七年级数学上册6.3余角、补角、对顶角第2课时对顶角同步练习(新版)苏科版.doc
苏科版七年级数学上册 6.3余角、补角、对顶角-同步练习

七年级数学上册(苏科版)6.3余角、补角、对顶角-同步练习时间:60分钟一、单选题1.如图,∠1的余角可能是图中的( )A .B .C .D .2.若一个角的余角与135︒的角互补,则这个角的度数是( )A .30B .45︒C .60︒D .90︒3.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D . 4.如图,1∠的邻补角是( )A .BOC ∠B .BOC ∠和AOF ∠ C .AOF ∠D .∠BOE 和AOF ∠ 5.如图,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为()A .62°B .118°C .72°D .59°6.如图,已知15180∠+∠=︒,则图中与1∠相等的角有( )A .4,5,8∠∠∠B .2,6,7∠∠∠C .3,6,7∠∠∠D .4,6,7∠∠∠ 7.两个角的平分线相互垂直的有( ).A .两角互补B .两角互为对顶角C .两角都是直角D .两角为邻补角 8.下列四个角中,最有可能与70°角互补的角是( )A .B .C .D .二、填空题9.将两个三角尺的直角顶点重合为如图所示的位置,若108AOD ∠=︒,则COB ∠=_________.10.如图所示,其中共有_______对对顶角.11.如图,直线,AB CD 相交于点,O OE 平分,BOD OF ∠平分COE ∠.若30BOF ∠=︒,则AOC ∠=___________.12.若1∠和2∠是对顶角,2∠与3∠互补,340∠=︒,则1∠=_____,∠1与3∠的关系是_________. 13.如图,直线AC 和直线BD 相交于点O ,OE 平分BOC ∠,若1280∠+∠=︒,则3∠的度数为__︒.14.6515︒'的余角的补角等于___.15.已知∠A=30°,则∠A 的补角为________ ,余角为________ .16.一个角的余角与这个角相等,则这个角为________︒.三、解答题17.如图,直线a ,b 相交,∠1=40°,求∠2、∠3、∠4的度数.18.如图所示,已知点O 为直线AE 上一点,射线OB 平分AOC ∠,射线OD 平分COE ∠,请写出图中有互余关系的角、互补关系的角各3对.19.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.20.如图,O 是直线AB 上的一点,射线OC ,OE 分别平分AOD ∠和BOD ∠.(1)说出图中互余的角;(2)已知58AOC ∠=︒,求∠BOE 的度数.21.对“如果1∠和2∠都是α∠的余角,那么12∠=∠”的说理过程,在括号内填上依据. 理由:因为190α∠+∠=︒(已知),所以190α∠=︒-∠(等式的性质).因为290(α∠+∠=︒ ),所以290∠=︒-∠α( ).所以12∠=∠( ).22.如图,直线AB CD 、交EF 于点,23,170G H ∠=∠∠=︒、.求4∠的度数.解:2∠=∠____________(___________)170∠=︒(______)2∴∠=_________(等量代换)又∵____________(已知)3∴∠=__________(___________)4180∠=︒-∠________(邻补角互补)4180∴∠=︒-______=_______︒.23.如图,直线AB ,CD ,EF 相交于点O.(1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD =60°,∠BOF =90°,求∠AOF 和∠FOC 的度数.参考答案1.C【解析】解:互余两角的和为90°,选项中只有C符合.故选C.2.B︒-︒=︒,它的余角的度数为【解析】解:与135︒的角互补的角的度数为18013545︒-︒=︒904545故选:B3.C【解析】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选:C.4.D【解析】解:如图所示:∠1的邻补角是∠AOF和∠BIE,故选D.5.A【解析】∵∠AOD+∠BOC=236°,∠AOD=∠BOC,∴∠AOD=∠BOC=118°,∴∠AOC=∠BOD=180°-118°=62°,故选A.6.D【解析】∠1 + ∠5 = 180°,∠5 +∠7= 180°,∴∠1 =∠7,对顶角相等,∴∠7=∠6,∠1=∠4,∴∠1 =∠6,故选:D.7.D【解析】解:A. 如图所示,两角互补的角平分线不一定垂直,不符合题意;B. 如图所示,两角互为对顶角,角平分线在同一直线上,不符合题意;C. 如图所示,两角都是直角,角平分线不一定垂直,不符合题意;D. 如图所示,两角为邻补角,角平分线相互垂直,符合题意;∵∠1+∠2+∠3+∠4,=180º,∠1=∠2,,3=∠4,∴∠2+∠3=90º,∴两角为邻补角,角平分线相互垂直.故选:D.8.D【解析】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.9.72.︒【解析】解:∠AOB=∠COD=90°,∴∠AOC=∠BOD,又∠AOD=108°,∴∠AOC=∠BOD=108°-90°=18°,∴∠BOC=90°-18°=72°.故答案为:72︒.10.4【解析】解:根据对顶角的定义可知:∠FHG和∠BHC,∠FHB和∠GHC,∠HCD和∠BCE,∠HCB和∠DCE共四对对顶角.故答案为:4.11.80°【解析】∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE =x ,则∠DOE =x ,故∠COA =2x ,∠EOF =∠COF =x +30°,则∠AOC +∠COF +∠BOF =2x +x +30°+30°=180°,解得:x =40°,故∠AOC =80°. 故答案为80°. 12.140︒ 互补【解析】解:∵∠2与∠3互补,∠3=40°,∴∠2=180°-∠3=180°-40°=140°,∵∠1和∠2是对顶角,∴∠1=∠2=140°;∵∠1+∠3=140°+40°=180°,∴∠1与∠3的关系是互补.故答案为:140°;互补.13.70【解析】解:12∠=∠,1280∠+∠=︒,1240∴∠=∠=︒,1801140BOC ∴∠=︒-∠=︒,又OE 平分BOC ∠,1131407022BOC ∴∠=∠=⨯︒=︒. 故答案为:70.14.15515︒'【解析】6515︒'的余角为906515'2445'︒-︒=︒,则6515︒'的余角的补角为1802445'15515'︒-︒=︒.故答案为:15515︒'.15.150° 60°【解析】∵∠A=30°,∴∠A 的补角=180°-30°=150°,∠A 的余角=90°-30°=60°.故答案为150°、60°.16.45【解析】设这个角为x ,则余角为90x ︒-,∴90x x ︒-=,∴45x =︒;故答案是:45.17.140°; 40°; 140°. 【解析】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140° 18.互余的角:AOB ∠与COD ∠、AOB ∠与DOE ∠、BOC ∠与COD ∠;互补的角: ∠AOB 与∠BOE ,∠AOC 与∠COE ,∠AOD 与∠DOE ,∠BOC 与∠BOE ,∠AOD 与∠COD (任选三对即可).【解析】∵射线OB 平分AOC ∠,射线OD 平分COE ∠ ∴12BOC AOB AOC ∠=∠=∠,12COD DOE COE ∠=∠=∠, ∴()11112222BOD BOC COD AOC COE AOC COE AOE ∠=∠+∠=∠+∠=∠+∠=∠ 即∠BOD=90°,∵BOD BOC COD ∠=∠+∠,∴BOC ∠与COD ∠互余∵BOC AOB ∠=∠,COD DOE ∠=∠∴AOB ∠与COD ∠,AOB ∠与DOE ∠互余,∵∠︒∠∠︒∠∠︒∠AOB+BOE=180,AOC+COE=180,AOD+DOE=180∴∠AOB 与∠BOE ,∠AOC 与∠COE ,∠AOD 与∠DOE 互补∵BOC AOB ∠=∠,COD DOE ∠=∠∴∠BOC 与∠BOE ,∠AOD 与∠COD 互补.所以互余的角为AOB ∠与COD ∠、AOB ∠与DOE ∠、BOC ∠与COD ∠;互补的角为∠AOB 与∠BOE ,∠AOC 与∠COE ,∠AOD 与∠DOE ,∠BOC 与∠BOE ,∠AOD 与∠COD .19.40AOC ∠=︒;70AOE ∠=︒【解析】解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒,∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠,12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.20.(1)COD ∠与DOE ∠互余,COD ∠与∠BOE 互余,COA ∠与DOE ∠互余,COA ∠与∠BOE 互余;(2)32°【解析】(1)180AOD BOD ∠+∠=︒,OC 、OE 分别平分AOD ∠和BOD ∠, 12AOC COD AOD ∴∠=∠=,12BOE DOE BOD ∠=∠=∠, 90COD DOE ∴∠+∠=︒,COD ∴∠与DOE ∠互余,COD ∠与∠BOE 互余,COA ∠与DOE ∠互余,COA ∠与∠BOE 互余;(2)58AOC ∠=︒,116AOD ∴∠=︒,64BOD ∴∠=︒,1322BOE BOD ∴∠=∠=︒. 21.已知,等式的性质,等量代换【解析】12∠=∠,理由如下:因为190α∠+∠=︒(已知),所以190α∠=︒-∠(等式的性质).因为290α∠+∠=︒(已知),所以290∠=︒-∠α(等式的性质).所以12∠=∠(等量代换).故答案为:已知,等式的性质,等量代换.22.1,对顶角相等,已知,70︒,23∠∠=,70︒,等量代换,3,70︒,110︒【解析】解:2∠=∠1(对顶角相等)170∠=︒(已知)2∴∠=70°(等量代换) 又∵∠2=∠3(已知)3∴∠=70°(等量代换)4180∠=︒-∠3(邻补角互补)∴∠=︒-70°=110︒.418023.(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF 和∠AOF;(3)∠FOC=150°.【解析】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∵∠BOF=90°,∴AB⊥EF∴∠AOF=90°,又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°答案第11页,共6页。
余角、补角、对顶角课件苏科版数学七年级上册

(2)若∠1与∠2的度数之比为1︰4, 求∠BDF的度数。
C
E
2
A1 D
解:因为∠ADC =90°,
所以∠1+∠2=90°.
因为∠1:∠2=1 : 4,
B
所以∠1 1∠ADC 1 90° 18°.
1. 如图,直线AC、DE相交于点O,OE是∠AOB 的角平分线,∠COD=500,试求∠AOB的度数.
A
E
O
D
解: 因为∠AO E 与∠COD是对顶角,
B 所以∠AOE=∠COD=50°.
因为O E 是∠AO B的角平分线,
所以∠AOB=2∠AO E
ቤተ መጻሕፍቲ ባይዱ
C
=2×50°
=100°.
2.如图,直线AB、EF相交于点D,∠ADC=900。
4132互 相....图视将∠补 等中察直A的 的还O∠线角角C有AA::与OB存∠∠绕C∠A∠在A与点OBO这BO∠OCCO种D转B与=D有O关∠动∠与D什系,B的C∠么的O上O顶B数D两述B点O量、个、关C和关∠角∠系、两系吗A还A∠边?O?O成有BDC立O什=与D∠吗么∠与?B位AO∠置OCA关D.O系、D?.
(2)若∠1 ∠2 180°,∠3 ∠4 180°,
∠1=∠3,则∠2与∠4的关系是__∠__2__=_∠__4__, 理由是___等__角__的___补__角___相__等_____.
二、新知探索
如果把剪刀的两条边看成是两条直线AB、CD,那么 它们相交形成了四个角,这四个角之间有哪些关系?
5
5
F
因为∠BDF 与∠1是对顶角,
苏科版数学七年级上册6.3 余角、补角、对顶角 说课稿

6.3余角、补角、对顶角(2)说课稿今天,我说课的课题是:苏科版七年级数学上册第六章第三节《余角、补角、对顶角》第二课时。
这节课的主要内容包括:对顶角的概念、对顶角的性质以及性质的应用。
下面,我将从六个方面对本节课的教学设计进行说明:一、教材分析(一)地位、作用本节课是在学生已经学习了直线、射线、线段、角以及余角、补角有关知识的基础上,进一步研究平面内两条直线相交所形成的角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
(二)、教学目标根据学生已有的知识基础,结合学生现阶段的认知能力,依据《教学大纲》的要求,确定本节课的教学目标为:1.理解对顶角的概念,会利用概念判定对顶角;2.探索并掌握对顶角的性质,能正确地运用对顶角的性质解决问题;3.经历“观察、操作—探索、猜想—推理(有条理地表述)”的认识过程,进一步发展空间观念和推理能力.(三)重点,难点根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:重点:掌握对顶角的性质。
难点:运用余角、补角、对顶角的性质来解决问题。
二、教学方法在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体及投影、实验操作等手段。
增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识。
三、学法指导通过自主学习与小组相合作的形式让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。
从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析七年级的孩子思维活跃,模仿能力强。
同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。
但是受年龄特征的影响,他们的心智还不够成熟,对知识迁移能力不强,推理能力还需进一步培养。
数学苏科版七年级上册第六章 6.3余角、补角、对顶角

将一张长方形纸片,
2
沿一个角折叠后,折痕与 1
长方形的边形成了4个角.
4
3
思考:
1. ∠1 与∠2 有什么数量关系?
∠1+∠2 = 90°
2. ∠3与∠4有什么数量关系? ∠3+∠4 = 180°
余角和补角的概念
2 1
如果两个角的和是一个直角,那么这两个角互为余角,简 称互余,其中的一个角叫作另一个角的余角
x°(0<x<90) (90-x)°
∠α的补角 175° 148° 135° 103°
117°37′ (180-x)°
观察可得结论: 锐角的补角比它的余角大__9_0_°_.
余角和补角的性质
思考:∠1 与∠2,∠3都互为补角, ∠2 与∠3 的大小有什么关系?
1
2
3
= ∠2=180°-∠1 ∠3=180°-∠1
如图,可以说 ∠1 是 ∠2 的余角,或 ∠2 是 ∠1的余角,或 ∠1和 ∠2互余.
图中给出的各角,哪些互为余角?
15o
24o
46.2o
75o
66o
43.8o
4 3
如果两个角的和是一个平角,那么这两个角互为补角,简 称互补,其中的一个角叫作另一个角的补角
如图,可以说 ∠3 是 ∠4 的补角,或 ∠4 是 ∠3 的补角,或 ∠3 和 ∠4 互补.
DO
所以∠AOM=
1 (180 2
-
x) ,∠AOM=
1 2
x.
B N
A
所以 1 (180 - x) 1 x 40 ,
2
2
解得x=50°,则180°-x=130°.
即∠AOB=50°,
2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版

结合余角、补角、对顶角内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的余角、补角、对顶角内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
-及时反馈:教师应及时将作业的批改结果反馈给学生,让学生了解自己的学习效果。对于表现优秀的学生,教师可以给予表扬和奖励,以激发他们的学习动力。对于表现一般或较差的学生,教师应给予鼓励和指导,帮助他们提高学习成绩。
-鼓励学生继续努力:在作业评价中,教师应鼓励学生继续努力,不断提高自己的学习能力。教师可以提供一些学习方法和技巧,帮助学生提高学习效果。同时,教师还可以鼓励学生之间的合作和互助,让他们相互学习,共同进步。
-材料三:《生活中的几何图形》
本材料通过生活中的实例,如建筑设计、艺术作品等,展示了余角、补角、对顶角在实际生活中的应用,增强学生对几何知识实用性的认识。
2.课后自主学习和探究
-探究一:余角和补角在实际图形中的应用
鼓励学生在家中或学校周围寻找含有余角和补角的图形,如窗户的角、墙角等,并进行测量和计算,观察余角和补角的实际效果。
-难点四:解决含有多个余角、补角的复合问题。在复杂问题中,学生需要能够理清角度之间的关系,正确求解。
举例:设计一些综合性的问题,如一个多边形内多个角的余角和补角的计算,训练学生综合运用所学知识。
教学方法与手段
1.教学方法
-方法一:讲授法。对于余角、补角、对顶角的基本概念和性质,采用讲授法进行教学。通过生动的语言、具体的例子,引导学生理解和掌握这些基本知识。
七年级数学上册数学 6.3余角、补角、对顶角(三大题型)(解析版)

6.3余角、补角、对顶角分层练习考察题型一余角、补角的概念1.下列图中,1∠和2∠互为邻补角的是()A.B.C.D.【详解】解:根据邻补角的定义可知:只有选项D中1∠互为邻补角.∠和2故本题选:D.2.A∠的补角为12512︒',则它的余角为()A.5418︒'B.3512︒'D.以上都不对︒'C.3548【详解】解:18012512,∠=︒-︒'A︒-∠=︒-︒-︒'=︒'-︒=︒'.A∴∠的余角为9090(18012512)12512903512A故本题选:B.3.如果一个角的补角是这个角余角的2.5倍,那么这个角的度数是()A.30︒B.60︒C.90︒D.120︒【详解】解:设这个角的度数为x,则它的余角为:90x︒-,︒-,补角为:180x由题意可得:180 2.5(90)x x︒-=︒-,解得:30x=︒.故本题选:A.4.如图,90∠的大小为()∠=︒,则BOCAOC BODAOD∠=∠=︒,126A.36︒B.44︒C.54︒D.63︒【详解】解:90AOC ∠=︒ ,126AOD ∠=︒,36COD AOD AOC ∴∠=∠-∠=︒,90BOD ∠=︒ ,BOC BOD COD ∴∠=∠-∠9036=︒-︒54=︒.故本题选:C .5.如果互补的两个角有一条公共边,那么这两个角的平分线所成的角是()A .一定是直角B .一定是锐角C .锐角或钝角D .直角或锐角【详解】解: 两角互补,∴两角之和为180度,如图,有两种情况:,∴互补的两个角的平分线所成的角可能为直角也可能为锐角.故本题选:D .6.已知α∠是锐角,α∠与β∠互补,α∠与γ∠互余,则βγ∠-∠的度数为()A .180︒B .90︒C .45︒D .无法确定【详解】解:α∠ 是锐角,α∠与β∠互补,α∠与γ∠互余,180αβ∴∠+∠=︒,90αγ∠+∠=︒,180βα∴∠=︒-∠,90γα∠=︒-∠,180(90)90βγαα∴∠-∠=︒-∠-︒-∠=︒.故本题选:B .7.如图,直线AB 和CD 相交于点O ,OB 平分DOE ∠,90EOF ∠=︒.若AOF α∠=,COF β∠=,则以下等式一定成立的是()A .290a β+=︒B .290a β+=︒C .45a β+=︒D .2180a β+=︒【详解】解:OB 平分DOE ∠,DOB EOB ∴∠=∠,又90EOF ∠=︒ ,180AOF EOF BOE ∠+∠+∠=︒,90AOF BOE ∴∠+∠=︒,AOF α∠= ,COF β∠=,90COE β∴∠=︒-,90BOE α∠=︒-,2180COE BOE COD ∠+∠=∠=︒ ,902(90)180βα∴︒-+︒-=︒,即290αβ+=︒.故本题选:A .8.下列说法中,错误的是()A .互余且相等的两个角各是45︒B .一个角的余角一定小于这个角的补角C .如果123∠+∠=∠,那么1∠的余角与2∠的余角的和等于3∠的余角D .如果123∠+∠=∠,那么1∠的余角与2∠的余角的和等于3∠的补角【详解】解: 互余的两个角的和为90︒,∴互余且相等的两个角各是45︒,故A 正确;设一个角为α,则其余角为90α︒-,补角为180α︒-,∴180(90)90αα︒--︒-=︒,∴一个角的余角一定小于这个角的补角,故B 正确;1∠ 的余角和2∠的余角分别为901︒-∠,90︒-∠2,且123∠+∠=∠,901902180(12)1803∴︒-∠+︒-∠=︒-∠+∠=︒-∠,那么如果123∠+∠=∠,那么1∠的余角与2∠的余角的和等于3∠的补角,故C 错误,D 正确.故本题选:C .9.如图,已知A ,O ,B 三点在同一直线上,且OC 平分BOD ∠,OE 平分AOD ∠,下列结论:①BOC ∠与AOE ∠互余;②BOE ∠与EOD ∠互补;③180AOD BOE EOD ∠+∠=∠+︒;④2AOC BOC EOD ∠-∠=∠.其中正确的有()A .1个B .2个C .3个D .4个【详解】解:OC 平分BOD ∠,OE 平分AOD ∠,12BOC DOC BOD ∴∠=∠=∠,12AOE DOE AOD ∠=∠=∠,180BOC AOE ∠+∠=︒ ,90BOC AOE ∴∠+∠=︒,180BOE EOD ∠+∠=︒,BOC ∴∠与AOE ∠互余,BOE ∠与EOD ∠互补,故①②正确;180AOD BOE BOE AOE EOD EOD ∴∠+∠=∠+∠+∠=∠+︒,故③正确;2AOC BOC AOC COD AOD EOD ∴∠-∠=∠-∠=∠=,故④正确.故本题选:D .考察题型二余角、补角的性质1.下列结论:①互补且相等的两个角都是45︒;②同角的余角相等;③若123180∠+∠+∠=︒,则1∠,2∠,3∠互为补角;④锐角的补角是钝角;⑤锐角的补角比其余角大80︒.其中正确的个数为()A .2个B .3个C .4个D .5个【详解】解:①互补且相等的两个角都是90︒,原说法错误;②同角的余角相等,原说法正确;③如果两个角的和等于180︒,就说这两个角互为补角,即其中一个角是另一个角的补角,顾互为补角是指两个角之间的关系,原说法错误;④锐角的补角是钝角,原说法正确;⑤锐角的补角比其余角大90︒,原说法错误;综上,正确的有2个,故A 正确.故本题选:A .2.下列推理错误的是()A .因为12180∠+∠=︒,13∠=∠,所以23180∠+∠=︒B .因为1290∠+∠=︒,2390∠+∠=︒,所以13∠=∠C .因为12180∠+∠=︒,23180∠+∠=︒,所以13∠=∠D .因为1290∠+∠=︒,所以1245∠=∠=︒【详解】解:A .A .12180∠+∠=︒,13∠=∠,由等量代换可得:23180∠+∠=︒,正确;B .1290∠+∠=︒,2390∠+∠=︒,由等角的余角相等可得:13∠=∠,正确;C .12180∠+∠=︒,23180∠+∠=︒,由等角的补角相等可得:13∠=∠,正确;D .1∠与2∠不一定相等,由1290∠+∠=︒,不能推出1245∠=∠=︒,故错误.故本题选:D .3.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠一定相等的是()A .①②B .①③C .②④D .③④【详解】解:图①,由“同角的余角相等”可得:αβ∠=∠;图②,135α∠=︒,120β∠=︒;图③,由“等角的补角相等”可得:αβ∠=∠;图④,1809090αβ∠+∠=︒-︒=︒,互余;综上,α∠与β∠一定相等的是图①和图③.故本题选:B .4.如图,90AOB COD EOF ∠=∠=∠=︒,则1∠,2∠,3∠之间的数量关系为()A .12390∠+∠+∠=︒B .12390∠+∠-∠=︒C .23190∠+∠-∠=︒D .12390∠-∠+∠=︒【详解】解:390BOC DOB BOC ∠+∠=∠+∠=︒ ,3BOD ∴∠=∠,190EOD ∠+∠=︒ ,2190BOD ∴∠-∠+∠=︒,32190∴∠-∠+∠=︒,故本题选:D .5.如图,已知12∠=∠,34∠=∠,1902BOD AOB ∠=∠=︒.下列判断:①射线OF 是BOE ∠的角平分线;②BOC ∠是DOE ∠的补角;③AOC ∠的余角只有COD ∠;④DOE ∠的余角有BOE ∠和COD ∠;⑤COD BOE ∠=∠.其中正确的有()A .5个B .4个C .3个D .2个【详解】解: 12∠=∠,∴射线OF 是BOE ∠的角平分线,故①说法正确;34∠=∠,BOC ∠是4∠的补角,∴BOC ∠是DOE ∠的补角,故②说法正确;34∠=∠,1902BOD AOB ∠=∠=︒,∴COD BOE ∠=∠,故⑤说法正确;AOC ∠的余角有COD ∠和BOE ∠,故③说法错误;DOE ∠的余角有BOE ∠和COD ∠,故④说法正确;综上,正确的有4个.故本题选:B .6.如图,O 是直线AB 上一点,OE 平分AOB ∠,90COD ∠=︒.则图中互余的角、互补的角各有()对.A .3,3B .4,7C .4,4D .4,5【详解】解:OE 平分AOB ∠,90AOE BOE ∴∠=∠=︒,90COD ∠=︒,∴互余的角有AOC ∠和COE ∠,AOC ∠和BOD ∠,COE ∠和DOE ∠,DOE ∠和BOD ∠共4对, 由“等角的补角相等”可得:AOC ∠=DOE ∠,COE ∠=BOD ∠,∴互补的角有AOC ∠和BOC ∠,DOE ∠和BOC ∠,COE ∠和AOD ∠,BOD ∠和AOD ∠,AOE ∠和BOE ∠,AOE ∠和COD ∠,COD ∠和BOE ∠共7对.故本题选:B .考察题型三对顶角1.泰勒斯被誉为古希腊及西方第一个自然科学家和哲学家,据说“两条直线相交,对顶角相等”就是泰勒斯首次发现并论证的.论证“对顶角相等”使用的依据是()A .同角的余角相等B .同角的补角相等C .等角的余角相等D .等角的补角相等【详解】解:论证“对顶角相等”使用的依据是:同角的补角相等.故本题选:B .2.如图,1∠和2∠是对顶角的是()A .B .C .D .【详解】解:A .1∠与2∠的两边不是互为反向延长线,不是对顶角;B .1∠与2∠没有公共顶点,且两边不是互为反向延长线,不是对顶角;C .1∠与2∠的两边互为反向延长线,且有公共顶点,是对顶角;D .1∠与2∠的两边不是互为反向延长线,不是对顶角.故本题选:C .3.如图,直线AB ,CD 相交于点O ,若AOD ∠减少2618'︒,则(BOC ∠)A .减少2618'︒B .增大15342'︒C .不变D .增大2618'︒【详解】解:由“两直线相交,对顶角相等”可知:AOD BOC ∠=∠,∴若AOD ∠减少2618'︒,则BOC ∠减少2618︒'.故本题选:A .4.如图,已知直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,则BOD ∠的度数为()A .22︒B .34︒C .56︒D .72︒【详解】解:COE ∠ 是直角,34COF ∠=︒,903456EOF ∴∠=︒-︒=︒,OF 平分AOE ∠,56AOF EOF ∴∠=∠=︒,563422AOC ∴∠=︒-︒=︒,22BOD AOC ∴∠=∠=︒.故本题选:A .5.如图,直线AB 、CD 、EF 相交,若15180∠+∠=︒,图中与1∠相等的角有()A.1个B.2个C.3个D.4个【详解】解:15180∠+∠=︒,∠+∠=︒,65180∴∠=∠,16∠=∠,68∴∠=∠,18又13,∠=∠∠相等的角有3个.∴图中与1故本题选:C.6.如图,直线AB、CD相交于点O,90∠=∠=︒.AOE COF(1)DOE∠的余角是(填写所有符合要求的角).(2)若70∠的度数.∠=︒,求BOFDOE(3)若DOE BOD∠的度数.∠=∠,求EOC【详解】解:(1)90,AOE∠=︒∴∠=︒,90EOB∠互余,∴∠与DOBDOE∠=∠,AOC DOB∠互余,∴∠与EODAOC,∠=︒COF90∴∠=︒,DOF90∠余角,DOE∴∠与EOF∴DOE ∠的余角是BOD ∠、EOF ∠、AOC ∠,故本题答案为:BOD ∠、EOF ∠、AOC ∠;(2)70DOE ∠=︒ ,DOE ∠与DOB ∠互余,20DOB ∴∠=︒,2090110BOF BOD FOD ∴∠=∠+∠=︒+︒=︒;(3)90EOB ∠=︒ ,DOE BOD ∠=∠,45BOD ∴∠=︒,45AOC ∴∠=︒,9045135EOC ∴∠=︒+︒=︒.1.已知AOB ∠与BOC ∠互为补角,OD 平分BOC ∠.(1)如图①,若80AOB ∠=︒,则BOC ∠=︒,AOD ∠=︒;(2)如图②,若140AOB ∠=︒,求AOD ∠的度数;(3)若AOB n ∠=︒,直接写出AOD ∠的度数(用含n 的代数式表示),及相应的n 的取值范围.。
七年级数学上册 6.3 余角、补角、对顶角 什么是方向角?素材 苏科版(2021年整理)
七年级数学上册 6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版的全部内容。
什么是方向角?
难易度:★★★
关键词:角
答案:
(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向。
(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西。
(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角:以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线。
【举一反三】。
苏科版七年级上《6.3余角、补角、对顶角》同步测试含答案(共2份)第1课时余角和补角
第 1 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可6.3 第1课时 余角和补角知识点 1 余角、补角的概念1.2017·广东已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°2.下列选项中,能与30°角互补的是( )图6-3-13.如图6-3-2,点O 在直线AB 上,若∠1=40°,则∠2的度数是( )图6-3-2A .50°B .60°C .140°D .150°4. 如果一个角是36°,那么( )A .它的余角是64°B .它的补角是64°C .它的余角是144°D .它的补角是144°5.现有下列说法:①锐角的余角是锐角;②钝角没有余角;③直角的补角是直角;④两个锐角互余.其中正确说法的个数是( )A .4B .3C .2D .16.52°34′的余角是__________,补角是__________.7.若一个锐角的余角与这个角相等,则这个角等于________°.8.已知∠1和∠2互余,∠2和∠3互补,如果∠1=63°,那么∠3=________°.9.一个角的补角比它的余角的4倍少15°,求这个角的度数.第 2 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可知识点 2 余角、补角的性质10.若∠1+∠2=90°,∠1+∠3=90°,则________=________,理由是__________________________________;若∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,则________=________,理由是_________________________________________________.11.若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于( )A .50°B .130°C .40°D .140°12.如图6-3-3所示,一副三角板(直角顶点重合)摆放在桌面上,若∠AOC =65°,则∠BOD 等于( )图6-3-3A .45°B .55° C.60° D .65°13.下列说法错误的是( )A .若两角互余,则这两角均为锐角B .若两角相等,则它们的补角也相等C .互为余角的两个角的补角相等D .两个钝角不能互补14.如图6-3-4,已知∠BOC =90°,∠DOA =90°,∠1=50°,求∠2的度数.第 3 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可图6-3-415.如图6-3-5所示,点A ,O ,E 在一条直线上,从点O 引射线OB ,OC ,OD ,∠AOC =∠COE =∠BOD =90°,那么图中互补的角有哪几对?图6-3-516.如果一个角等于它的余角的2倍,那么这个角是它的补角的( )A .2倍 B.12 C .5倍 D.1517.已知:如图6-3-6,∠AOB =∠COD =90°,则∠1与∠2的关系是( )图6-3-6A .互余B .互补第 4 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可C .相等D .无法确定18.如图6-3-7,O 为直线AB 上一点,∠AOC =α,∠BOC =β,则β的余角可表示为( )图6-3-7A.12(α+β)B.12α C.12(α-β) D.12β 19.如图6-3-8,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC =________°.图6-3-8 20.如图6-3-9,将一副三角尺的直角顶点重合在一起.(1)若∠DOB 与∠DOA 的度数之比是2∶11,求∠BOC 的度数;(2)若叠合所成的∠BOC =n °(0<n <90),则∠DOA 的补角的度数与∠BOC 的度数之比是多少?图6-3-921.如图6-3-10,O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)写出与∠AOE互补的角;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.图6-3-1022.如图6-3-11,已知O为直线AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°.(1)∠COD与∠AOB相等吗?请说明理由;(2)试求∠AOC与∠AOB的度数.第 5 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可图6-3-11第 6 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可第 7 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可详解详析1.A 2.D 3.C4.D [解析] 如果一个角是36°,那么它的余角是90°-36°=54°,补角是180°-36°=144°.故选D.5.B6.37°26′ 127°26′ [解析] 90°-52°34′=37°26′,180°-52°34′=127°26′.7.458.153 [解析] 因为∠1和∠2互余,所以∠1+∠2=90°.又因为∠1=63°,所以∠2=27°.因为∠2和∠3互补,所以∠2+∠3=180°,即27°+∠3=180°,所以∠3=153°.9.解:设这个角为x °,由题意得180°-x °=4(90°-x °)-15°,解得x =55.即这个角的度数为55°.10.∠2 ∠3 同角的余角相等 ∠2 ∠4等角的补角相等11.A12.D [解析] ∵∠AOC 和∠BOD 都是∠BOC 的余角,∴∠AOC =∠BOD .∵∠AOC =65°,∴∠BOD =65°.故选D.13.C [解析] 若两角互余,则这两角均为锐角,选项A 正确;若两角相等,则它们的补角也相等,选项B 正确;30°与60°的角互余,30°角的补角是150°,60°角的补角是120°,则互为余角的两个角的补角不一定相等,选项C 错误;两个钝角不能互补,选项D 正确.14.解:因为∠AOD =90°,所以∠1+∠BOD =90°.因为∠BOC =90°,所以∠2+∠BOD =90°.根据同角的余角相等,可得∠2=∠1=50°.15.解:∠AOD 与∠DOE 互补,∠BOC 与∠DOE 互补,∠BOE 与∠AOB 互补,∠DOC 与∠AOB 互补,∠AOC 与∠BOD 互补,∠AOC 与∠COE 互补,∠BOD 与∠COE 互补.16.B [解析] 设这个角为α,它的余角为β,它的补角为γ,则α=2β,∵α+β=90°,∴α+12α=90°,∴α=60°.∵α+γ=180°,∴γ=120°,∴α=12γ.故选B.第 8 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可17.B18.C [解析] 由邻补角的定义,得α+β=180°,两边都除以2,得12(α+β)=90°,β的余角是12(α+β)-β=12(α-β).故选C. 19.30[解析] ∵∠AOB =∠COD =90°,∠AOD =150°,∴∠BOC =∠AOB +∠COD -∠AOD =90°+90°-150°=30°.20.解:(1)设∠DOB =2x ,则∠DOA =11x .因为∠AOB =∠COD =90°,所以∠AOC =∠DOB =2x ,∠BOC =7x .又因为∠DOA =∠AOB +∠COD -∠BOC =180°-∠BOC ,可得方程11x =180°-7x ,解得x =10°,所以∠BOC =70°.(2)因为∠DOA =∠AOB +∠COD -∠BOC =180°-∠BOC ,所以∠DOA 与∠BOC 互补,则∠DOA 的补角的度数是n °,则∠DOA 的补角的度数与∠BOC 的度数之比是1∶1.21.解:(1)∵OE 平分∠BOC ,∴∠BOE =∠COE .∵∠AOE +∠BOE =180°,∴∠AOE +∠COE =180°,∴与∠AOE 互补的角是∠BOE ,∠COE .(2)∵OD ,OE 分别平分∠AOC ,∠BOC ,第 9 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可∴∠COD =∠AOD =36°,∠COE =∠BOE =12∠BOC ,∠AOC =2×36°=72°, ∴∠BOC =180°-72°=108°,∴∠COE =12∠BOC =54°, ∴∠DOE =∠COD +∠COE =90°.(3)当∠AOD =x °时,∠DOE =90°.22.解:(1)∠COD =∠AOB .理由:因为∠AOC 与∠AOB 互补,所以∠AOC +∠AOB =180°.又因为∠AOC +∠COD =180°,所以∠COD =∠AOB .(2)因为OM 和ON 分别是∠AOC 和∠AOB 的平分线,所以∠AOM =12∠AOC ,∠AON =12∠AOB , 所以∠MON =∠AOM -∠AON =12∠AOC -12∠AOB =12(∠AOC -∠AOB )=12∠BOC . 因为∠MON =40°,所以∠BOC =80°,所以∠COD +∠AOB =180°-80°=100°.又因为∠AOB =∠COD ,所以∠AOB =∠COD =50°,所以∠AOC =180°-∠COD =130°.。
苏教版七年级上数学6.3余角、补交、对顶角(2)第二课时同步练习课时作业基础过关训练含参考答案
余角、补角、对顶角(2)1.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个2.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个3.下列说法中,正确的是()A.一个锐角的余角比这个角的补角少90°B.如果一个角有补角,那么这个角必是钝角C.∠1+∠2+∠3=180°,则∠1、∠2、∠3互补D.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3也互余4.如图所示,AB与CD相交所成的四个角中,∠1的对顶角___.(第4、5题图)5.如上图所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.6.如图所示,直线AB,CD,EF相交于点O,∠AOD的对顶角是_____;若∠AOC=50°,则∠BOD=______,∠COB=_______.(第6题图)7.如图所示,已知直线AB,CD相交于O,OA平分∠EOC,∠EOC=70°,则∠BOD= ______.8.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.9.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.参考答案1.B2.A3.A4.∠35.155°,25°,155°6.∠COB;50°;130°7.35°8.∠2=60°9.∠2=36°。
苏科版七年级数学上册阶段综合练(范围6-2角~6-3余角、补角、对顶角)【含答案】
苏科版七年级数学上册阶段综合练(范围6.2角~6.3余角、补角、对顶角)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .2、如图所示,∠1和∠2是对顶角的图形是( )A .B .C .D .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④(3题) (4题) (6题)4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误6、如图,射线平分,以为一边作,60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒则 (BOP ∠=)A . B . C .或 D .或15︒45︒15︒30︒15︒45︒7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .(8题) (9题) (10题)9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC ∠=∠AOC AOE∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20(13题) (14题) (16题)14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.(17题) (18题)18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷20、完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34° ( )∴∠EOF = °又∵OF 是∠AOE 的角平分线 ( )∴∠AOF ═ =56° ( )∴∠AOC =∠ ﹣∠ = °∴∠BOD =∠AOC = °( )21、如图,已知直线,相交于点,平分,平AB CD O OE BOD ∠OF 分.若,COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF ?并说明理由.23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠苏科版七年级数学上册阶段综合练(范围6.2角~6.3余角、补角、对顶角)(解析)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是( )A.B.C.D.【解题思路】根据角的表示方法判断即可.【解答过程】解:A、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;B、图形中的∠1,能用∠AOB,∠O表示,本选项符合题意;C、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;D、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;故选:B.2、如图所示,∠1和∠2是对顶角的图形是( )A.B.C.D.B【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可求解.【详解】解:对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,满足条件的只有B.故选:B.3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④B【分析】根据对顶角和邻补角的定义逐个判断即可得.【详解】解:和不是对顶角,互为邻补角,则①错误,②正确;1∠2∠,但和不一定相等,则③错误;12180∠+∠=︒1∠2∠由对顶角相等得:,则④正确;13∠=∠综上,正确的是②④,故选:B .4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF .将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数C【分析】由角平分线性质解得,根据对角线性质、平角性质解得,90EOF ∠=︒180AOD BOD ∠=︒-∠,据此解题.1,2AOC BOD DOF BOD ∠=∠∠=∠【详解】解: OE ,OF 平分∠AOD ,∠BOD 11,22AOE EOD AOD DOF FOB BOD ∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒ 111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD∴∠=︒-∠1,2AOC BOD DOF BOD ∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关,故选:C .5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误【解题思路】根据方向角定义即可进行判断.【解答过程】解:根据方向角定义可知:灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,画出灯塔C 的位置如图3.故选:D .6、如图,射线平分,以为一边作,则 60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒(BOP ∠=)A .B .C .或D .或15︒45︒15︒30︒15︒45︒【分析】根据,射线平分,可得,分在内,在60AOB ∠=︒OC AOB ∠30BOC ∠=︒OP BOC ∠OP 内,两种情况讨论求解即可.AOC ∠,射线平分,60AOB ∠=︒ OC AOB ∠,1302AOC BOC AOB ∴∠=∠=∠=︒又15COP ∠=︒①当在内,OP BOC ∠,301515BOP BOC COP ∠=∠-∠=︒-︒=︒②当在内,OP AOC ∠,301545BOP BOC COP ∠=∠+∠=︒+︒=︒综上所述:或.15BOP ∠=︒45︒故选:.D 7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°∵∠BOD =75°,∴∠AOC =75°,∵∠AOE :∠EOC =2:3,∴设∠AOE =2x °,∠EOC =3x °,则2x +3x =75,解得:x =15,∴∠AOE =30°,故选:B .8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .【分析】根据角平分线的定义得出∠BOD =2∠BOF ,∠BOF =∠DOF ,根据∠AOD :∠BOF =4:1求出∠AOD :∠BOD =4:2,根据邻补角互补求出∠AOD =120°,∠BOD =60°,求出∠AOC =60°,根据角平分线定义求出∠COE ,再求出答案即可.∵OF 平分∠BOD ,∴∠BOD =2∠BOF ,∠BOF =∠DOF ,∵∠AOD :∠BOF =4:1,∴∠AOD :∠BOD =4:2,∵∠AOD +∠BOD =180°,∴∠AOD =120°,∠BOD =60°,∴∠AOC =∠BOD =60°,∴∠BOF =∠DOF==30°, 6021⨯∴∠COF =180°﹣∠DOF =150°,∵OE 平分∠COF ,∴∠COE=COF=,∠21 7515021=⨯∴∠AOE =∠AOC +∠COE =60°+75°=135°,故135°.9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC∠=∠AOC AOE ∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【分析】根据对顶角相等可得,不是的角平分线,因此和不一AOD BOC ∠=∠AO COE ∠AOC ∠AOE ∠定相等,根据,利用平角定义可得,根据邻补角互补可得90EOD ∠=︒90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒、,说法正确;A AOD BOC ∠=∠、,说法错误;B AOC AOE ∠=∠、,说法正确;C 90AOE BOD ∠+∠=︒、,说法正确;D 180AOD BOD ∠+∠=︒故选:.B 10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒【分析】根据角平分线的定义和对顶角的性质即可得到结论.设,,2EOC x ∠=9EOB x ∠=平分,OA EOC ∠,12AOE EOC x ∴∠=∠=根据题意得,解得,9180x x +=︒18x =︒,18EOA AOC x ∴∠=∠==︒,18BOD AOC ∴∠=∠=︒故选:.C 二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠ 外部1∠【分析】根据角的画法步骤,先画出∠AOB=∠1,再在∠AOB 的外部画出∠2,即可得到∠AOC画法详解:(1)画∠AOB=∠1.(2)以点O 为顶点,OB 为始边,在∠AOB 的外部作∠BOC=∠2;则∠AOC=∠1+∠2.故答案: (1)∠1 (2)外部12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠【分析】根据补角定义可得的度数,再根据对顶角相等可得答案.α∠的补角为,α∠ 100︒,18010080α∴∠=︒-︒=︒与是对顶角,α∠ β∠,80βα∴∠=∠=︒的余角的度为,β∴∠10︒故.10︒13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20110︒【分析】根据时针在钟面上每分钟转,分针每分钟转,然后分别求出时针、分针转过的角度,即可得到答0.5 6案.【详解】解:∵时针在钟面上每分钟转,分针每分钟转,0.5 6 ∴钟表上12时20分钟时,时针转过的角度为,分针转过的角度为,0.52010⨯= 620120⨯= 所以时分针与时针的夹角为.12:2012010110-= 14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠75°.【分析】由邻补角的定义可求得∠COB =150°,然后根据角平分线的定义可求得∠2.【详解】解:∵∠1+∠COB =180°,∠1=30°,∴∠COB =180°﹣30°=150°.∵OE 是∠BOC 的平分线,∴∠2= ∠COB =75°.12故75°.15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=【分析】分两种情况:当在内时;当在外时.根据角平分线的定义,角的和差进行OC AOB ∠OC AOB ∠解答便可.当在内时,如图1,OC AOB ∠;11119020352222EOF BOE BOF AOB BOC ∠=∠-∠=∠-∠=⨯︒-⨯︒=︒当在外时,如图2,OC AOB ∠,11119020552222EOF BOE BOF AOB BOC ∠=∠+∠=∠+∠=⨯︒+⨯︒=︒故或.35︒55︒16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠【分析】首先根据余角的性质可得,再根据角平分线的性质可算出905040AOM ∠=︒-︒'=︒,再根据对顶角相等可得的度数,40280AOC ∠=︒⨯=︒BOD ∠.,90MON ∠=︒ 50BON ∠=︒,905040AOM ∴∠=︒-︒'=︒射线平分,OM AOC ∠,40280AOC ∴∠=︒⨯=︒.80BOD AOC ∴∠=∠=︒故.80︒17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.63°【分析】先求出∠AOD =54°,再求出∠BOD 和∠DOF ,即可求出∠BOF .【详解】解:∵∠DOE =90°,∠AOE =36°,∴∠AOD =90°﹣36°=54°,∵∠AOB =90°,∴∠BOD =90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF ∠AOD =27°,12=∴∠BOF =36°+27°=63°.18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.,相交于点,,AB CD O 90BOE ∠=︒①与互为余角,正确;∴AOC ∠COE ∠②与互为余角,正确;BOD ∠COE ∠③,正确;AOC BOD ∠=∠④与互为补角,正确;COE ∠DOE ∠⑤设,则,,故与互为补角错误;30AOC ∠=︒120DOE ∠=︒180AOC DOE ∠+∠≠︒AOC ∠BOC DOE ∠=∠⑥,错误;AOC BOD COE ∠=∠≠∠故⑤⑥.三、解答题19、计算:(1);(2);(3);(4).︒'''⨯536︒-︒'''2512355︒÷32175342427︒'''+︒'''90361215【分析】(1)1度分,即,1分秒,即,依此计算加法;'=''=16060=160︒='60(2)1度分,即,1分秒,即,依此计算减法;60'=''=160︒='60=160(3)1度分,即,1分秒,即,依此计算乘法;'=''=16060=160︒='60(4)1度分,即,1分秒,即,依此计算除法.'=''=16060=160︒='60(1)原式;=︒'''=︒74596075(2)原式;=︒'''534745(3)原式;=︒'''=︒'''12560175126255(4)原式.=︒'85020、完成推理填空:如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°,∠COF=34°( )∴∠EOF= °又∵OF是∠AOE的角平分线( )∴∠AOF═ =56°( )∴∠AOC=∠ ﹣∠ = °∴∠BOD=∠AOC= °( )【分析】利用角的和差关系和角平分线定义可得∠AOF 的度数,然后利用垂垂线定义计算出∠AOC 的度数,再根据对顶角相等可得∠BOD 的度数.∵∠EOC =90°,∠COF =34° (已知),∴∠EOF =56°,又∵OF 是∠AOE 的角平分线 (已知),∴∠AOF ═∠EOF =56° (角平分线定义),∴∠AOC =∠AOF ﹣∠COF =22°,∴∠BOD =∠AOC =22°(对顶角相等).故已知;56;已知;∠EOF ;角平分线定义;AOF ;COF ;22;22;对顶角相等.21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠(1)40°;(2)150°【分析】(1)根据邻补角的性质,可求出的度数,再根据角平分线的性质即可求出的度数,DOB ∠DOE ∠(2)根据邻补角的性质,可求出的度数,再根据角平分线的性质,求出,在根据对顶角COE ∠COF ∠的性质求出,即可求出的度数.AOC ∠AOF ∠【详解】(1)∵直线,相交于点,AB CD O ∴,180AOD BOD ∠+∠=︒∵,100AOD ∠=︒∴,18080BOD AOD ∠=-∠=°°∵平分,OE BOD ∠∴.1402DOE BOD ∠=∠=°(2)∵,180COE DOE ∠+∠=°∴,180140COE DOE ∠=-∠=°°∵平分,OF COE ∠∴,1702COF COE ∠=∠=°∵,80AOC BOD ∠=∠=︒∴.150AOF AOC COF ∠=∠+∠=°22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF?并说明理由.(1)30°;(2)平分,理由见解析.【分析】(1)根据邻补角的概念求出,根据角平分线的定义计算,得到答案;BOC ∠(2)求出,根据题意分别求出,根据角平分线的定义证明即可.AOE ∠AOF EOF ∠∠、【详解】解:(1)∵∠AOC =120°,∴∠BOC =180°﹣120°=60°,∵OE 平分∠BOC ,∴∠BOE =∠BOC =×60°=30°;1212(2)OA 平分∠DOF ,理由如下:∵∠BOE =30°,∴∠AOE =180°﹣30°=150°,∵∠AOF :∠EOF =2:3,∴∠AOF =60°,∠EOF =90°,∵∠AOD =∠BOC =60°,∴∠AOD =∠AOF ,∴OA 平分∠DOF .23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠【分析】(1)根据互余、互补以及角平分线的定义可得答案;(2)由(1)的方法列出方程可求出答案.(1),,90DOE ∠=︒ 20AOE ∠=︒.902070AOD DOE AOE ∴∠=∠-∠=︒-︒=︒.180********BOD AOD ∴∠=︒-∠=︒-︒=︒平分.OF BOD ∠.∴111105522BOF BOD ∠=∠=⨯︒=︒故.55︒(2)设,AOE x ∠=则.5BOF x ∠=.90AOD x ∴∠=︒-.180(90)90BOD x x ∠=︒-︒-=︒+平分,OF BOD ∠.∴11(90)4522BOF x x ∠=︒+=︒+,∴14552x x ︒+=即9452x =︒,∴245109x =︒⨯=︒.10AOE ∴∠=︒24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠(1)10°;(2)①;②60°1602COF AOE ∠=︒-∠【分析】(1)利用角平分线的定义以及角的和差计算即可求解;(2)利用角平分线的定义以及角的和差列式即可;(3)利用邻补角的定义结合(2)的结论即可求解.【详解】解:(1)∵,,∴,.80BOE ∠=︒60COE ∠=︒40AOC ∠=︒100AOE ∠=︒∵是的平分线,∴,OF AOE ∠1502AOF AOE ∠=∠=︒∴;10COF AOF AOC ∠=∠-∠=︒(2)①∵是的平分线,∴,OF AOE ∠12EOF AOE ∠=∠∴;1602COF COE EOF AOE ∠=∠-∠=︒-∠②∵∠BOE=180-∠AOE ,︒∴∠BOE-2∠COF=180-∠AOE-2(60-∠AOE)=180-∠AOE-120+∠AOE .︒︒12︒︒60=︒25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α【分析】(1)根据角平分线的定义先求出,再根据互补求出即可;AOD ∠BOD ∠(2)根据互余求出,再根据角平分线的定义求出,最后根据互补求出的答案;DOE ∠AOD ∠(3)由(2)的解题过程可得答案;(4)根据互余、互补、角平分线的定义可求出答案.(1)射线平分,,OE AOD ∠22250100AOD AOE DOE ∴∠=∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(2),,,90COD ∠=︒ 30COE ∠=︒903060DOE ∴∠=︒-︒=︒又平分,,OE AOD ∠2260120AOD DOE ∴∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(3),,,90COD ∠=︒ COE α∠=90DOE α∴∠=︒-又平分,,OE AOD ∠22(90)1802AOD DOE αα∴∠=∠=⨯︒-=︒-,180********BOD AOD αα∴∠=︒-∠=︒-︒+=故;2α(4)由图②得,,90DOE α∠=-︒平分,,OE AOD ∠22180AOD DOE α∴∠=∠=-︒,18018021803602BOD AOD αα∴∠=︒-∠=︒-+︒=︒-故.3602α︒-26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠(1)2,、,对顶角相等;(2)90°;(3)105°=COB AOD ∠∠=AOC BOD ∠∠【分析】(1)根据对顶角相等证明即可;(2)设,表示已知条件中的角推理计算即可;=AOC x ∠(3)结合(2)中的关系列方程即可求出x 的值,再由和互补求AOC COF ∠∠、DOF ∠COF ∠出.DOF ∠【详解】(1)根据对顶角相等可得图1中有2对相等的角(平角除外)分别是:,.=COB AOD ∠∠=AOC BOD ∠∠故2,、,对顶角相等;=COB AOD ∠∠=AOC BOD ∠∠(2)设°,则=AOC x ∠180BOC x ∠=︒-︒∵平分∴OF COB ∠11=9022COF BOC x ∠∠=︒-︒∴1==90+2AOF AOC COF x ∠∠+∠︒︒∵∴90COE ∠=︒1=2EOF COE COF x ∠∠-∠=︒∴;11=90+=9022AOF EOF x x ∠-∠-︒(3)∵:2:5AOC COF ∠∠=∴5=2AOC COF∠∠由(2)可知:,=AOC x ∠1=902COF x ∠︒-︒∴解得15=2(90)2x x ︒︒-︒30x =︒∴, ∴190=752COF x ∠=-︒180105DOF COF ∠=-∠=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2 课时对顶角知识点对顶角的概念及性质
1.下列各组角中,∠1与∠2是对顶角的是( )
图6-3-12
2.下列说法中,正确的是( )
A.有公共顶点,并且相等的角是对顶角
B.如果两个角不相等,那么它们一定不是对顶角
C.如果两个角相等,那么这两个角是对顶角
D.有的对顶角不相等
3. 如图6-3-13 所示,AB与CD相交于点O,∠AOD+∠BOC=280°,则∠AOC的度数
为( )
A.40° B .60° C .120° D .140°
4.如图6-3-14,三条直线l 1,l 2,l 3 相交于点E,则∠1+∠2+∠3等于( )
图6-3-14
A.90° B .120°
C.180° D .360°
5. 如图6-3-15,直线AB与C D相交于点O,已知∠AOD=120°,则∠BOC的补角是
________° .
图6-3-15
6. 若两个角是对顶角且互补,则这两个角都是________角.
7.教材复习题第 6 题变式如图6-3-16,直线AB,CD相交于点O,O E是∠AOD的平分
线,∠CO=B140°,则∠DOE=________° .
图6-3-16
8.如图6-3-17,AB,CD相交于点O,∠DOE=90°,∠AOC=72°. 求∠BOE的度数.
2
9.如图6-3-18,AB,CD相交于点O,O B平分∠DOE,若∠DOE=60°,求∠AOC的度数.
图6-3-18
10.如图6-3-19,直线AB,C D相交于点O,∠AOE=1
2
∠EOC,∠AOD=2∠BOD,求∠AOE
的度数.
3
1
1
6-3
-
20AB
,CD 相交于点 O ,已知∠ AOC =70°, OE 把∠ BOD 分成两部
分,且∠ BOE ∶ ∠ EOD =2∶ 3,求∠ AOE 的度数.
图6-3-20
12.如图6-3-21 所示,直线A B ,CD 交于点 O ,且∠ BOC =80°, OE 平分∠ BOC , OF
为O E 的反 (1)
求∠ 2 和∠3 的度数;
(2
)
O
F
平
分∠
A
说明理由. 4
图6-3-21
1
3
6
-
3
-
2
2
所示
AB ,CD 相交于点 O ,OE 平分∠ BOD ,
OF 平分∠ COE , ∠
AOD ∶ ∠ BOD =2∶ 1.
(1) 求∠ DOE 的度数;
(2) 求∠ AOF 的度数.
图6-3-22 1
4
.
2
1
州
期
6
-
3
-
2
3
AB ,C D 相交于点 O ,OE 平分∠ BOD . (1) 若∠ AOC =68°,∠ DOF =90°,求∠
EOF 的度数; 5
(2) 若OF平分∠COE,∠AOE=150°,求∠FOE的度数.
图6-3-23
15.观察图6-3-24,寻找对顶角( 不含平角) :
图6-3-24
(1) 如图①,图中共有________对对顶角;
(2) 如图②,图中共有________对对顶角;
(3) 如图③,图中共有________对对顶角;
(4) 研究(1) ~(3) 小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一
点,则可形成________对对顶角;
(5) 若有2018 条直线相交于一点,则可形成多少对对顶角?
6。