掌握微元法适应性条件;③掌握微元法在几何和电工学中的应用;④了解微元法思想的形成与发展。
1.2 能力目标①培养学生从具体几何、电工问题中抽象、提炼出数学问题并建立积分模型的能力;②培养学生探究发现的基本能力。
1.3 情感目标①增强学生的应用意识和探究精神;②体验数学与专业学习的密切联系,激发学生的数学学习热情。
二、内容定位2.1 学习任务分析学生已有的相关知识:定积分的概念和性质,Newton-Leibniz公式及定积分的简单计算,定积分的几何意义及求简单平面图形的面积,积累了初步用定积分解决问题的经验。
存在的问题:虽然已初步掌握了定积分的基本思想,但对其理解不深刻,所以,要理解建立在定积分思想基础上的微元法思想会有一定的难度;同时,学生数学应用能力不强,知识迁移能力较弱,所以,如何根据不同问题的特点确定所求“总量”的微元,是学生学习的另一个难点。
课型:建立在学生已经学完定积分基本理论基础上的一次实践课。
2.2 教学重点与难点重点:①理解微元法的思想、方法和应用步骤;②掌握微元法在几何和电工方面的简单应用。
难点:①微元法思想的理解;②合理选择积分变量,求出“总量”的微元。
三、教学进程安排3.1 教学基本流程3.2 教学过程设计1. 教学环节1:情境设疑(幻灯)曲线弧长、旋转体体积、水压力、变力做功和平均功率等问题的图片。
(教师)本次课的任务为定积分的应用。
(幻灯)设疑1,如何描述应用定积分理论解决实际问题的基本过程?(教师)让学生对定积分应用有一个整体认识,形成整体概念。
(幻灯)设疑2,上述过程中最核心的步骤是哪一步?(教师)强调利用积分思想建立实际问题的积分模型的重要性。
(幻灯)设疑3,试通过回顾用定积分定义求曲边梯形面积、变速直线运动物体路程,总结定积分的基本思想和方法?注意:结合曲边梯形面积求解的几何演示(幻灯)。
第五讲定积分的微元法定积分在几何中的应用(一).

第五讲 定积分的微元法 定积分在几何中的应用(一)一、定积分的微元法由引入定积分概念的两个实例不难看出, 可用定积分所求的量 A 具有以下 三个特点:1、量A 是分布在区间[a,b ]上的整体量,即A 与区间[a,b ]有关,在[a,b ]上连续分布。
3、量A 在区间[a,b ]上的分布是非均匀的。
现在来讨论如何用定积分解决一些实际问题。
复习求曲边梯形面积的方法,给出微元法的概念。
设f(x)在区间[a,b ]上连续,且f(x) 0,求以曲线取近 似 计算每 个小 区 间 上 面 积 A i 的 近 似 值 A if( i ) x i2、量A 具有可加性,即整体量等与部分量的和:nA i ;i1f (X )为曲边的[a,b ]上的曲边梯形的面积A .把这个面积A 表示为定积分A a bf (x)dx,求面积A 的思路是“分割、 取近似、求和、取极限”即: 1、分割 将[a,b ]分成n 个小区间,相应地把曲边梯形分成n 个小曲边梯形,其面积记作 A(i 1,2,,n),则 A A ;i12、(x i 1ix n ) ;3、求和求和得A 的近似值A nf( i )i1x i ;4、 n取极限 取极限得 A limi1f( i ) x ibf(x)dx .为了以后使用方便,可把上述四步概括为下面两步, 设所求量为A ,区间yA 「为[a,b],1、无限细分,化整为零A f x dx ;2、连续求和,积零为整xbbbdA dA x d f x dx f x dx , A dA dA x faaaa由此不难看出,f x dx 实际上就是量A 在点x 出的微分,将dA f x dx 称为量A 的微元,上述方法称为微元分析法,简称为微元法。
二、定积分在几何中的应用(一)平面图形的面积1、直角坐标系下面积的计算在dx 0时,将A 从a 到b 连续求和,则有:A f(x)dx. y n由于A 与区间[a,b ]有关,且在[a,b ]上连续分布,上限函数的定义则有:A x f x dx ,从而, x有积分axb X1、当平面图形是由曲线f(x)及直线xb 、y 0所围成时;bb细分区间[a,b ],从中任取一小区间[x,x dx ](dx x ),并求出相应于这个小区间的部分量a oA 的近似值///Jx X dx b Xx dx ;xxxf x dxd f x dx f x dxacbf x dx .d2、当平面图形是由曲线 伞yy iX 、y 2 f 2 x 及直线x a 、x b 所围成时;yy i f i xy 2 To xb x若y i y 2时,则有:A f 2 xf i xdxb bf 2 x dxf i aax dx般地,f 2 xf l x dxacf i x af 2 xd dxcf 2 bxf i x dxdf i x f 2 x dx3、当平面图形是由曲线 X i f i y 、 X 2 f 2 y 及直线yd 所围成时;d则:A 2 y 1 y dy .cx 例1、计算由两条抛物线y 2x例2、计算抛物线y22x与圆x2寸8所围平面图形的面积。
定积分的简单应用参考教案

定积分的简单应用教学目标:1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法,以及利用定积分求一些简单的旋转体的体积;4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。
教学重点:几种曲边梯形面积的求法。
教学难点:定积分求体积以及在物理中应用。
教学过程: 一、问题情境1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么? 二、数学应用(一)利用定积分求平面图形的面积 例1、求曲线],[sin 320π∈=x x y 与直线,,320π==x x x 轴所围成的图形面积。
答案: 2332320=-=⎰ππo x xdx S |cos sin = 变式引申:1、求直线32+=x y 与抛物线2x y =所围成的图形面积。
答案:33233323132231=-+=--⎰|))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3和N (3,0 略解:42+-=x y / ,切线方程分别为34-=x y 62+-=x y ,则所求图形的面积为49346234342233232==dx x x x dx x x x S )]()[()]()[(-+--+-+-+---⎰⎰3、求曲线x y 2log =与曲线)(log x y -=42以及x 轴所围成的图形面积。
略解:所求图形的面积为dy dy y f y g S y ⎰⎰⨯-=-11224)()()(【=e e y y 210224224log |)log -=⨯-=(4、在曲线)0(2≥=x x y 上的某点A 处作一切线使之与曲线以及x 轴所围成的面积为121.试求:切点A 的坐标以及切线方程.略解:如图由题可设切点坐标为),200x x (为2002x x x y -=,切线与x 轴的交点坐标为),(020x,则由题可知有121220200220200-+=⎰⎰x x dx x S x x x ( 10=∴x ,所以切点坐标与切线方程分别为12),1,1(A -=x y总结:1、定积分的几何意义是:a x x f y b a ==与直线上的曲线在区间)(],[、x b x 以及=轴所围成的图形的面积的代数和,即轴下方轴上方-x x ba S S dx x f =⎰)(.因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数][0 π2,sin ∈=x x y 的图像与x 轴围成的图形的面积为4,而其定积分为0.2、求曲边梯形面积的方法与步骤:(1) 画图,并将图形分割为若干个曲边梯形;(2) 对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3) 确定被积函数;(4) 求出各曲边梯形的面积和,即各积分的绝对值的和。
定积分的应用教案

定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义:定积分是函数在区间上的积累效果,表示为∫ab f(x)dx。
强调定积分表示的是函数在区间上的面积或长度。
1.2 定积分的性质介绍定积分的性质:线性性质、保号性、可积函数的有界性等。
通过示例说明定积分的性质在实际问题中的应用。
第二章:定积分的计算方法2.1 牛顿-莱布尼茨公式介绍牛顿-莱布尼茨公式:如果F(x) 是函数f(x) 的一个原函数,∫ab f(x)dx = F(b) F(a)。
解释原函数的概念:原函数是导函数的不定积分。
2.2 定积分的换元法介绍换元法的步骤:选择适当的代换变量,求导数,计算新积分。
通过具体例子演示换元法的应用。
第三章:定积分在几何中的应用3.1 平面区域的面积解释平面区域面积的概念:平面区域内所有点的坐标的绝对值的平均值。
利用定积分计算平面区域的面积,示例包括矩形、三角形、圆形等。
3.2 曲线围成的面积介绍利用定积分计算曲线围成的面积的方法:选择适当的上下限,计算定积分。
通过具体例子演示计算曲线围成的面积。
第四章:定积分在物理中的应用4.1 定积分与力的累积解释力的累积概念:力在一段时间内的积累效果。
利用定积分计算力的累积,示例包括恒力作用下的位移、变力作用下的位移等。
4.2 定积分与功的计算介绍利用定积分计算功的方法:计算力与位移的乘积的定积分。
通过具体例子演示计算功的应用。
第五章:定积分在经济学中的应用5.1 定积分与总成本解释总成本的概念:企业在生产一定数量产品所需的成本。
利用定积分计算总成本,示例包括固定成本和变动成本的情况。
5.2 定积分与总收益介绍利用定积分计算总收益的方法:计算产品的售价与销售数量的乘积的定积分。
通过具体例子演示计算总收益的应用。
第六章:定积分在概率论中的应用6.1 定积分与概率密度解释概率密度的概念:随机变量在某个区间内的概率。
利用定积分计算概率密度,示例包括均匀分布、正态分布等。
定积分与微积分基本定理》教案

《定积分与微积分基本定理》教案一、教学目标1. 理解定积分的概念,掌握定积分的计算方法。
2. 掌握微积分基本定理,了解其应用。
3. 能够运用微积分基本定理解决实际问题。
二、教学内容1. 定积分的概念:定积分是函数在区间上的积累量,用符号∫表示。
2. 定积分的计算方法:牛顿-莱布尼茨公式、换元法、分部积分法等。
3. 微积分基本定理:微积分基本定理是定积分与导数之间的关系,表述为∫(f'(x)dx) = F(b) F(a),其中F(x) 是f(x) 的一个原函数。
4. 微积分基本定理的应用:求解曲线下的面积、弧长、质心等问题的计算。
三、教学重点与难点1. 教学重点:定积分的概念、计算方法,微积分基本定理的理解与应用。
2. 教学难点:微积分基本定理的证明,定积分的计算方法的综合运用。
四、教学方法1. 讲授法:讲解定积分的概念、计算方法,微积分基本定理的证明。
2. 案例分析法:分析实际问题,引导学生运用微积分基本定理解决。
3. 练习法:课堂练习与课后作业,巩固所学知识。
五、教学安排1. 第一课时:定积分的概念与计算方法。
2. 第二课时:微积分基本定理的证明。
3. 第三课时:微积分基本定理的应用。
4. 第四课时:定积分的综合练习。
六、教学策略1. 互动讨论:鼓励学生提问,师生共同探讨定积分与微积分基本定理的相关问题。
2. 小组合作:同学之间分工合作,共同完成定积分的计算和应用问题。
3. 利用多媒体:通过动画、图像等直观展示定积分的几何意义和应用。
七、教学评价1. 课堂问答:检查学生对定积分概念、计算方法和微积分基本定理的理解。
2. 课后作业:布置有关定积分的计算和应用问题,检验学生掌握程度。
3. 课程报告:要求学生选择一个实际问题,运用微积分基本定理进行解决,以此评估学生的实际应用能力。
八、教学资源1. 教材:选用权威、实用的教材,如《微积分学导论》等。
2. 辅导资料:提供定积分与微积分基本定理的相关习题及解答。
数学分析教案(华东师大版)第十章定积分的应用

第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:1.简单图形:型和型平面图形 .2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.例1求由曲线围成的平面图形的面积.例2求由抛物线与直线所围平面图形的面积.(二)参数方程下曲边梯形的面积公式:设区间上的曲边梯形的曲边由方程给出 . 又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .例3求由摆线的一拱与轴所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为, 顶角为的扇形面积为 . )例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点, 倾角为的两条直线之间 ) . 以代方程不变,图形关于轴对称 ; 以代, 方程不变,图形关于轴对称 . 参阅P242 图10-6因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案
教学目的与要求:
1.正确理解和掌握定积分微元法的基本思想;
2.掌握用定积分解决平面图形面积的问题;
3.培养学生分析问题解决问题的能力和数形结合的观念
重点:1、微元法及其基本思想;2、求平面图形的面积 难点:微元法的基本思想
教学内容与教学组织设计(45分钟):
第6.5节:定积分的几何应用
1 复习定积分的概念,引入微元法的思想 ………………………..15分钟
定积分的概念
⎰
b
a
dx x f )(0
1
lim ()n
i i i f x λξ→==∆∑.
教学安排 课 型:理论 教学方式:讲授 教学资源
多媒体、板书
授课题目(章、节) 第6.5节:定积分的几何应用
通过对求曲边梯形面积问题的回顾、分析、提炼,可得用定积分计算某个量U 的步骤: (1) 选取积分变量,并确定它的变化区间[,]a b ;
(2) 求微元:将区间[,]a b 分成若干小区间,取其中的任一小区间[,]x x dx +,求出它所对应的部分量的近似值:
()U f x dx ∆≈ (()f x 为[,]a b 上的连续函数 )
则称()f x dx 为量U 的微元,且记作()dU f x dx =;
(3) 列积分:以U 的微元dU 作被积表达式,以[,]a b 为积分区间,得()b
a
U f x dx =⎰
.
这个方法叫做微元法。
微元法实质:找出U 的微元dU 的微分表达式dU=f(x)dx 。
3 求平面图形的面积 …………………………………..17分钟
类型一:D1型区域 (教师主导并详细讲解)
如图1,由曲线()y f x =及直线x a =、()x b a b =<与x 轴
所围成的曲边梯形面积A. 讲解:(板书)
(1) 选变量:选x 为积分变量
(2) 求微元:在区间微元[,]x x dx +上,取x ξ=,则 ()dA f x dx = 图1 (3) 列积分:()b
a
A f x dx =
⎰
练习:(学生自主根据微元法进行分析,然后教师讲解)
如图2,求由曲线 ()y f x = 与 ()y g x = 及直线 x a =、()x b a b =<且()()f x g x ≥所围成的图形面积A 。
利用微元法可得:
(1) 选变量:选x 为积分变量
(2) 求微元:在区间微元[,]x x dx +上,取x ξ=,
则 [()()]d A f x g x d x
=-
(3) 列积分:[()()]b
a
A f x g x dx =-⎰
图2
归纳(D1型区域区域,根据微元法可得面积的计算式子):
取
x 为积分变量,积分区间为[,]a b ,被积函数为区域上方边界曲线函数减去下方边界曲线函数:()()f x g x -;
3 例题讲解 …………………………………………………10分钟
例1求由抛物线2
y x =与2
x y =所围成的面积.
解 题设曲线所围面积如图3所示,
由方程组
22y x x y ⎧=⎨=⎩
得二曲线的交点为(0,0),(1,1).
(1)选x 为积分变量,积分区间为[0,1],上方边界曲线函数是y =是2
y x = 图3
故所求面积1
20)A x dx =-⎰32
1
3023
3x x ⎡⎤=-⎢⎥⎣⎦1.3=
思考题:利用微元法,例题1是否有其他的解法?
4本节内容小结 …………………………………………………3分钟
(1)、微元法的基本思想; (2)微元法的3个步骤;
(3)对D1型区域,如何计算区域面积。
作业:
1、预习并思考:如何对D2型区域求面积?如何用微元法求旋转体体积?
2、P206 EX-1,2
课后反思。