实数复习课教案
《实数复习课》教学设计

《实数复习课》教学设计教学目标1.使学生进一步理解一个数的平方根、算术平方根及立方根的意义;2.理解无理数和实数的意义;3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;4.会对实数分类以及进行实数的近似计算.教学重点和难点重点:平方根、算术平方根、实数的概念及其计算.难点:算术平方根、实数的综合运算和代数与几何的综合运用. 教学过程设计一、复习基本概念1.什么叫一个数a的平方根,怎样表示?什么叫数a的算术平方根?怎样表示?其中a可以分别表示什么数?2.什么叫一个数a的立方根?怎样表示?其中a可以表示什么数?3.任何实数都有平方根吗?都有立方根吗?4.什么叫无理数?什么叫实数?实数与数轴的点有什么关系?答:1.如果一个数的平方等于a,这个数就叫做a的平方根,表示为±a数.的非负的平方根叫做算术平方根,表示为a,其中a≥0.2.如果一人数的立方等于a,这个数就叫做a的立方根,表示为3a,其中a为任意实数.3.正数和0有平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,任何实数都有一个立方根.4.无限不循环小数叫做无理数.有理数和无理数统称为实数.实数与数轴上的点一一对应.二、例题例1 a为何值时,下列各式有意义?(1)a2;(2)-a;(3)a+2;(4)3 a-1;(5)a+-a;(6)3 2a+1 a.要判断a为何值时各式有意义,首先要弄清各式都表示什么,成立的条件是什么.(1),(2),(3)式都表示算术平方根,(5)为两个算术平方根的和,各式被开方数都应为非负数,(4),(6)式都表示立方根.任何实数都可以进行立方运算,但应注意,当被开方数是分数时,分数的分母不能为0.解 (1)因为a为任何实数时,a2≥0,所以a为任意实数时,a2有意义.(2)因为要使-a有意义,必须使-a≥0,即a≤0,所以当a≤0时,-a有意义.(3)因为要使a+2有意义,必须a+2≥0,即a≥-2,所以当a≥-2时,a+2有意义.(4)因为3 a-1有意义,a-1可取任意实数,即a为任意实数,所以当a为任意实数时3a-1的意义.(5)因为要使a有意义,必须使a≥0;要使-a有意义,必须使-a≥0,即a≤0,所以要使a+-a 有意义,a必须等于0.因此仅当a=0时,a+-a有意义.(6)因为2a+1a是分式,当a≠0时有意义,所以当a≠0时,3 2a+1a有意义.例2 计算:(1)求5的算术平方根与2的平方根之和;(保留三位有效数字)(2)|2-5|-|5+2|;(精确到0.01)(3)|a-π|+|2-a|(2<a<π).(精确到0.001)上列各题是进行实数运算.问:计算各式的思路和方法是什么?答:根据各题的要求分别取其近似值,转化为有理数进行计算.含有绝对值的式子应先根据实数绝对值的意义,去掉绝对值的符号,再进行计算.解 (1)因为5的算术平方根为5,2的平方根是±2.所以5的算术平方根与2的平方根之和为5±2.又因为5≈2.236,2≈1.414,所以5+2≈2.236+1.414=3.65,5-2≈2.236-1.414≈0.82.(2)因为2<5所以2-5=-(5-2).所以|2-5|-|5+2|=5-2-5-2=-22≈-2×1.414≈-2.83.(3)因为2<a<π,所以|a-π|=-(a-π)=π-a,|2-a|=-(2-a)=-2+a.因此|a-π|+|2-a|=π-a-2+a=π-2≈3.142-1.414=1.73.指出:1.例2中的有关运算实际是进行实数运算,有理数的运算律和运算性质,在实数范围内仍然成立.2.无理数的运算,可以转化为用相应的(或题目指定)近似有限小数进行,有的题目可根据问题的要求取其近似值,转化成有理数进行运算.例3 (1)如图,已知正方形ABCD的面积是4a2,E,F,G,H分别为正方形四条边的中点,依次连结E,F,G,H得到一个正方形.求这个正方形的边长(用带根号的数表示).(2)当a=4时,正方形EFGH的边长是多少?(精确到0.01).分析:求正方形EFGH的边长,首先应求出正方形ABCD的边长.由于正方形的面积等于它的一边的平方,所以它的一条边是面积的算术平方根.已知E,F,G,H是正方形ABCD的各边的中点,所以BF=BE,再在直角三角形EBF中,用勾股弦定理可求出EF的长.解 (1)在正方形ABCD中,AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.因为正方形ABCD的面积=AB2抽以AB2=4a2.因为4a2>0,a>0,所以AB=4a2=2a.同理,BC=2a.因为E是AB中点,F是B中点,所以BE=12AB=a,BF=12BC=a. 在Rt△EBF中,EF2=BE2+BF2=a2+a2=2a2,所以EF=2a2=2a(a>0).(2)当a=4时,EF=42≈4×1.414=5.66.三、小结1.在解答有关被开方数是字母的式子是否有意义的问题,要根据所涉及的概念的意义去考虑,如例1中的(1),(2),(3),(5)各式都表示算术平方根,因此被开方数必须是非负数,从这个意义去考虑使式子有意义的字母的取值范围.2.在进行实数运算时,可根据各题的要求分别取无理数的近似值,转化成有理数进行计算.对于含绝对值的式子,应先根据实数的绝对值的意义,去掉绝对值的符号再进行计算,有理数的运算性质和运算律在实数范围内仍然成立.3.在代数中解答几何题,是代数和几何的综合,是数和形的结合,在解答过程中一定要结合图形的几何性质,把论证和计算结合起来.。
课时41_总复习_初中数学总复习第一讲:实数-教案

2020 年中考总复习第一讲《实数》【教学目标】1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法与近似数的概念,能按要求用四舍五入法求一个数的近似值,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.【教学重难点】教学重点是实数的概念及运算;教学难点是非负数 a2、|a|、 a (a≥0)的综合应用。
【教学过程】教学环节教学内容设计意图知识点1:实数的分类⎧⎧⎧正整数⎫⎪⎪⎪⎪⎪⎪整数⎨零⎪⎪有理数⎪⎪负整数⎪⎨⎩⎬实数⎪⎪⎪⎨⎪⎧正分数⎪⎪⎪分数⎨⎪⎪⎩⎩负分数⎭⎪⎧正无理数⎫无理数⎨⎬⎪⎩⎩负无理数⎭1、(2019 桂林)若海平面以上1045 米,记作+1045 米,则海平面以下155 米,记作()(A)-1200 米(B)-155 米(C)155 米(D)1200 米2、(2019 峡西)已知实数-1,0.16, 3 ,π,25 ,23 4 ,其中为无理数的是.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.1.数轴:规定了原点、正方向和单位长度的直线借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.2.相反数:像 2 和-2 这样,只有符号不同的两个数互为知识点 2:相反数.特别地,0 的相反数是 0.数轴、相 3.倒数:乘积为 1 的两个数互为倒数;反数、倒 4.绝对值:数轴上,表示数a的点与原点的距离叫做数a的数、绝对绝对值,记作|a|.正数的绝对值是它本身,负数的绝对值值是它的相反数,0 的绝对值是 0.3、(2019 广州) | -6|= ( )A.-6 B.6 C.-1D.1 6 64、(2019 玉林) 9 的倒数是 ( )A.1B.-1C.9 D.-9 9 95、(2017 广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )(A)-6 (B)6 (C)0 (D)无法确定1.科学记数法示,下列式子成立的是( )(A)a>b (B)|a|<|b| (C)a+b>0 (D a<0)b知识点 6:实数的运算1、六种基本运算:加、减、乘、除、乘方、开方.2、运算顺序:先算乘方、开方,最后算加减.如果有括号,就先算括号里面的;同级运算要按照从左到右的顺序进行.3、运算律:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a b=b a乘法结合律:(a b)c=a(b c)分配律:(a+b)c=a c+b c、2019深圳)计算:9-2cos600+(1)-1+(π-3.14)0812、(2018 广东)已知a -b +b -1 = 0 ,则a +1 =.13.(2019枣庄)对于实数a、b,定义关于“⊗”的一种运算:a ⊗b=2a+b.例如3 ⊗ 4=2×3+4=10.求4 ⊗(一3)的值.熟练掌握实数的运算,小结有理数无理数实数的分类科学记数法、近似数作差比较法实数实数的大小比较作商比较法数轴图示法数轴、相反数倒数、绝对值常考运算及法则实数的运算实数的混合运算顺序总结本节课的主要内容,形成知识网络。
(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
实数复习课教案

第四章实数复习课教案课程标准:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
(2)了解乘方与开方互为逆运算,会用开方运算求百以内整数的平方根,会用立方运算求百以内整数的立方根,会用计算器求平方根和立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
(4)能用有理数估计一个无理数的大致范围。
学习内容与学情分析:本章主要考察是平方根、算术平方根、立方根、无理数、实数的有关概念,及相关性质。
并运用性质,解决实数的相关计算。
在分别学习了有理数、无理数之后,再将两类数综合,得到一个总称“实数”。
请学生们尝试将实数在数轴上表示,对于七年级的学生而言将有理数在数轴上表示难度不大,但学生们通过应用勾股定理和圆弧的特征将有理数表示在数轴之上,理解稍有难度。
然后,及时地让学生们练习巩固,体会成功,不自觉地培养其数形结合的思想。
学习目标:1、理解平方根、算术平方根、立方根的概念,掌握其性质,并会求某些数的平方根或立方根。
2、理解无理数,实数的概念,会对实数进行分类。
3、理解实数与数轴上的点的对应关系,会求实数的相反数,倒数,绝对值。
评价设计:1、通过知识梳理,以及基础题1,2,3能力题4,6,7检测目标一的达成。
2、通过知识梳理,以及基础题6,检测目标二的达成。
3、通过基础5,能力2,检测目标三的达成。
学习过程:一、知识梳理:1、平方根概念、性质2、算术平方根的概念、性质、及公式3、立方根的概念、性质、及公示4、实数的概念、分类、性质,及用数轴上的点如何表示二、基础题1、求下列各数的平方根及算术平方根:972 81492、求下列各数的立方根:343 -81 3、求下列各式的值: ①22.7-)( ②22.7-)( ③333④333)( 4、满足52-〈〈x 的整数x 有___________。
5、14.3-π的相反数是______,绝对值是______,倒数是_________。
八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会运用实数解决实际问题。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实例分析,培养学生解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。
(2)无理数:不能表示为两个整数比的数。
2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。
(2)绝对值:数轴上表示一个数的点到原点的距离。
(3)平方:一个数与自身的乘积。
三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。
2. 难点:实数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。
2. 运用举例法,分析实数在实际问题中的应用。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。
3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。
4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。
5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。
6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。
(2)学生能熟练运用实数的性质解决实际问题。
2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。
(2)练习题:评估学生运用实数性质解决问题的能力。
(3)小组讨论:观察学生在团队中的参与程度和协作效果。
七、教学资源1. 教材:八年级数学教材。
2. 课件:实数复习的相关课件。
3. 练习题:针对实数性质的练习题。
《实数》复习课教案

《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。
本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。
【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。
1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。
实数复习教案

实数复习教案教学分析教学目标:1、了解算术平方根、平方根、立方根、实数及其相关概念;2、会用根号表示并会求数的算术平方根、平方根、立方根;3、数系扩充到实数后,掌握实数的有关概念及其运算律;4、培养学生归纳、整理所学知识的能力。
本章重难点:重点:算术平方根、平方根、立方根、实数及其相关概念及其运算; 难点:算术平方根、实数及其相关知识的综合运用。
教学设计教学过程:一、算术平方根、平方根、立方根1、七年级上学期,由盈亏问题、上升下降问题、前后问题我们引入了负数,这使我们对数的认识有了第一次的扩充,使数扩充到了有理数的范围。
由前节课我们由正方形的面积求其边长的问题,引入了根式,在根式的估计计算中我们发现有些根式是无限不循环小数,从而对数有了新的定义即无理数和实数的概念。
那么实数这一章有那些基本的概念需要我们掌握呢?请大家一起回答下面的问题:(ppt )(1)16的算术平方根是 ,符号表示为 ;16的平方根是 ,符号表示为 ;(2)27的立方根是 ,符号表示为 ;(3)下列数中是无理数的是 .-1,311,0.3,2π,49,38-,0,0.1010010001…(相邻两个1之间0的个数逐次加1)2、各概念的再次回顾呈现:(ppt )算术平方根的定义:如果一个正数的平方等于a ,那么这个数就叫做a 的算术平方根,a 的算术平方根表示为a . 即如果一个正数....x ,有a x =2,则x 叫做a 的算术平方根,表示为a x =. 平方根的定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根,a 的平方根表示为±a . 即如果一个数...x ,有a x =2,则x 叫做a 的平方根,表示为a x ±=. 立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根,a 的立方根表示为3a . 即如果一个数x ,有a x =3,则x 叫做a 的立方根,表示为3a x =.3、问题1:平方根与算术平方根有什么区别和联系?问题2:平方根与立方根有什么区别和联系?问题3:立方根、平方根、算术平方根都是通过什么运算得到的?这种运算和乘方之间有什么关系?活动形式:学生小组讨论交流并归纳,教师抽组回答并给予点评后带领学生归纳结论.(1)平方根与算术平方根有什么区别和联系:它们的联系有:① 平方根包含算术平方根,算术平方根是平方根的一种;② 存在条件相同:平方根与算术平方根都是只有非负数才有;③ 0的平方根、算术平方根都是0.它们的区别是:① 从定义上就不同;② 个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③ 表示方法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a ;④ 取值范围不同:正数的平方根一正一负,它们互为相反数;正数的算术平方根只有一个.(2)平方根与立方根有什么区别和联系:它们的联系有:① 0的平方根、立方根都是0;② 平方根、立方根都是开方的结果.它们的区别是:① 定义不同;② 个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有立方根,一个负数有一个立方根;③ 表示方法不同:正数a 的平方根表示为±a ,a 的立方根表示为3a ;④ 被开方数的取值范围不同:±a 中的被开方数a 是非负数;3a 中的被开方数为任意数.(3)乘方与开方运算的关系:立方根、平方根、算术平方根都是通过开方运算得到的,开方运算和乘方运算是互为逆二、实数范围内的相关概念相反数:实数a 的相反数是-a ,实数a -b 的相反数是b -a .绝对值:实数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ,,,或实数⎪⎩⎪⎨⎧<--=->--=-).0()0(0)0(b a a b b a b a b a b a ,,,实数与数轴的关系:实数与数轴上的点一一对应.1、填空:-5的相反数是 ,-5的绝对值是 .23-的相反数是 ,23-的绝对值是.2、在数轴上表示下列数:2,2.三、实数的运算实数的运算:实数也可以进行加、减、乘、除、乘方、开方等运算,运算法则采用有理数的运算法则.1、口答题.请迅速说出下列两组题的答案,并说出运算规律.(1)2+8= (2)2×8=2+(-8)= 2×(-8)=(-2)+(-8)= (-2)×(-8)=2、请完成下列各题,并说说你是怎么算的.(1)222+= (2)3)322(-+= )22(2-+= 23522++-= )22(2-+-=(3)2×2×2=22⨯= 333222⨯⨯=)122(2-=)313(32-=四、相关知识的综合运用1、解方程:042=-x2、求下列式子中x 的取值范围,并说出根据.x x ;3 3、(1)已知0=+y x ,求x ,y 的值.(2)已知032=++-y x ,求x ,y 的值.活动形式:找学生上台解答,其他学生在下面解答.五、课堂小结通过本节课的学习,你有哪些收获?(知识上或思想方法上)小结:本节课的思想方法有类比、转化和分类讨论等思想。
《实数(复习课) 》教案

复习专题一:平方根与算术平方根
1. 16的平方根是_
2.的算术平方根是___
3.化简:= _____
4.说出下列各式的值:
复习专题二:立方根的定义与性质
求下列各式的值
复习专题三:实数
1.的相反数是_____
2.比较大小:____3
3.计算:
巩-2和5x+6,求这个数?
2.已知2a-1的平方根是 ,3a+b的算数平方根是4,求a+2b的平方根。
达标测评:
(见试卷)
课堂小结:
作业策略
1.整理易错知识在笔记本上
2.复习试卷(四)
A,B层学生全部完成1
C层完成复习试卷中的填空、选择部分和解答题15-17
分层布置作业,让我们的学生在数学上有不同的进步
教学反思
温馨提示:
达标测评:
鼓励学生作答,抢答,激励每组的学生学习,树立学习数学的信心。
1.教师(在大屏幕)解读学习目标
2.在后板完整书写巩固提升1和2题,规范学生的书写,完善学生的思路
学习任务
课前准备:
做复习卡上的题目
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
3、知识梳理,夯实基础 15’
4、巩固提升,拓展运用 15’
5、达标测评,小结作业 6’
课前准备:
学情预见:学生对实数这一章的知识点可能有些遗忘,解决问题时考虑的不全面。
方法指导:如有困难,可同本组学生交流探讨。
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数复习
教学目标
1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.会用计算器进行数的加、减、乘、除、乘方及开方运算;
3.了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;
4.理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.
教学重难点:
1.平方根和算术平方根的概念、性质,无理数与实数的意义;
2.算术平方根的意义及实数的性质.
一、基础知识
1、有理数
(1) 有限小数:小数部分的位数是有限的小数。
(2) 无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
例如:0.333 …, 5.32727 …等等。
2、无理数
(1)无理数:无限不循环小数叫做无理数。
(2)无理数的特征:
1)无理数的小数部分位数不限;
2)无理数的小数部分不循环,不能表示成分数的形式。
3、实数
有理数和无理数统称为实数。
(1)实数的分类:
(2)实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。
数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。
(实数与数轴上的点一一对应。
)
(3)实数大小比较的方法:
1)有理数大小的比较法则在实数范围内同样适用,即:
法则1:在数轴上表示的两个实数,右边的数总比左边的数大。
法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。
2)平方比较法。
3)作差比较法。
(4)运算:有理数的运算法则,运算顺序,运算性质在实数中同样适用。
二、典型例题
例1.下面几个数: ,1.010010001…,
,3π,,,其中,无理数的个数有( )A 、1 B 、2 C 、3 D 、4
练习:1、在-1.732,2,π, 3.4
1 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5 B.
2 C.
3 D.4
2、下列实数
317,π-,3.14159 8,32721中无理数有( ) A.2个 B.3个 C.4个 D.5个
3.数3.14, 2 ,π,0.323232…,17
,9 中,无理数的个数为( ) A.2个 B .3个 C .4个 D .5个
例2.x 取何值时,下列各式有意义.
(1)x -2; (2)12+x ;
. 例3 已知322+-+-=x x y ,求x y 的值;
例4.求下列各数的平方根,算术平方根:
(1)972;(2)25;(3)252⎪⎭
⎫ ⎝⎛-. 例5.31-23(1)-
)0(233<•-a a a =________.
练习: 1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4、3的倒数的平方是 ,2的立方根的倒数的立方是 。
523的相反数是 ,23-的相反数的绝对值是 。
627726-的相反数之和的倒数的平方为 。
7.64的平方根是 ,立方根是 .
8.51-的相反数是 ,绝对值是 . 9.若==x x 则6 .
10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是
11.当10≤≤x 时,化简__________12=-+x x ;
例6.已知22(4)20,()y x y x y z xz -++++-=求的平方根。
例7. 点A 在数轴上表示的数为
,点B 在数轴上表示的数为,则A ,B 两点的距离为______
练习:1、如图,数轴上表示1,
的对应点分别为A ,B ,点B 关于点A 的对称点为C ,
则点C 表示的数是( ).
A .-1
B .1-
C .2-
D .-2 2、已知实数、、在数轴上的位置如图所示:
化简 例10、414、226、15三个数的大小关系是( ) A.414<15<226; B. 226<15<414;
C.414<226<15 ;
D. 226<414<15
3:比较大小:2113532 23
例11 化简计算
(1) 233221-+-+- (2)23325332
(3)22)7()3(+-; (4)3)33232(⨯++-; 五、课后练习
一、填一填:
1.16的平方根记作_______,等于________.
2.16的值为________.
4.两个无理数的和为有理数,这两个无理数可以是______和_______.
5.若│x 2-25│+3y -=0,则x=_______,y=_______.
6.已知x 的平方根是±8,则x 的立方根是________.
二、选一选:
7.4的平方根是( )
A.2
B.-2
C.±2
D.±2
8.下列各式中,无意义的是( )
A.-3
B.3-
C.2(3)-
D.310-
9.下列各组数中,互为相反数的一组是( )
A.-2与2(2)-
B.-2与38-
C.-2与-12
D.│-2│与2 10. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
三、做一做:
12.判断下列说法是否正确
(1)的算术平方根是-3; (2)的平方根是±15.
(3)当x=0或2时,
(4)是分数。