实数复习课教案.
实数复习课(第一课时)教学设计

实数复习课(第一课时)教学设计【课题】苏科版数学八年级上册第四章实数复习课(第一课时)【教材简解】“实数”是八年级上册第四章内容,从有理数到实数是数的范围的一次重要的扩充,学生对实数的认识就由有理数的范围扩大到实数范围。
本章的概念多,并且比较抽象,但却是以后学习的基础,在初中数学中占有重要的地位,对今后学习数学有着重要的意义,是后面学习二次根式、一元二次方程以及解直角三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等大部分知识作好准备。
【目标预设】1、经历小结与复习,建立本章知识框架图。
2、进一步复习本章知识,强调有关概念、运算的联系与区别及数的范围由有理数扩大到实数后,有关概念和运算的变化情况。
3、通过回顾与思考使学生能进一步掌握实数的相关知识并会灵活运用,体悟相关的数学思想方法。
4、培养学生的数学应用意识,提高学生分析解决问题的能力。
【重点、难点】1、重点:无理数、平方根、算术平方根、立方根及实数的定义与性质,以及实数的运算法则。
2、难点:利用平方根、算术平方根、立方根及实数运算法则解决问题。
【设计理念】复习课并非单纯的知识的重述,而应是知识点的重新整合、深化、升华。
教师在教学过程中应与学生积极互动、共同发展,处理好传授知识与培养能力的关系。
复习课应重视发展学生的数学思维能力,通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
同时还应关注个体差异,要尽可能兼顾每一位不同学习层次的学生,要让每一个学生都有所得,满足不同学生的学习需要。
【设计思路】本节课的教学过程由创设情境,引入新课?D?D活动交流,互动探究?D?D知识深化,应用提高?D?D反思提炼,形成结构?D?D评价反馈,挑战自我五个环节构成,以学生活动为主线,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。
通过“做一做”、“议一议”、“练一练”、“想一想”、“试一试”等丰富数学活动的经历积累数学分析的经验,通过“合作与交流”让学生在活动中体验到知识的深化和分析数学问题的快乐,提升自我价值,体现学生的主体地位。
(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
实数全章复习教学设计

师生共同总结
12分钟
10分钟
3分钟
5分钟
板
书
设
计
实数的复习
知识结构图
练习
课题
实数全章复习教者:焦博授课时间:2018.05.22
课时安排:1课时
教学
目标
本章知识多考查实数的有关概念及实数的性质和运算,
是初中数学的基础知识.
重点
难点
关键
常见的热门考点有平方根和立方根的概念、求法及应用,算术平方根的性质与应用,实数的分类、比较大小和运算
师生共同归纳
3分钟
10分钟
2分钟
1、算术平方根定义,平方根定义及性质;
2、立方根定义及性质;
3、实数的分类;
(二)评讲归纳
1.三个概念2.三条性质3.一种运算4.一个技巧
5.两种思想
开门见山,直接提出本节课复习主题
大屏幕出示学习目标,学生齐读,明确本节课的学习任务。
复习平方根,算术平方根,立方根及无理数的相关知识点。
找学生回答,教师出示大屏幕并总结
四、课堂小结
1、1.平方根及算术平方根定义;平方根性质;立方根定义及性质
2.实数分类
3.会应用相关知识点做题
五、目标检测
六.作业
注意一个正数的平方根有两个,且它们互为相反数.一个正数的算术平方根一定是正数,零的平方根和算数平方根均为零.
考查立方根运算,其中强调特殊的几个数的立方根。
主要考查实数的分类。
(三)、基础训练
1、分别求出下列各数的平方根和算术平方根:
(1)0.022 5;(2) ;(3)196.
2.(1)-8的立方根是;
(2)-0.027的立方根是;
八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会运用实数解决实际问题。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实例分析,培养学生解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。
(2)无理数:不能表示为两个整数比的数。
2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。
(2)绝对值:数轴上表示一个数的点到原点的距离。
(3)平方:一个数与自身的乘积。
三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。
2. 难点:实数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。
2. 运用举例法,分析实数在实际问题中的应用。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。
3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。
4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。
5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。
6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。
(2)学生能熟练运用实数的性质解决实际问题。
2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。
(2)练习题:评估学生运用实数性质解决问题的能力。
(3)小组讨论:观察学生在团队中的参与程度和协作效果。
七、教学资源1. 教材:八年级数学教材。
2. 课件:实数复习的相关课件。
3. 练习题:针对实数性质的练习题。
《实数》复习课教案

《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。
本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。
【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。
1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。
第六章实数复习课教学设计

第六章《实数》复习教学设计易门县十街中学白维肖一、教材分析1.地位和作用:本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。
虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,本章内容不仅是初中阶段学习二次根式、一元一次方程以及解三角形等知识的基础,也是学习高中数学内容的基础。
2.考标要求:(1)对于算术平方根、平方根和立方根,应该重点考察算术平方根和平方根的概念之间的联系和区别(2)会判断一个无理数在哪两个相邻整数之间,比较实数大小,解决实际问题(3)对于实数运算,应把握教科书的要求,循序渐进,不考察复杂、繁琐的实数运算二、教学目标:1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.三、教学重、难点:1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备:多媒体课件、课本、笔记本5.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x2-25│+3y =0,则x=_______,y=_______.7.已知x的平方根是±8,则x的立方根是________.成,各尽其能。
板书设计:教学反思:1、时间分配不合理,前面的第一环节,知识梳理所用的时间太长,15分钟左右,导致后面的环节,练习题有所遗漏,没有时间做。
2、对学生的关注还是不全面,没有关注到所有学生。
3、板书没有跟上知识点的呈现同步展示出来,是后面知识点复习完了,自己很生硬的加上去的,不利于学生知识的生成。
《实数(复习课) 》教案

复习专题一:平方根与算术平方根
1. 16的平方根是_
2.的算术平方根是___
3.化简:= _____
4.说出下列各式的值:
复习专题二:立方根的定义与性质
求下列各式的值
复习专题三:实数
1.的相反数是_____
2.比较大小:____3
3.计算:
巩-2和5x+6,求这个数?
2.已知2a-1的平方根是 ,3a+b的算数平方根是4,求a+2b的平方根。
达标测评:
(见试卷)
课堂小结:
作业策略
1.整理易错知识在笔记本上
2.复习试卷(四)
A,B层学生全部完成1
C层完成复习试卷中的填空、选择部分和解答题15-17
分层布置作业,让我们的学生在数学上有不同的进步
教学反思
温馨提示:
达标测评:
鼓励学生作答,抢答,激励每组的学生学习,树立学习数学的信心。
1.教师(在大屏幕)解读学习目标
2.在后板完整书写巩固提升1和2题,规范学生的书写,完善学生的思路
学习任务
课前准备:
做复习卡上的题目
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
3、知识梳理,夯实基础 15’
4、巩固提升,拓展运用 15’
5、达标测评,小结作业 6’
课前准备:
学情预见:学生对实数这一章的知识点可能有些遗忘,解决问题时考虑的不全面。
方法指导:如有困难,可同本组学生交流探讨。
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数复习
教学目标
1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.会用计算器进行数的加、减、乘、除、乘方及开方运算;
3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;
4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.
教学重难点:
1.平方根和算术平方根的概念、性质,无理数与实数的意义;
2.算术平方根的意义及实数的性质.
一、基础知识
1、有理数
(1) 有限小数:小数部分的位数是有限的小数。
(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
例如:0.333 …, 5.32727 …等等。
2、无理数
(1)无理数:无限不循环小数叫做无理数。
(2)无理数的特征:
1)无理数的小数部分位数不限;
2)无理数的小数部分不循环,不能表示成分数的形式。
3、实数
有理数和无理数统称为实数。
(1)实数的分类:
(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。
数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。
(实数与数轴上的点一一对应。
)
(3)实数大小比较的方法:
1)有理数大小的比较法则在实数范围内同样适用,即:
法则1:在数轴上表示的两个实数,右边的数总比左边的数大。
法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。
2)平方比较法。
3)作差比较法。
(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。
二、典型例题
例1.下面几个数: ,1.010010001…,
,3π,,,其中,无理数的个数有( )A 、1 B 、2 C 、3 D 、4
练习:1、在-1.732,2,π, 3.4
1 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5 B.
2 C.
3 D.4
2、下列实数
317,π-,3.14159 8,32721中无理数有( ) A.2个 B.3个 C.4个 D.5个
3.数3.14, 2 ,π,0.323232…,17
,9 中,无理数的个数为( ) A.2个 B .3个 C .4个 D .5个
例2.x 取何值时,下列各式有意义.
(1)x -2; (2)12+x ;
. 例3 已知322+-+-=x x y ,求x y 的值;
例4.求下列各数的平方根,算术平方根:
(1)972;(2)25;(3)252⎪⎭
⎫ ⎝⎛-. 例5.31-23(1)-
)0(233<•-a a a =________.
练习: 1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4、3的倒数的平方是 ,2的立方根的倒数的立方是 。
523的相反数是 ,23-的相反数的绝对值是 。
627726-的相反数之和的倒数的平方为 。
7.64的平方根是 ,立方根是 .
8.51-的相反数是 ,绝对值是 . 9.若==x x 则6 .
10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是
11.当10≤≤x 时,化简__________12=-+x x ;
例6.已知22(4)20,()y x y x y z xz -++++-=求的平方根。
例7. 点A 在数轴上表示的数为
,点B 在数轴上表示的数为,则A ,B 两点的距离为______
练习:1、如图,数轴上表示1,
的对应点分别为A ,B ,点B 关于点A 的对称点为C ,
则点C 表示的数是( ).
A .-1
B .1-
C .2-
D .-2 2、已知实数、、在数轴上的位置如图所示:
化简 例10、414、226、15三个数的大小关系是( ) A.414<15<226; B. 226<15<414;
C.414<226<15 ;
D. 226<414<15
3:比较大小:2113532 23
例11 化简计算
(1) 233221-+-+- (2)23325332
(3)22)7()3(+-; (4)3)33232(⨯++-; 五、课后练习
一、填一填:
1.16的平方根记作_______,等于________.
2.16的值为________.
4.两个无理数的和为有理数,这两个无理数可以是______和_______.
5.若│x 2-25│+3y -=0,则x=_______,y=_______.
6.已知x 的平方根是±8,则x 的立方根是________.
二、选一选:
7.4的平方根是( )
A.2
B.-2
C.±2
D.±2
8.下列各式中,无意义的是( )
A.-3
B.3-
C.2(3)-
D.310-
9.下列各组数中,互为相反数的一组是( )
A.-2与2(2)-
B.-2与38-
C.-2与-12
D.│-2│与2 10. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
三、做一做:
12.判断下列说法是否正确
(1)的算术平方根是-3; (2)的平方根是±15.
(3)当x=0或2时,
(4)是分数。