2007年四川省初中数学联赛决赛试卷(初二组)
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
2007年乐山市八年级试题及答案

绝密★启用前[考试时间:2007年6月27日上午8:30—10:30]乐山市八年级学年调查研究考试语文试题[说明]本试卷共10页,分为第Ⅰ卷(1-4页)和第Ⅱ卷(5-10页)两部分。
第Ⅰ卷为选择题,第Ⅱ卷为其他各种题型的题。
共150分。
考试时间为120分钟。
第Ⅰ卷(选择题共39分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,不能答在本试题卷上。
3.考试结束后,将本试卷和答题卡一并交回。
一、语言基础知识(每小题3分,共15分)1. 下列加点字的注音全都正确的一项是A. 解剖.(pō)彷.徨(pánɡ)远眺.(tiào)发怵.(chù)B. 挑衅.(xìn)禁锢.(ɡù)糯.米(nuî)赚.钱(zuàn)C. 繁衍.(yǎn)诘.责(jí)避邪.(xí)胆怯.(q iâ)D. 宽恕.(sù)忌讳.(huì)馈.赠(ɡuì)混淆.(yǎo)2. 下列词语中没有错别字的一项是A. 认错赔罪非凡器宇夜阑人静签订合同B. 逍遥法外饶有兴趣顾明思义荒唐滑稽C. 正经危坐仓皇逃窜结账走人狼藉斑斑D. 目光犀利随机应变走街串巷如法泡制3. 依次填入横线上的词语,正确的一项是①原来宇宙万物都各有名称,每个名称都能我新的思想。
②我对异乡人高邮鸭蛋,是不大高兴的,好像我们那穷地方就出鸭蛋似的!③(托尔斯泰的这对眼睛)它们容不得幻影,要把每一片虚假的伪装,把浅薄的信条。
A. 启发称颂撕烂扯掉B. 启示称道扯掉撕烂C. 启发称道扯掉撕烂D. 启示称颂撕烂扯掉4. 下列句中加点的成语运用恰当的一项是A. 消息灵通的报社记者们很快就打听到了这件事,盛气凌人....的开着小汽车赶来了。
八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
2007年八年级数学竞赛(决赛)试题

2007年八年级数学竞赛(决赛)试题一、选择题(每小题5分,共30分) 1.如果1233121231231t t t t t tt t t t t t ++=-,则的值为( ) (A )1 (B )-1 (C )±1 (D )不确定2.已知2110 x x x x-<<,则,,的大小关系是( ) (A )21x x x << (B )21x x x << (C )21x x x << (D )21x x x<<3.在平面直角坐标系内,已知点A (2,2),B (2,-3),点P 在y 轴上,且△APB 为直角三角形,则点P 的个数为( ) (A )2 (B )3(C )4(D )5 4.下图是由一些相同的小正方形构成的几何体的三视图。
这些相同的小正方形的个数是( ) (A )4 (B )5 (C ) 6 (D )75.已知22204(2) a b x a b y b a x y =++=-、是实数,,,则、的大小关系是( )(A )x y < (B ) x y > (C ) x y ≤ (D )x y ≥ 从左边看从上面看从正面看(图2)EDCBA6.关于x 的不等式组255,332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩ 只有5个整数解,则a 的取值范围是( )(A )1162a -<<-(B )1162a -≤<- (C )1162a -<≤- (D )1162a -≤≤-二、填空题:(每小题5分,共30分)7.如图1,已知AD=DB=BC ,∠C=50°,则∠ABC=8.已知实数35a b x y ax by ay bx +=-=,,,满足,,则2222)()a b x y ++(的值是 . 9.如图2,1ABCDEC ACE S S S === BDE ,若S ,则ADE S = . 10.已知114340 04323a ab ba b a b a ab b++≠≠+==-+-,,且,那么 .11.正五边形广场ABCDE 的周长为2000m ,甲、乙两人分别从A 、C 两点同时出发,绕广场沿A →B →C →D →E →A 的方向行走,甲的速度为50m/min ,乙的速度为46m/min ,则出发后,经过 min ,甲、乙第一次行走在同一条边上。
凤湖中学2007学年度初二上学期数学竞赛学竞赛试卷(含答案)38

凤湖中学2007学年度初二上学期数学竞赛试卷(说明:满分120分 时间:90分钟)一、填空(每题3分共30分) 1.有一列数 1、2、4、7、11、16、22、29、…这列数左起第1994个数除以5的余数是 2____。
2.小明骑自行车从家里到学校,去时每小时行6千米,回来时每小时行4千米,则来回平均速度为每小时 4.8 千米.3.王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍。
桔子每人分3个,多4个;苹果每人分7个,少5个。
则共有 13 个小朋友。
4.一次乒乓球比赛,共有512名乒乓球运动员参加比赛。
比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛 511 场。
5.下图有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等,则图中左上角的数是 16 。
6.有一种饮料的瓶身如下图所示,容积是3升。
现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米。
那么瓶内现有饮料 2.4 升。
7.如图,不含▲的正方形有 41 个。
8.标有一号、二号、三号的三个盒子里面各有若干个黑色的小球,如果第一次从一号盒子里面拿20个小球放到二号盒子里面,第二次又从二号盒子里拿15个小球放到三号盒子里,最后再从三号盒子里拿出20个小球放到一号盒子里,这时三个盒子里面的小球都是60个。
一号、二号、三号盒子里面原来各有小球 个。
(60、55、65)9.有 A 、B 、C 、D 、E 五个小足球队参加足球比赛,到现在为止,A 队赛了4场,B 队赛了3场,C 队赛了2场,D 队赛了1场.那么E 队赛了 2 场。
10.设多项式M d cx bx ax =+++35,已知当0=x 时,5-=M ,当3-=x 时,7=M ,则当3=x 时,=M _________ 。
二、填空(每题4分共32分)11.若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解为 .第5题图 班级 姓名 考号第6题图 第7题图12.某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.则这个学习小组5位同学考试分数的标准差为13.A 、B 两地之间的道路分上坡和下坡两种路段,共70千米,兰兰上坡速度为5千米/时,下坡速度为7千米/时,去时用了10.5小时,则返回时用 13.5 小时。
2007年成都中考数学考试试卷和答案

成都市2007年高中阶段教育统一招生考试(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( )A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B. C .8cmD.第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.112(5)0b +=,那么a b +的值为 .D12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (11223sin 30--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的AB ECDFGC 'D 'AB仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.B 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、D AE FCHGBD C B A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216;13.64;14.3; 15.1-三、16.(1)解:原式112322=+-⨯13222=+= (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤. ∴原不等式组的整数解是101-,,.(3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°=(米).CD BE ==∴。
2007年全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会 2007年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里。
不填、多填或错填得零分)1、方程组⎩⎨⎧=+=+6||12||y x y x 的解的个数为( )A 、1B 、 2C 、3D 、4 答案:A解析:若0≥x ,则⎩⎨⎧=+=+6||12y x y x ,于是6||-=-y y ,显然不可能若0 x ,则⎩⎨⎧=+=+-6||12y x y x于是18||=+y y ,解得9=y ,进而求得3-=x 所以,原方程组的解为⎩⎨⎧=-=93y x ,只有1个解.故选(A ).2、口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( )A 、 14B 、 16C 、18D 、20答案:B解析:用枚举法:红球个数 白球个数 黑球个数 种 数 5 2,3,4,5 3,2,1,0 4 4 3,4,5,6 3,2,1,0 4 3 4,5,6,7 3,2,1,0 4 2 5,6,7,8 3,2,1,0 4 所以,共16种. 故选(B ).3、已知ABC ∆为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与ADE ∆的外接圆的半径相等,则⊙O 一定经过ABC ∆的( )A 、内心B 、外心C 、重心D 、垂心 答案:B解析: 如图,连接BE ∵ABC ∆为锐角三角形 ∴BAC ∠,ABE ∠均为锐角又∵⊙O 的半径与ADE ∆的外接圆的半径相等,且DE 为两圆的公共弦 ∴ABE BAC ∠=∠∴BAC ABE BAC BEC ∠=∠+∠=∠2 若ABC ∆的外心为1O 则BAC C BO ∠=∠21 ∴⊙O 一定过ABC ∆的外心 故选(B ).4、已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abc ca b bc a 222++的值为( ) A 、0 B 、1 C 、2 D 、3 答案:D解析:设0x 是它们的一个公共实数根,则02=++c bx ax ,02=++a cx bx ,02=++b ax cx把上面三个式子相加,并整理得()()01020=++++x x c b a因为0432112002+⎪⎭⎫ ⎝⎛+=++x x x所以0=++c b a于是()()33333333222=+-=+-+=++=++abcb a ab abc b a b a abc c b a ab c ca b bc a 故选(D ).5、方程256323+-=++y y x x x 的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无穷多 答案:A解析:原方程可化为()()()()()2113212++-=++++y y y x x x x x因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的。
2007年临安市初中八年级数学竞赛试卷

临安市2007年初中八年级数学竞赛试卷(时间:6月3日上午8:30—10:30,满分120分)一.选择题(每小题4分,共32分)1.在平面直角坐标系中,点A (x ,2y -)在第四象限,那么点B (2y -,x -)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是 ( )A .16B .20C .24D .6 3.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子的个数是( )A .9B .8C . 7D .6 4.若实数a 、b 满足等式a 2=5-3a , b 2=5-3b ,则代数式ba ab +之值为( )A . -195B . 2或-195C .195D . 2或1955.如图,△ABC 中,AB=32,AC=2,将线段AC 绕点A 按逆时针方向旋转60°至AD ,D 恰在BC 的延长线上,则下列关于此图形的一些说法中正确的有( ) (1) △ACD 是等边三角形; (2)∠B=30° ; (3)△ABD 是直角三角形; (4)点C 是BD 的中点.A .1 个B .2个C .3个D .4个6.一根长30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,MA 的长应为( )A .7.5cmB .9cmC .12cmD .13.5cm7.在直角坐标系中,横纵坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整点时,k 的值可以取( )A .6个B .4个C .2个D .8个8.已知,正整数n ,k 满足不等式65119n k<<,那么当n 与k 取最小值时,n +k 的值为( )A .29B .30C .31D .32 二.填空题(每题5分,共35分)9.设a 、b 、c 是△ABC 的三边的长,化简(a – b – c )2 + (b – c – a )2 + (c – a – b )2 的结果是 . 10.若不等式组 113x x a-≤≤⎧⎨<⎩ 有解,则a 必须满足 .11.李江同学5次数学测验的平均成绩是90,中位数是91,众数是93,则他最低两次测验的成绩之和是____________. 12.已知y x xx )2(622222-=+-+-,则1x y+= .13.一家小吃店原有三个品种的馄饨,每碗10个,其中菜馅馄饨售价为3元/碗,鸡蛋馅馄饨售价为4元/碗,肉馅馄饨售价为5元/碗,现该店新增了由上述三个品种搭配而成的混合馄饨,每碗还是10个馄饨.那么共有 种搭配得到定价是3.8元的混合馄饨(每种馄饨至少有一个).14.如图,边长分别为1、2、3、4、……2007、2008的正方形叠放在一起,则图中阴影部分的面积和为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国初中联赛四川初三数学竞赛初赛
参考解答与评分标准
一、选择题(每小题7分,共42分)
1. A 2.B 3.D 4. D 5.C 6.B 二、填空题(每小题7分,共28分) 1.2 2.2 3.40 4.24 三、(本大题满分20分)
如图,一次函数28y x =-+的图象与两坐标轴分别交于P 、Q 两点,在线段PQ 上有一点A ,过A 点分别做两坐标轴的垂线,垂足分别为B 、C .
(I )若矩形ABOC 的面积为4,求A 点坐标;
(II )若点A 在线段PQ 上移动,求矩形ABOC 面积的最大值.
解:(1)设点A 坐标为(,)x y ,根据题意得
28
4y x xy =-+⎧⎨
=
⎩
,………(
5分) 解得24x y ⎧=
⎪⎨=-
⎪⎩或24x y ⎧=-⎪⎨=
+⎪
⎩
所以A
点坐标为(2
-或(2+……………………………(10分) (2)设点A 坐标为(,)x y ,则
2(28)28ABOC S xy x x x x ==-+=-+……………………………… …………(15分)
22(2)8x =--+
所以当2x =时,矩形ABOC 面积取得最大值为8.…………………………………(20分)
四、(本大题满分25分)
如图,在△ABC 中,D 为AC 边上一点,且AD DC CB =+,过D 作AC 的垂线交△ABC 的外接圆于M ,过M 作AB 的垂线MN ,交圆于N ,求证:MN 为△ABC 外接圆的直径. 解:延长AC 至E ,使CE CB =,…………………………(5分) 则由已知得AD DE =,
又MD AE ⊥,所以MA ME =,…………………………(10分) 所以MEA MAC MBC ∠=∠=∠, 又由CE CB =得CEB CBE ∠=∠, 所以MEB MBE ∠=∠,………………………………(15分) 所以MB ME =, 所以MA MB =,………………………………………(20分) 所以M 为优弧AB 的中点,
又因为M N A B ⊥,所以MN 为△ABC 外接圆的直径.……………………………(25分)
五、(本大题满分25分)
已知方程组2
x y z xy yz zx a xy z a ++=⎧⎪
++=⎨⎪+=⎩
的所有各组解(,,)x y z 都是由正实数组成的,其中a 是参数.试求a 的取值范
围.
解:由2x y z ++=得2x y z +=-①
xy z a +=得xy z a =-+②,
又()xy yz zx xy x y z a ++=++=③,
将①②代入③得(2)z a z z a -++-=,化简得20z z -+=…………………………(5分) 此方程的两个根为0z =和1z =.
因,,x y z 都是正实数,所以1z =.……………………………………………………(10分)
将1z =代入①②得1
1x y xy a +=⎧⎨=-⎩
,
因此,x y 是下面辅助方程的两个根
2(1)0n n a -+-=④.…………………………………………………………………(15分)
因为,x y 是实数,所以214(1)0a ∆=--≥
5
4
a ≤
.……………………………………………………………………………………(20分) 因为,x y 都是正数,所以10a ->,即1a > 因此可得a 的取值范围是5
14
a <≤
.……………………………………………………(25分)。