定积分的应用之微元法
定积分应用的微元法

n
其中称 f ( x) 为被积函数, f ( x)dx 为被积式,x 为积分变量, [ a , b ] 为积分区间,a, b 分别称为积分下限和上限.
定积分定义的说明: (1)定积分表示一个数,它只取决于被积函数与积分上、 下限,而与积分变量采用什么字母无关,例如:
x dx t dt .一般地, 0 0
证 将性质 5 中不等式除以 b a ,得 1 b f ( x ) d x ≤ M. m≤ a ba 1 b a, b f ( x)dx ,即 m M .由于 f ( x) 为 设 a ba 区间上的连续函数,所以,它能取到介于其最小值与最大 值之间的任何一个数值 (这就是连续函数的介值定理) . 因此在a, b 上至少有一点 ,使得 f ( ) ,即 1 b f ( x)dx f ( ), ba a
f ( 1 ) x1 f ( 2 ) x 2 f ( n ) x n
(4)i
1i n
n
取极限 令小区间长度的最大值 maxxi
趋于零,则和式 的精确值,即
f ( )x 的极限就是曲边梯形面积 A
x2
五 、 微积分基本公式
引例 设物体以速度v v(t ) 作直线运动,要求计算 [T1 , T2 ] 时间内的路程 s. 从定积分概念出发,由前面已讨论的结果知道[T1 , T2 ]
所经过的路程为 v(t )dt .
T1 T2
若从不定积分概念出发,则知道函数为 v(t )dt s(t ) C , 其中 s(t ) v(t ) ,于是[T1 , T2 ]时间内所走 路程就是 s (T2 ) s (T1 ) . T2 综合上述两个方面,得到 v(t )dt s(T2 ) s(T1 ) .
微元法在利用定积分解决实际问题中所起的作用

微元法在利用定积分解决实际问题中所起的作用张志军一、能利用定积分来解决的实际问题有什么特点?能利用定积分来解决的实际问题,总可归结为求一个确定在某一区间上且一般来说在上非均匀分布的量。
这个量有以下两个特点:1、对区间具有可加性设是与变量的变化区间有关的待求量,在内任意插入分点,把分成个小区间,相应地量也被分成个部分量,那么等于这些部分量的和,即2、能找出部分量的近似表达式如果对每个部分量可以找到如下形式的近似值,其中为上的连续函数,那么待求量的近似值为我们要求的是的精确值,而用的近似值累加,其误差也将累加,所以就要求累加的误差能随所有而趋于零。
因此,希望相应于任一长为的小区间的部分量都满足表达式:且当时,(并与无关)。
这样我们可以证明量即可用定积分来计算二、如何理解和运用微元法来解决可化为定积分的实际问题?微元法也成为元素法,它是用来化实际问题为定积分问题的一种简便方法,也是物理学、力学和工程技术上普遍采用的方法。
如问题一所述,可化为定积分来计算的待求量有两个特点,对区间的可加性这一特点,是容易看出来的,因此,关键在于另一特点,即找任仪部分量的表达式:(1)然而,人们往往根据问题的几何或物理的特征,自然地将注意力集中于去找这一项上。
但不能忘记,这一项与之差,当时,应是比高阶的无穷小量,借用微分的记号,将这项记为(2)这个量称为待求量的微元或元素。
用定积分来解决实际问题的关键就在于求出微元。
若连续,我们由(1)式即知,(2)式表示的微元实际上是的微分,因为在区间上的待求量为,故。
因此,要求出在区间上的待求量,先要求出的微分。
然后把在上积分,即可求出,这就是所谓微元法或元素法。
按数学的定义,量的微分是它的线性主部,但从工程实际应用的角度看,量的微分就是在一定的条件下,将一些变动的量视为常量而得到的与成正比的的近似值。
按此理解,把数学与工程实际应用结合起来考虑,那么量的微分一般说来就比较易求,同时,化实际问题为定积分问题的步骤也得到了简化。
定积分的应用之微元法

定积分应用的微元法: 定积分应用的微元法
) (一 在 区间 [a,b] 上任取一 个微小 区间 [x, x + dx] ,然后写 出 值, 为 在 个 这 小区 上的 分 ∆F 的 似 ,记 dF = f (x)dx (称 F 间 部 量 近 值 为 的微元) 的微元);
[ 上积分(无限累加) d ,即得 (二) 将微元 F 在a,b] 上积分(无限累加) 即得 ,
各部分量之和, 各部分量之和,即F = ∑F . i
上的分布是不均匀的, (2) 所求量 F 在区间 [a,b] 上的分布是不均匀的, 比. 也 是说 F 的 与 就 , 值 区间 [a,b] 的 不 正 .( 则 长 成 比 否 的 得, 了) 话 F使 初 方 , 用 等 法即 求 , 勿 可 得 而 需用 分 法 ) 积 方 了 .
y = x2 , 得交点( 解方程组 2 得交点(0,0)及(1,1). y = x,
选择积分变量,写出面积微元, (2) 选择积分变量,写出面积微元,本题取竖条或横条作 dA均可 习惯上 x 均可, 取竖条, 取 为积分变量, 围为[0 [0, , 取竖条 即 x 为积分变量, 变化范 , 围为 , [0 1], 1],于是 2
n i=1
第三步:写出整体量 F 的近似值,F = ∑∆F ≈∑ f (ξi )∆xi ; 的近似值, 第三步: i
i=1
n
第四步: 极限, 第四步:取λ = max{∆xi } →0时的∑ f (ξi )∆xi 极限,则得
i=1
n
F = lim∑ f (ξi )∆xi = ∫ f (x)dx .
b
a b
y
y = f ( x)
y y = f ( x)
定积分微元法及其应用

定积分微元法及其应用摘要:积分学中的定积分在几何、物理、经济管理等方面有着极其广泛的应用。
由于定积分的微元法通常往往能使一些实际问题简单化,因此,定积分的微元法在定积分的应用方面至关重要。
本文首先简介定积分的微元法适用的所求量以及定积分微元法在应用中的步骤,重点介绍积分微元法在几何、物理、经济管理及日常生活等方面的应用。
关键词:定积分:微元法:应用一、定积分的微元法适用的所求量定积分的微元法是将实际问题设法转化为定积分问题的一种方法,通常,如果所求量满足三条:1.关于某一个区间有关;2.在区间上具有可加性,即当把区间分成任意n个小区间时,相应的所求量也分成n个小部分,且所求量等于n个小部分之和,即;3.在上任取一个小区间,所求量的部分量能够近似表示成(即所求量的微分元素),那么所求量就可以用定积分的微元法来求,即。
二.定积分微元法在应用中的步骤定积分微元法就是将所研究的所求量进行无限细分,从中抽取某一微小部分进行探探讨,通过分析,研究找出所求量的整体变化规律的方法。
通常利用定积分微元法解决一些具体问题时,采用将所研究的所求量细分成很多微小的“元素”,而这些微小的“元素”具有相同的几何形态或物理规律,因此,我们仅需要分析和研究其中的一个微小部分,利用所学的数学或物理的理论知识进行处理,以期达到用一个定积分表达式来求所求量的效果。
用定积分微元法将实际问题中的所求量抽象为定积分的步骤也基本相同,分为3步,1.根据题意,建立适当坐标系,画出草图(使得后面的选积分变量、确定积分区间、寻找所求量的微分元素比较直观);由于函数关系的建立是由所建立的坐标系来决定的,坐标系的建立是否恰当,往往直接影响到寻找微分元素的难易以及定积分计算的繁简程度。
因此,建立坐标系时,既要考虑到较易寻找所求量的微分元素,还要考虑到后面的定积分的计算要相对较简单。
2.选取积分变量,并确定其变化区间。
积分变量选择的是否恰当,往往直接决定着定积分的计算是简单还是繁琐。
定积分的应用:定积分的微元法

step3:
计 算A
b
f(x)dx
a
பைடு நூலகம்
这种方法称为定积分的微元法。
构造微元的基本思想及解题步骤
1. 构造微元的基本思想 无论是几何应用还是物理应用通常采用元素法。 元素法的实质是局部上“以直代曲”、“以不变代变”、
“以均匀变化代不均匀变化”的方法,其“代替”的原则必须 是无穷小量之间的代替。将局部 [x,xd]x [a,b]上所对 应的这些微元无限积累,通过取极限,把所求的量表示成
定积分 b f (x)dx . a
2. 在求解定积分应用问题时,主要有四个步骤: ①选取适当的坐标系;
②确定积分变量和变化范围;
③在[x, xdx]上求出微元解析式(积分式)。
④把所求的量表示成定积分
b a
f
( x )dx.
3。局 部 A if(量 i) A i,且误 o ( x i)差为
实际上,引出A的积分表达式的关键步骤是第 二步,因此求解可简化如下:
step1: 选取积分变量及积分 区间(如x属于[a, b])
step2: 取微区间[x, x+dx]
求出 D A f(x)dx(局 部 量 )
并 记 d A f( x ) d x 称 为 面 积 元 素
通过对不均匀量如曲边梯形的面积变速直线运动的路程的分析采用分割近似代替求和取极限四个基本步骤确定了它们的值并由此抽象出定积分的概念我们发现定积分是确定众多的不均匀几何量和物理量的有效工具
定积分的微元法
通过对不均匀量(如曲边梯形的面积,变速直线 运动的路程)的分析,采用“分割、近似代替、求和、 取极限”四个基本步骤确定了它们的值,并由此抽象 出定积分的概念,我们发现,定积分是确定众多的不 均匀几何量和物理量的有效工具。那么,究竟哪些量 可以通过定积分来求值呢?
微元法与定积分的应用

如果 f (x) 在 [a, b] 上有正有负,那么它的面积 A 的微元应是以 | f (x) | 为高,dx 为底的矩形面积,
即 dA= | f (x) |dx .
于是,总有
b
A a | f ( x) | dx.
y
f (x)
Oa
x x+dx
bx
dA
例 1 求由曲线 y = x3 与直线 x = - 1,x = 2 及 x 轴所围成的平面图形的面积.
dA
( x2
-
x1 )dy
( y
4) -
y2 2
dy,
y
4
于是
A
4 -2
(
y
4)
-
y2 2
dy
y + dy y
18.
如果选择 x 为积分变量, -2
那么它的表达式就比上式复杂.
y2 = 2x
(2,-2) A
B (8,4) y = x-4
x
例 4 求椭圆 x = a cos t,y = b sin t 的面积,其
n i 1
f ( xi )x
1
b
f (ቤተ መጻሕፍቲ ባይዱx)dx,
b-a a
即
y 1
b
f ( x)dx.
b-a a
例 5 求从 0 至 t 秒到这段时间内自由落体的 平均速度.
解 因为自由落体的速度为 v = gt, 所以,
v 1 t gudu 1 gt.
t-0 0
2
例 6 求 y = lnx 在 [1, 2] 上的平均值.
中 a > 0,b > 0. 解 因为图形关于 x 轴、y
定积分的微元分析法

f(i)xi
用定积分表示量U的基本步骤:
• 根据问题的具体情况,选取一个变量 例如x为积分变量,并确定其变化区间[a,b];
(2) 在区间[a,b]内任取一个小区间 ,[x, xdx]
求出相应于这个小区间的部分量 的近似U值.
如果 能U近似地表示为[a,b]上的一个连续函数
在 x处的值 与f ( x的) 乘积d, x
rr2()
相应于从 0到2的一段弧与极轴所围图形的面积.
解 如图,可视为=0, = 2及r=a
围成的曲边扇形.则其面积为
o
A0 2(a2)2da 2 2(33)|0 24 3a23
例5 求r=1与r=1+cos所围公共面积.
解 如图,曲线交点为
M
M(1,) ,N(1, 3)
2
2
A1 A2
o
则
A1
定积分应用
定积分的微元分析法 一 . 能用定积分表示的量所必须具备的特征
用定积分表示的量U必须具备三个特征 :
(1) U是与一个变量x的变化区间[a,b]有关的量; (2) U 对于区间[a,b]具有可加性. 即如果把区[a,b] 分成许多部分区间,
则U相应地分成许多部分量;
(3) 部分量U的i 近似值可表示为
取为积分变量,其变化区间为[ ,],
相应于[, +d]的面积微元为
Hale Waihona Puke r=r()d A 1[r()]2d
2
则图形面积为 A
1o[r()]2d
2
2. 一般图形
由曲线 rr1()r,r2()
及射线=, =所围图形的面积微元
为 dA 1 2[r22()r12()d]
高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,
•
面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)
•
所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲
•
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dA 1 r 2 ( )d ,
2
将dA在[ , ]上积分,便得曲边
扇形面积为
A 1 r2 ( )d . 2
O
r r(θ)
d
x
例 4 计算双纽线r 2 a2 cos 2 (a 0) 所围成的图形 的面积(如下图所示).
y
θ π4
ax O
解 由于图形的对称性,只需求其在第一象限中的面积,
再 4 倍即可,在第一象限 的变化范围为 [0, π],于是
4
A 4 1
π
π
4 a2 cos 2 d a2 sin 2 4 a2.
20
0
例 5 求心形线 r 1 cos 及圆r 3cos 所围成的阴影 部分面积(如右下图).
这是 F 能用定积分计算的前提,于是,上述四步简化后形成实用
的微元法.
定积分应用的微元法:
(一) 在区间 a,b 上任取一个微小区间 x, x dx ,然后写出
在这个小区间上的部分量ΔF 的近似值,记为dF f (x)dx (称为 F 的微元);
(二) 将微元dF 在a,b 上积分(无限累加),即得
x a, x b所围成的图形,如下页右图,面积微元
dA [ f (x) g(x)]dx,,面积 A
b
[
f
(
x)
g
(
x)]dx
.
a
y y f (x)
y y f (x)
O x x dx
O a x x dx b x a
bx
y g(x)
(3)由左右两条曲线 x ( y), x ( y)及 y c, y d 所
n
F ΔFi ; i1
ΔFi ≈ f (i )Δxi (i 1,2,, n);
n
n
第三步:写出整体量 F 的近似值,F ΔFi ≈ f (i )Δxi ;
i1
i1
n
第四步:取 max{Δxi} 0 时的 f (i )Δxi 极限,则得
i1
n
F
lim 0 i1
f (i )Δxi
b f (x)dx .
围成图形(图见下页)面积微元(注意,这时就应取横条矩
形 dA,即取 y 为积分变量)dA [( y) ( y)]dy,面积
A d [( y) ( y)]dy. c
y d
y dy
x 1,1)
x ( y)
x
O
x x dx x
例 1 求两条抛物线 y2 x, y x2 所围成的图形的面积 .
定积分的应用
一、 定积分应用的微元法 二、用定积分求平面图形的面积 三、用定积分求体积 四、平面曲线的弧长
一、 定积分应用的微元法
用定积分计算的量的特点:
(1) 所求量(设为 F )与一个给定区间 a,b 有关, 且在该区间上具有可加性. 就是说,F 是确定于 a,b 上 的整体量,当把 a,b 分成许多小区间时,整体量等于
于是得 dA [( y 4) 1 y2 ]dy,
2
A 4 [( y 4) 1 y2 ]dy 1 y2 4 y 1 y3
4
18.
2
2
2
6 2
2. 极坐标下的面积计算
曲边扇形:是指由曲线r r( )及两条射线 , 所围
成的图形(如右下图).
取 为积分变量,其变化范围为[ , ],在微小区间 [ , d ]
解 先求两线交点,以确定 的变化范围,解方程组
r 1 cos ,
r 3cos.
由3cos 1 cos 得 cos 1 ,故
1. 直角坐标系下的面积计算
用微元法不难将下列图形面积表示为定积分.
(1) 曲线 y f (x)( f (x) 0), x a, x b 及 Ox 轴所围
图形,如下页左图,面积微元dA f (x)dx ,面积
A b f (x)dx . a
(2) 由上、下两条曲线 y f (x), y g(x)( f (x) g(x)) 及
n
各部分量之和,即F Fi . i1 (2) 所求量 F 在区间 a,b 上的分布是不均匀的,
也就是说, F 的值与区间 a,b 的长不成正比.(否则的
话, F 使用初等方法即可求得,而勿需用积分方法了).
用定积分概念解决实际问题的四个步骤:
第一步:将所求量 F 分为部分量之和,即: 第二步:求出每个部分量的近似值,
解(1)画出图形简图(如右上图)并求出曲线交 点以确定积分区间:
解方程组
y y
x2, 2 x,
得交点(0,0)及(1,1).
(2) 选择积分变量,写出面积微元,本题取竖条或横条作
dA均可,习惯上取竖条,即取 x 为积分变量,x 变化范围为[0,
1],于是
dA ( x x2 )dx,
(3)将 A 表示成定积分,并计算
1
A ( 0
x
x2 )dx
2 3
3
x2
1 3
x3
1
1 3.
0
例 2 求 y2 2x及y x 4 所围成图形面积.
解 作图(如下图) y
y+dy4
B
y
O
x
-2 A
求出交点坐标为A(2,2), B(8,4) . 观察图得知,宜取
y 为积分变量, y 变化范围为[–2,4](考虑一下,若
取 x 为积分变量,即竖条切割,有什么不方便之处),
(2) 具体怎样求微元呢? 这是问题的关键,这要分析问
题的实际意义及数量关系,一般按着在局部 x, x dx 上,
以“常代变”、“匀代不匀”、“直代曲”的思路(局部线 性 化 ), 写 出 局 部 上 所 求 量 的 近 似 值 , 即 为 微 元 dF f (x)dx .
二、用定积分求平面图形的面积
b
F a f (x)dx.
微元法中微元的两点说明:
(1) f (x)dx作为ΔF 的近似值表达式,应该足够准确,确切 的 说 , 就 是 要 求 其 差 是 关 于Δx 的 高 阶 无 穷 小 . 即 ΔF f (x)dx o(Δx) . 这 样 我 们 就 知 道 了 , 称 作 微 元 的 量 f (x)dx,实际上是所求量的微分 dF ;
a
观察上述四步我们发现,第二步最关键,因为最后的被积表 达式的形式就是在这一步被确定的,这只要把近似式 f (i )Δxi 中的 变量记号改变一下即可( i 换为 x ;xi 换为 dx ).
而第三、第四两步可以合并成一步:在区间 a,b 上无限累加, 即在 a,b上积分. 至于第一步,它只是指明所求量具有可加性,