《实数》单元教学设计

合集下载

人教版数学七年级下册-《实数》单元教学设计

人教版数学七年级下册-《实数》单元教学设计

《实数》单元教学设计1.了解开方与乘方互为逆运算,算数平方根、平方根、立方根、无理数和实数的概念,知道实数和数轴上点一一对应.2.会用根号表示数的平方根、立方根,会用平方运算求某些非负数的平方根,用立方运算求某些数的立方根,能用计算器计算平方根、立方根和进行简单的探索.能用有理数估算一个无理数的大致范围,能进行简单的实数四则运算.通过专题复习和单元评价帮助学生巩固基础知识,形成系统的知识体系,提高运算能力和解决问题的能力.养成良好的学习习惯,增强学生的学习能力,培养学生缜密思考、细心探索的科学精神.【重点】算数平方根、平方根、立方根、无理数、实数的概念及其相关运算.【难点】1.平方根和立方根的概念.2.实数的简单四则运算.专题一平方根、立方根的概念【专题分析】平方根、立方根的概念是把有理数学习拓展到实数学习的开始,平方根和立方根的知识在实数中占有非常重要的地位.中考试题中单独命题的情况较少,多与勾股定理、一元二次方程等知识结合考查.解答此类问题主要注意以下几点:一是开平方和开立方的区别;二是熟悉计算器的使用;三是看题目的要求,弄清被开方数.求下列各数的平方根.(1);(2)6;(3)(-10)2.〔解析〕运用开平方与平方是互逆运算来求各数的平方根.解:(1)因为=,所以的平方根是±.(2)因为6=,=,所以6的平方根是±.(3)因为(-10)2=100,102=100,所以(-10)2的平方根是±10.【针对训练1】(1)求下列各式的值.①;②-;③±.(2)求下列各式的值.①-;②;③;④.〔解析〕第(1)题,是求算数平方根;- 是求负的平方根;±是求平方根.第(2)题都是对一个数开立方.解:(1)①20.②-.③±.(2)①-.②.③-.④6.要到玻璃店配一块面积为1.21 m2的正方形玻璃,那么该玻璃的边长为m.〔解析〕正方形的边长是其面积的算术平方根,故该玻璃的边长为=1.1(m).故填1.1.用开平方或开立方解决实际问题,要注意计算结果的实际意义.【针对训练2】已知b=a3+2c,其中b的算术平方根为19,c的平方根是±3,求a的值.〔解析〕因为b的算术平方根是19,所以b=192=361.因为c的平方根是±3,所以c=(±3)2=9.代入已知条件即可求出a的值.解:因为b的算术平方根是19,所以b=192=361.因为c的平方根是±3,所以c=(±3)2=9.所以a3=b-2c=361-18=343,a=7.用计算器求21.52的平方根(精确到0.001).〔解析〕先用计算器求21.52的算术平方根,再写出其平方根.解:±≈±4.639.本题易错写成21.52的平方根为4.639或错写成≈±4.639.解题的关键是正确使用计算器.【针对训练3】用计算器计算的值.(精确到0.001)〔解析〕本题考查用计算器求数的立方根,解题方法按求立方根的程序进行.本题的易错点是输入被开方数时错误地输入334÷17×3.解:≈1.871.用计算器求数的立方根的程序(计算器不同,按键顺序也会不同):①按第二功能键2nd F;②按方根运算键;③输入被开方数;④按=.专题二实数的有关概念及计算【专题分析】这部分内容一直以来都是中考的热点,也是必考内容,主要考查对实数的有关概念的理解及运用,例如:正确区分有理数和无理数,实数的相反数、绝对值、倒数等性质,与数轴的对应关系及简单的计算等,多以选择题和填空题的形式出现.在-7.5,,4,,-π,0.,中,无理数的个数是()A.1B.2C.3D.4〔解析〕无限不循环小数是无理数,对照无理数的这一定义即可求解.在-7.5,,4,,-π,0.,中,,-π都是无限不循环小数,所以共有两个无理数.故选B.【针对训练4】下列实数,,,()0,3.14159,-,(-)2,中无理数的个数是()A.1B.2C.3D.4〔解析〕对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.故选C.计算-+=.〔解析〕这是一道实数的加减运算题,可利用分数的基本性质通分后进行加减.-+==-.故填-.类比思想是根据两对象都具有一些相同或相似的属性,并且其中一个对象还具有另外某一属性,从而推出另一对象也具有与该对象相同或相似的性质.本章中类比平方根的定义去理解立方根的定义,类比有理数的相反数、绝对值、比较大小、混合运算等学习实数的相反数、绝对值、比较大小、混合运算等.【针对训练5】已知≈0.8138,≈3.777,≈1.753,则≈,≈.〔解析〕开立方运算时要注意小数点的变化规律,开立方是三位与一位的关系,开平方是二位与一位的关系.〔答案〕0.0813837.77比较3-1与1+2的大小.〔解析〕当a-b=0时,可知a=b;当a-b>0时,可知a>b,当a-b<0时,可知a<b.作差后一定要与0比较大小,然后确定两个数(或式子)的大小.解:因为(3-1)-(1+2)=3-1-1-2=-2<0,所以3-1<1+2.【针对训练6】比较2和3的大小.〔解析〕当a>0,b>0时,a>b⇔a2>b2.解:因为(2)2=12,(3)2=18,12<18,所以2<3.实数比较大小的原则是:一般地,数轴上右边的点表示的实数比左边的点表示的实数大,即正数大于0,0大于一切负数;两个负数比较大小,绝对值大的反而小.常用到的比较方法有:直接比较法、作差法、作商法、平方法、取近似值法.专题三数形结合思想【专题分析】实数在数轴上的表示是数形结合思想的具体表现,通过把实数在数轴上直观地表示出来,可以形象、直观地感受实数的客观存在,为理解实数的概念及其相关性质提供了有利的帮助.本专题的数形结合思想主要体现在实数和数轴上的点一一对应.通常借助于数轴比较实数大小、实数化简、直角坐标系内的相关计算等.涉及本单元的中考题型主要以选择、填空为主,或者渗透到其他知识中进行考查.实数a,b在数轴上的位置如图所示,化简|a+b|+.〔解析〕要化简|a+b|+,就得化去绝对值和根号,此时只要分别判断a+b和b-a的符号即可.解:由实数a,b在数轴上的位置可以知道a<0,b>0,且|a|>|b|.所以a+b<0,b-a>0,所以|a+b|+=-(a+b)+(b-a)=-2a.【针对训练7】如图所示,在数轴上点A和B之间的整数点有个.〔解析〕解本题的关键是确定-与之间有哪些整数,由于-2<-<-1,2<<3,所以-与之间的整数有-1,0,1,2,所以A,B两点之间的整数点有4个.故填4.(1)实数与数轴上的点是一一对应的关系.(2)在数轴上表示的数,右边的数总是比左边的数大.已知数轴上有A,B两点,且这两点之间的距离为4,若点A在数轴上表示的数为3,则点B在数轴上表示的数为.〔解析〕本题要分为两种情况进行分析:①当B点在A点的左边时,3-4=-,故B点表示的数是-;②当B点在A点的右边时,4+3=7,故B点表示的数是7.综上,点B在数轴上表示的数为-或7.故填-或7.【针对训练8】实数a,b在数轴上的位置如图所示,化简|a-b|-的结果是()A.2a-bB.bC.-bD.-2a+b〔解析〕先由数轴判断实数a,b的正负,再判断a-b的正负,最后化简、合并.由数轴知a>0,b<0,|a|>|b|,所以a-b>0,所以|a-b|-=a-b-a=-b.故选C.专题四非负数的性质及应用【专题分析】非负数是正数和零的统称.在初中阶段常见的非负数的形式有三种,即实数的绝对值、实数的平方、非负数的算术平方根,能够灵活运用它们的值大于等于零的特性,能为我们解决问题找到较好的途径,如:几个非负数的和为零,则这几个非负数都为零,由此可建立方程或方程组,解决求某些字母的取值的问题.若与互为相反数,则x2+y2=.〔解析〕因为与互为相反数,所以+=0,而≥0,≥0,所以2x-1=0,1+y=0,所以x=,y=-1,所以x2+y2=+(-1)2=+1=.故填.【针对训练9】(2014·张家界中考)若+(y+2)2=0,则(x+y)2014等于()A.-1B.1C.32014D.-32014〔解析〕因为+(y+2)2=0,所以=0,(y+2)2=0,所以x=1,y=-2,所以(x+y)2014=(1-2)2014=1.故选B.本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.计算的结果是()A.±3B.3C.±3D.32.从实数-,-,0,π,4中挑选出的两个数都是无理数的为()A.-,0B.π,4C.-,4D.-,π3.下列各组数中,两个数相等的是()A.-2与B.-2与-C.-2与D.|-2|与-24.下列说法正确的是()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.比较2,,的大小,正确的是()A.2<<B.2<<C.<2<D.<<26.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a+1B.a2+1C. D.+17.用计算器求23的值时,需相继按“2”“∧”“3”“=”键,若小红相继按“”“2”“∧”“4”“=”键,则输出结果是()A.4B.5C.6D.168.有一个数值转换器原理如下:当输入x=16时,输出的数是()A.8B.2C.D.9.计算的结果估计在()A.4至5之间B.5至6之间C.6至7之间D.4至6之间10.如图所示,数轴上A,B两点表示的数分别为1和,点B关于点A的对称点为点C,则点C所表示的数是()A.-1B.1-C.2-D.-2二、填空题(每小题4分,共32分)11.-的相反数是;-的绝对值是.12.计算:-(-1)2=;比较大小:7 .13.已知一个正数的两个平方根分别是2a-2和a-4,则a的值是.14.已知x为整数,且满足-≤x≤,则x=.15.已知的整数部分为a,小数部分为b,则a-b=.16.一种药的外包装盒的体积为478厘米3,它可以近似地看成一个正方体,你估算它的棱长是.(误差小于0.1厘米)17.把右图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.18.若+=0,则a+b的算术平方根是.三、解答题(共58分)19.(9分)已知数-,-1.,π,3.1416,,0,42,(-1)2,-1.424224222….(1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.20.(9分)求下列各式的值.(1)|-2|-|-1|;(2)×++;(3).21.(8分)如图所示,在△ABC中,∠B=90°,AB,BC边足够长,点P从点B开始沿BA边向点A以1厘米/秒的速度移动,同时,点Q也从点B开始沿BC边向点C以2厘米/秒的速度移动,几秒后,△BPQ的面积为36平方厘米?22.(10分)星期天,小明和小刚一起到“学农基地”参加社会实践,恰巧基地刚刚挖完一个立方体形状的养鱼池.小明走到旁边一看:“哇,好深呀,足足有5米深!”小刚在一旁听到马上说道:“才不止呢,我看已经超过10米啦.”两个人争吵着谁也不服谁,他俩一起找到正在工作的工人叔叔,工人叔叔看着他俩微笑着说:“我们这里挖出的土都运到砖窑了,现在一共运走了700米3的土.”请你运用所学到的数学知识判断一下小明和小刚谁说得对,并说明理由. 23.(10分)(1)已知2a-1的平方根是±3,2是3a+b-1的立方根,求a+2b的值.(2)设2+的整数部分和小数部分分别是x,y,试求x,y的值与x-1的算术平方根.24.(12分)某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9 km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1 h,那么这场雷雨区域的直径大约是多少(结果精确到0.1 km)? 【答案与解析】1.D(解析:根据开立方的意义得到答案.因为33=27,所以=3.故选D.)2.D(解析:无限不循环小数是无理数,所给各数中-,π是无限不循环小数.故选D.)3.C(解析:因为=2,=-2,|-2|=2,所以-2与相等.)4.C(解析:例如,A.0.333…是无限小数也是有理数,故选项错误;B.0.3030030003就是有理数,故选项错误;C.无理数的相反数还是无理数,故选项正确;D.+=0,它们的和就是有理数,故选项错误.)5.C(解析:因为23=8,()3=5≈11.2,()3=7,所以<2<.故选C.)6.B(解析:因为一个自然数的算术平方根为a,所以这个自然数是a2.所以和这个自然数相邻的下一个自然数是a2+1.故选B.)7.A(解析:由题意知,按“2”“∧”“3”,表示求23的值,所以按“”“2”“∧”“4”“=”键表示求的4次幂,结果为4.故选A.)8.D(解析:根据数值转换器,输入数x后,必须先取算术平方根,结果是无理数的,即输出,是有理数的,再次取其算术平方根,直至得到无理数为止.故本题的转换流程是:x=16→=4→=2→=→输出.)9.B10.C(解析:由数轴上A,B两点表示的数分别为1和,可知OA=1,OB=,而点C和B关于点A对称,所以AC=AB.设点C表示的数为x,则有1-x=-1,所以x=2-.故选C.)11.12.4<(解析:原式=5-1=4.因为7=,而<,所以7<.)13.2(解析:因为一个正数的两个平方根分别是2a-2和a-4,所以2a-2+a-4=0,解得a=2.)14.-1,0或1(解析:因为-2<-<-1,1<<2,所以x应在-2和2之间,则x=-1,0,1.)15.8-(解析:因为16<23<25,所以4<<5,所以a=4,b=-4.所以a-b=4-(-4)=8-.)16.7.8厘米或7.9厘米(解析:由于一个正方体体积为478厘米3,根据正方体的体积公式即可求出它的棱长,即,并估计在哪两个数之间.因为<<,所以它的棱长是7.8厘米或7.9厘米.) 17.±(解析:依题意得x-1的相对面是1,x+y的相对面是3,所以x-1=1,x+y=3,所以x=2,y=1,所以x的平方根与y的算术平方根之积为±.)18.19.解:(1)-,-1.,3.1416,,0,42,(-1)2.(2)π,-1.424224222….(3)-1.<-1.424224222…<-<0<<(-1)2<π<3.1416<42.20.解:(1)原式=-(-2)-(-1)=-+2-+1=3--.(2)原式=0.2×+12+=12.(3)原式=×-×=1-6=-5.21.解:设x秒后,△BPQ的面积是36平方厘米,根据题意得PB=x厘米,QB=2x厘米,因此,x×2x=36,所以x2=36,解得x=6(x=-6舍去),所以6秒后,△BPQ的面积是36平方厘米. 22.解:小明和小刚说得都不对,理由如下:设立方体养鱼池深度为x米,则x3=700,所以x=,因为83=512,93=729,而512<700<729,所以8<x<9,所以养鱼池的深度在8米和9米之间,因此小明和小刚的说法都不对,相比较而言,小刚的估算更准确一些.23.解:(1)依题意得2a-1=9,3a+b-1=8,解得a=5,b=-6.所以a+2b=-7.(2)因为<<,即2<<3,所以2+的整数部分是4.由题意知x=4,y=2+-4=-2,则x-1=3,所以x-1的算术平方根为.24.解:(1)当d=9时,有t2=,根据算术平方根的意义,t= =0.9(h),所以如果雷雨区域的直径为9 km,那么这场雷雨大约能持续0.9 h.(2)当t=1时,有=12,根据立方根的意义,d=≈9.7(km),所以如果一场雷雨持续了1 h,那么这场雷雨区域的直径大约是9.7 km.。

实数全章教学设计北师大版

实数全章教学设计北师大版
(4)实际问题案例:收集一些与实数相关的实际问题,如财务计算、长度测量等,用于课后练习和课堂讨论。
2.拓展建议:
(1)让学生阅读数学绘本,通过故事的形式了解实数的概念和应用,提高学生的学习兴趣。
(2)让学生阅读科普文章,了解实数在现实世界中的重要性,提高学生的数学应用意识。
(3)利用网络资源,让学生自主学习实数相关的知识,通过练习题进行巩固。
(5)教师可组织课后讨论或展示活动,让学生分享自己的拓展学习成果,促进学生之间的相互学习和交流。
(6)教师应鼓励学生积极参与拓展学习,培养学生的自主学习能力和批判性思维能力。
(7)教师应关注学生的学习态度和表现,及时调整拓展学习的内容和难度,以适应学生的个性化学习需求。
八、课堂小结,当堂检测
1. 课堂小结:
七、课后拓展
1.拓展内容:
(1)阅读材料:推荐学生阅读与实数相关的数学故事、科普文章、数学历史等,如《数学家的故事》、《数学与生活》等,增强学生对实数的理解和兴趣。
(2)视频资源:推荐学生观看与实数相关的数学教学视频、纪录片等,如《数学的力量》、《数学之美》等,帮助学生更直观地理解实数的概念和应用。
(3)在线学习平台:鼓励学生登录在线学习平台,如“中国大学MOOC”、“Coursera”等,选择实数相关的课程进行自主学习,提高学生的数学素养。
(4)数学竞赛与活动:鼓励学生参加数学竞赛、数学建模活动等,锻炼学生的数学思维和实际应用能力。
(5)实地考察与实验:组织学生进行实地考察或实验,如测量长度、计算面积等,让学生亲身体验实数的应用。
2.拓展要求:
(1)学生自主选择拓展内容,根据自己的兴趣和学习进度进行学习和探索。
(2)学生可以进行小组讨论或与他人交流,分享自己的学习心得和发现。

(完整word版)《实数》单元教学设计

(完整word版)《实数》单元教学设计

初中数学单元教学设计课题:第六章“实数”单元教学设计教材版本:人教版数学教科书教学年级:七年级(下册)一.教材分析本章内容包括算术平方根、平方根和立方根,并通过开平方和开立方运算认识一些不同于有理数的数,在此基础上引入无理数,使数的范围由有理数扩充到实数。

随着数的范围的扩充,数的运算也有了新的发展。

在实数范围内,不仅能进行加、减、乘、除四则运算,而且对0和任意正数能进行开平方运算,对任意实数能进行开立方运算.在平方根、立方根、算术平方根、实数的概念的基础上,建立了完整的实数体系。

本章教材在初中数学中具有重要的地位,是进行其他内容学习的理论基础和运算基础(如一元二次方程、解直角三角形、函数、二次根式等).同时,在理论的运算中也常用开方运算,故务必要学好。

二.学情分析本章包括平方根、算术平方根、立方根、用计算器求算术平方根、无理数、实数等内容。

在此之前学生已学习了加、减、乘、除、乘方五种运算,学习了有理数的概念,具备了学习数的开方和学习无理数的条件,大部分学生对后继知识的学习有较强的欲望,但也有个别学生由于对有理数的概念理解不透,对无理数的学习信心不足,产生畏难和厌学情绪,教学中要注意及时引导。

三.教学目标(一)知识与技能1.理解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;2。

了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求算术平方根和立方根;3。

了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系,了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化,并会进行简单的实数运算。

4.能用有理数估计一个无理数的大致范围。

(二)过程与方法通过学习算术平方根、平方根、立方根,建立初步的数感和符号感,发展抽象思维。

用类比的方法探寻出平方根与立方根的运算及表示方法,并能自己总结出算术平方根与平方根,平方根与立方根的异同。

初中数学《实数》单元教学设计以及思维导图

初中数学《实数》单元教学设计以及思维导图
1. 算数平方根、平方根、立方根的相关概念是什 主题单元问题设
么? 计
2.实数的概念、分类及运算
专题划分
专题一:算数平方根、平方根、立方根等相关概 念及性质 专题二:实数的相关概念、分类及运算
专题一
算数平方根、平方根、立方根等相关概念及性质
所需课时
课内 3 课时
专题一概述
本专题是算数平方根、平方根、立方根、实数这一主题的起始专题, 进一步学习整个主题的基础。本专题的内容包括算数平方根、平方根、 立方根、实数等的相关概念及性质. 本章的重点是算术平方根和平方根的概念和求法,本章难点是平方根 和实数的概念. 本专题的主要学习活动包括在学生已有知识和经验的基础上,在老师 指导下系统准确地提炼出算数平方根、平方根、立方根的定义;理解 并掌握实数等概念. 学生的主要学习成果包括:理解并掌握算数平方根、平方根、立方根、 实数的定义及相关概念,会借助工具(纸、笔、直尺、几何画板软件 等)估算出无理数的大小.
学生的主要学习成果包括:理解并掌握算数平方根、平方根、立方根、 实数概念及性质,会根据实际情况体会数形结合思想的运用.
专题学习目标 知识技能: 了解实数的意义。 能对实数按要求进行分类。 了解实数范围内,相反数、倒数、绝对值的意义。 过程与方法: 经历探索实数分类并运算的过程,体会并掌握数形结合等数学思想方 法.
专题问题设计
1. 已知一个正数的平方,如何求这个数? 这个数叫做什么? 2. 算术平方根的记法和读法分别是什么? 3.一个数的平方是什么?什么叫开平方? 4. 平方根的性质有哪些? 5.什么叫做立方根?有哪些性质?
所需教学材料和资源
信息化资源
几何画板课件
常规资源
作图工具(直尺)
教学支撑环境

(完整版)七年级数学《实数》单元教学设计

(完整版)七年级数学《实数》单元教学设计

初中七年级数学“实数”单元教学设计课题:第六章“实数”单元教学设计教材版本:人教版数学教科书教学年级:七年级(下册)一.教材分析本章内容包括算术平方根、平方根和立方根,并通过开平方和开立方运算认识一些不同于有理数的数,在此基础上引入无理数,使数的范围由有理数扩充到实数。

随着数的范围的扩充,数的运算也有了新的发展。

在实数范围内,不仅能进行加、减、乘、除四则运算,而且对0和任意正数能进行开平方运算,对任意实数能进行开立方运算。

在平方根、立方根、算术平方根、实数的概念的基础上,建立了完整的实数体系。

本章教材在初中数学中具有重要的地位,是进行其他内容学习的理论基础和运算基础(如一元二次方程、解直角三角形、函数、二次根式等)。

同时,在理论的运算中也常用开方运算,故务必要学好。

二.学情分析本章包括平方根、算术平方根、立方根、用计算器求算术平方根、无理数、实数等内容。

在此之前学生已学习了加、减、乘、除、乘方五种运算,学习了有理数的概念,具备了学习数的开方和学习无理数的条件,大部分学生对后继知识的学习有较强的欲望,但也有个别学生由于对有理数的概念理解不透,对无理数的学习信心不足,产生畏难和厌学情绪,教学中要注意及时引导。

三.教学目标(一)知识与技能1.理解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求算术平方根和立方根;3.了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系,了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化,并会进行简单的实数运算。

4.能用有理数估计一个无理数的大致范围。

(二)过程与方法通过学习算术平方根、平方根、立方根,建立初步的数感和符号感,发展抽象思维。

用类比的方法探寻出平方根与立方根的运算及表示方法,并能自己总结出算术平方根与平方根,平方根与立方根的异同。

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。

通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。

同时,实数的分类和性质也需要通过大量的练习来巩固。

三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。

2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。

3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。

四. 教学重难点1.实数的概念和分类。

2.实数的性质。

五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。

通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。

六. 教学准备3.练习题。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。

呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。

2.引导学生通过观察和思考,总结实数的性质。

操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。

2.每组选一名代表进行汇报,其他组进行评价和补充。

巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。

2.教师选取部分学生的作业进行点评,指出错误并进行讲解。

拓展(10分钟)1.让学生思考:实数和数轴之间的关系。

2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。

小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。

2.学生分享学习收获和感受。

家庭作业(5分钟)1.完成课后练习题。

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。

本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。

通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。

二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。

但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.能够对实数进行分类,了解实数的丰富性和广泛性。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.实数的定义和实数与数轴的关系。

2.实数的分类和各类实数的特征。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。

2.准备实数的分类表格,方便学生理解和记忆。

3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。

同时,结合案例和图片,使学生直观地理解实数的概念。

例如:“同学们,今天我们要学习的是实数。

实数包括有理数和无理数,它们都可以用数轴上的点来表示。

请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。

”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。

实数单元整体教学设计案例

实数单元整体教学设计案例

实数单元整体教学设计案例实数单元整体教学设计案例教学目标:1.认识实数的定义和性质,学会运用实数进行数学运算;2.了解实数轴的表示方法,并能在实数轴上表示实数;3.掌握实数之间的大小关系,能够比较实数的大小;4.能够用实数表示实际问题,解决实际问题。

教学内容:1.实数的定义和性质;2.实数轴及其表示方法;3.实数的大小关系;4.实数运算;5.实数在实际问题中的应用。

教学步骤:步骤一:导入新知识通过实例引出实数的定义和性质,引导学生思考实数的特点和作用。

步骤二:实数的定义和性质介绍实数的定义和性质,包括实数的分类、有理数和无理数的概念,以及实数的运算性质。

步骤三:实数轴的表示方法讲解实数轴的概念和表示方法,通过练习让学生掌握实数在实数轴上的表示方法。

步骤四:实数的大小关系讲解实数的大小关系,包括实数之间的比较和不等式的表示方法。

通过练习让学生熟悉实数的大小关系。

步骤五:实数运算讲解实数的加法、减法、乘法和除法运算规则,并通过练习让学生掌握实数运算的方法和技巧。

步骤六:实数在实际问题中的应用通过实际问题的分析和解决,引导学生将实际问题转化为实数表示,并通过实数运算求解问题。

步骤七:小结和总结对本节课的教学内容进行小结和总结,强化和巩固学生对实数的理解和掌握。

步骤八:课后作业布置课后作业,巩固学生对实数的理解和掌握。

教学评价方法:1.课堂练习:通过课堂练习检查学生对实数定义、性质、实数轴表示、大小关系和运算的理解和掌握程度。

2.作业批改:批改课后作业,评价学生对实数的应用能力和解决实际问题的能力。

3.小组合作评价:让学生进行小组合作学习和讨论,相互评价、互动交流,促进学生之间的合作和互助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学单元教学设计课题:第六章“实数”单元教学设计教材版本:人教版数学教科书教学年级:七年级(下册)一.教材分析本章内容包括算术平方根、平方根和立方根,并通过开平方和开立方运算认识一些不同于有理数的数,在此基础上引入无理数,使数的范围由有理数扩充到实数。

随着数的范围的扩充,数的运算也有了新的发展。

在实数范围内,不仅能进行加、减、乘、除四则运算,而且对0和任意正数能进行开平方运算,对任意实数能进行开立方运算。

在平方根、立方根、算术平方根、实数的概念的基础上,建立了完整的实数体系。

本章教材在初中数学中具有重要的地位,是进行其他内容学习的理论基础和运算基础(如一元二次方程、解直角三角形、函数、二次根式等)。

同时,在理论的运算中也常用开方运算,故务必要学好。

二.学情分析本章包括平方根、算术平方根、立方根、用计算器求算术平方根、无理数、实数等内容。

在此之前学生已学习了加、减、乘、除、乘方五种运算,学习了有理数的概念,具备了学习数的开方和学习无理数的条件,大部分学生对后继知识的学习有较强的欲望,但也有个别学生由于对有理数的概念理解不透,对无理数的学习信心不足,产生畏难和厌学情绪,教学中要注意及时引导。

三.教学目标(一)知识与技能1.理解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求算术平方根和立方根;3.了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系,了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化,并会进行简单的实数运算。

4.能用有理数估计一个无理数的大致范围。

(二)过程与方法通过学习算术平方根、平方根、立方根,建立初步的数感和符号感,发展抽象思维。

用类比的方法探寻出平方根与立方根的运算及表示方法,并能自己总结出算术平方根与平方根,平方根与立方根的异同。

用数形结合的方法理解实数与数轴上的点的一一对应关系,实数的绝对值,相反数的意义。

(三)情感与态度1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系着的。

2.通过对平方根的学习,培养学生从多方面、多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯。

3.通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,激发学习兴趣,提高学习热情。

四.重点、难点(一)教学重点:1.平方根和算术平方根的概念。

平方根是开方运算基础,是引入无理数的准备知识。

平方根概念的正确理解有助于用符号表示的理解,是正确求平方根运算的前提。

算术平方根概念的正确理解直接影响到二次根式的学习。

算术平方根的教学不但是本章教学的重点,也是今后数学学习的重点。

在后面学习的根式运算中,归根结底是算术根的运算。

2.立方根的概念与性质及求法。

立方根是奇次方根的典型类型,掌握立方根是理解的n次方根的基础。

学习了平方根的概念的基础上学习立方根的概念,学生比较容易接受,但平方根和立方根的性质区别较大,性质掌握的好坏决定了求解立方根的能力,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上。

3.无理数和实数的概念。

引入无理数使数的范围扩大到实数,初中的所有数的运算均在实数范围内进行的。

无理数概念的理解决定实数概念的理解,有利于实数分类和运算的掌握。

要让学生掌握关于有理数的运算律和运算性质在实数范围内仍成立,这是中学数学的基础。

(二)教学难点:1.平方根与算术平方根的区别与联系。

这两个概念学生容易混淆,而且各自的符号表示的意义学生不是很容易区分,教学中要抓住算术平方根为平方根中正的那个,讲清各自符号的意义,区分两种表示方法。

对于平方根的运算,不仅被开方数有限制,而且正数有两个平方根,这与以前学过的数的运算有很大的区别,要让学生真正理解有一定的困难。

2.立方根的唯一性及负数立方根的意义。

由于平方根的学习,学生容易错误的得出立方根与平方根的结论相似,因此要进行对比:对于任何一个数都有唯一的立方根,而且学生难于理解负数立方根的意义,应注意从立方与开立方互为逆运算的角度分析。

3.无理数和实数的理解。

无理数和实数比较抽象,借助实数和数轴上的点的一一对应关系,通过具体数加以解释。

有理数和无理数统称实数,学生对实数意义有所了解就可以了。

五.教学方法1.平方根与算术平方根:①要引导学生通过计算两个不为零的相反数的平方是同一个正数,总结出“一个正数有两个平方根,他们互为相反数”的性质,加深感性认识。

②要引导学生正确认识算术平方根的两个非负性,一是被开方数的非负性,二是算术平方根本身的非负性,即一个非负数的算术平方根是一个非负数。

③通过题组训练,引导学生总结平方根与算术平方根的区别和联系,使学生正确理解正数的平方根有两个,它们互为相反数;正数的算术平方根只有一个,是平方根中为正的那一个。

2.立方根:①应引导学生类比平方根来学习立方根的概念、性质、求法,并启发学生与平方根的相应结论进行联系、比较,弄清两者的区别与联系,并适当分析结论不同的原因。

②要引导学生将求负数的立方根问题转化为求正数的立方根问题。

3.无理数与实数:①首先要引导学生复习有关有理数的知识,让学生了解有理数包括有限小数和无限循环小数,为学习无理数做好准备。

②要引导学生分清“无限不循环小数”与“无限循环小数”的区别,使学生理解无限循环小数可以化成分数,它是有理数;无限不循环小数不能化成分数,它是无理数,从而启发学生总结有理数与无理数的区别,真正能分清楚有理数与无理数。

③要引导学生用数轴上的点来表示无理数和有理数,将所学知识联系起来,使学生了解无理数的存在性;并理解实数与数轴上的点的一一对应关系。

④利用数轴说明相反数、绝对值的定义和性质同样适用于实数;引导学生明确有理数的运算法则,运算律同样适用于实数,使学生能够按照有理数的运算法则,运算律进行实数的运算。

六.教学流程1.单元教学阶段规划分三阶段进行:平方根部分为第一阶段,立方根部分为第二阶段,实数部分为第三阶段。

2.课时分配6.1 平方根 3课时(算术平方根2课时,平方根1课时)6.2 立方根 2课时6.3 实 数 2课时3.知识结构图4.算术平方根教学设计案例6.1算术平方根 第1课时一、教学目标(一)知识与技能1.经历算术平方根概念的形成过程,了解算术平方根的概念。

2.会求某些正数(完全平方数)的算术平方根并会用符号表示。

(二)过程与方法通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

(三)情感、态度与价值观通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,激发学习兴趣,提高学习热情。

二、重点和难点1.重点:算术平方根的概念.2.难点:根据算术平方根的概念正确求出非负数的算术平方根。

三、教学过程(一)创设情境,引入新课(设计意图:通过实际问题中的实物演示,直观的把实际问题抽象为数学问题,为学习算术平方根提供背景和素材,进而引入算术平方根的概念。

同时让学生感受数学与生活的联系,体验学习数学的乐趣。

)1.请看下面的例子.学校要举行美术作品比赛,小欧很高兴。

他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?(教师演示一张面积为252dm的纸)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:因为52=25(板书:因为52=25),所以这个正方形画布的边长应取5dm(板书:所以边长=5dm)。

2. (完成下表)上面实例中的问题、填表中的问题实际上是一个问题,它们都是已知正方形面积,求边长的问题。

通过解决这个问题,我们就有了算术平方根的概念。

正数3的平方等于9,我们把正数3叫做9的算术平方根。

正数4的平方等于16,我们把正数4叫做16的算术平方根。

说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?同桌之间互相说一说5和25这两个数。

(同桌互相说)(二)自主探究,合作交流(设计意图:给学生充足的时间和空间,让学生理解和感知算术平方根的概念,通过小组间的讨论、交流,释疑解难,使学生的自主性和合作性得到充分的发展,教学目标能得到很好的落实。

)同学们大概已经知道了算术平方根的意思,那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法。

(三)师生互动,归纳新知(设计意图:通过三个问题的设置,加深对算术平方根定义及其非负性的理解,进一步提高语言表达的准确性和书写的规范性。

)什么是算术平方根呢?如果一个正数的平方等于a,那么这个正数叫做a的算术平方根(经过讨论,学生发表自己的见解并互相纠错、补充)-4有算术平方根吗?什么数才有算术平方根?(小组合作讨论交流,达成共识) 请大家把算术平方根概念读两遍。

(生集体读)师:-4有算术平方根吗?什么数才有算术平方根?(小组合作讨论交流,达成共识:负数没有算术平方根,正数和0才有算术平方根)师:同学们把11至25的整数的平方算出来并记一记。

(学生独立完成)如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.为了书写方便,我们把aa的算术平方根记作。

规定:0的算术平方根是0.师:(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a叫做被开方数,a的算术平方根。

其中a(四)巩固练习,加深理解(设计意图:学生独立思考并完成,然后予以展示。

教师通过学生展示情况及时进行评价和纠错,以便学生及时纠正新知学习过程中产生的误解。

)1.填空:(1)因为_____2 =64,所以64的算术平方根是______=______;(2)因为_____2 =0.25,所以0.25的算术平方根是____________;(3)因为_ __2 =1649,所以1649的算术平方根是____________.根号被开方数a2.求下列各数的算术平方根:(1)4964; (2)0.0001. 3.下列各式中无意义的是( )A .B .7 C. D4.求下列各式的值:=______; =______; =______;______; =______; ______. 5.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______, _______, =_______,=_______,_______, _______,_______,_______, _______. 6.已知233+-+-=x x y ,求x +y 的值。

7.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?(五)课堂小结非负数a a 叫做被开方数负数没有算术平方根0的算数平方根是0(六)作业教材习题6.1第5,6,9题反思修改本章的学习内容中,每部分都与实际生活联系紧密,教学时尽可能的联系实际,既能让学生清楚地理解基本概念,又能让学生体验到数学与实际生活的密切联系,激发学生的学习兴趣和学习欲望。

相关文档
最新文档