小数的意义和性质
讲解小数的意义和性质

讲解小数的意义和性质小数是数学中的一个重要概念,它用来表示一个数在整数和分数之间的部分。
本文将讲解小数的意义和性质。
一、小数的意义小数在日常生活中有着广泛的应用,它可以用来表示分数的大小关系,便于比较两个数的大小。
比如我们常常使用小数来表示时间,比如早上8点半,可以表示为8.5;又比如货币的计算,1美元等于100美分,我们可以把100分表示为1.00美元,方便进行计算和比较。
小数还可以用来表示比例、百分数和概率等概念。
二、小数的性质1. 小数的有界性:小数是有限的,位数是可以确定的。
在十进制中,每一位的小数点后都有一个确定的数字,可以无限延伸下去,但总是有一个界限。
比如1/3在小数中不能精确表示,可以表示为0.333...,其三位小数可以被称为1/3的近似值,但它并不等于1/3。
这说明小数的表示是有界限的。
2. 小数的无限性:小数可以无限延伸下去,但它的无限性是有规律的。
比如1/7可以表示为0.142857142857...,其中的142857这个六位数字是不断重复出现的,这种小数称为循环小数。
循环小数可以用一对括号表示,比如5/8可以表示为0.625(循环),意味着625这个数字会一直循环出现。
3. 小数的大小比较:小数的大小关系可以通过比较小数部分的大小来确定。
比如0.1和0.2这两个小数,可以直观地看出0.1小于0.2;对于循环小数的大小比较,可以通过将其转化为分数来进行比较。
比如0.333...可以表示为1/3,0.142857142857...可以表示为1/7,通过比较这两个分数的大小,可以确定它们的大小关系。
4. 小数的运算:小数的加减乘除运算可以通过把小数转化为分数来进行。
比如0.25加上0.5,可以转化为1/4加上1/2,然后进行分数的加法运算得到3/4,再把分数转化为小数得到0.75。
小数的乘法和除法运算同样可以通过转化为分数进行。
5. 小数的近似值:小数可以是精确值,也可以是近似值。
小数的意义和性质总结归纳

小数的意义和性质总结归纳小数是数学中非常重要的概念和工具,它在生活和科学中起着至关重要的作用。
本文将对小数的意义和性质进行总结和归纳。
一、小数的定义及意义小数是指分数除数分母为10的幂次方时,其商的小数形式。
小数的意义在于将分数表示为更为简单和易读的形式,方便了我们的计算和使用。
小数能够准确地表示数值大小,并方便进行大小比较和计算。
二、小数的性质1. 小数的有限性和无限性:小数可以是有限的,也可以是无限的。
有限小数是指小数部分有限位数,并且可以通过有限次操作得到它的分数形式。
无限小数是指小数部分有无限位数,无法通过有限次操作得到它的分数形式,如无线循环小数。
2. 小数的循环性:循环小数是指小数部分以某一位数字为循环节不断重复。
循环小数可以通过有限次操作得到它的分数形式,如0.333…就是一个循环小数,它等于1/3。
3. 小数的相等性:当两个小数的小数部分完全相同时,它们相等。
例如,0.25和0.250都表示相同的数值。
4. 小数的大小比较:小数的大小比较可以通过比较它们的整数部分和小数部分进行。
先比较整数部分,如果相等再比较小数部分的大小。
例如,0.25和0.35,从小数部分开始比较,0.2小于0.3,所以0.25小于0.35。
5. 小数的运算:小数可以进行加减乘除运算。
小数的加减法和整数的加减法类似,一般通过对齐位数然后逐位相加或相减得到结果。
小数的乘除法可以通过将小数转化为分数来进行运算。
6. 小数的近似:有些数无法准确表示为有限小数或循环小数,只能使用无限小数表示。
在实际应用中,我们常常需要对小数进行近似,取其有限位数表示。
常见的近似方法有截断和四舍五入。
三、小数的应用小数在生活和科学中广泛应用于各个领域,如金融、工程、物理等。
下面以几个例子展示小数的应用意义。
1. 金融领域:小数在金融领域中非常重要,如利率、汇率等都是以小数形式表示。
通过小数,我们可以精确计算和表示金融交易的利润、成本和价值。
小数的意义与性质概念

小数的意义与性质概念小数的意义与性质概念一、引言小数在数学中具有非常重要的意义和性质。
它是数的一种表达形式,不同于整数,可以表示介于两个整数之间的值。
小数的理解与应用在日常生活中也非常广泛。
理解小数的意义和性质对于数学学习和解决实际问题都具有重要的帮助。
本文将重点讨论小数的意义和性质概念。
二、小数的意义小数的意义主要体现在以下几个方面:1. 分数的小数化:小数可以将分数表示为更加直观和容易理解的数值。
通过小数化,我们可以将抽象的分数变成具体的可视化数值。
例如,将3/4表示为0.75,更加方便我们理解分数所代表的大小。
2. 表示精确的度量:小数可以用来表示度量中的精确数值。
例如,温度、长度、容量等的测量结果一般都是小数,这是因为这些测量结果往往需要更高的精确度。
使用小数可以更准确地表达这些度量结果,方便我们做进一步的计算和比较。
3. 表示概率和比例:小数可以用来表示概率和比例。
例如,数字0.5表示50%的概率或者比例。
当我们讨论事件发生的可能性、统计数据以及数值的比较时,小数是一种非常常见和便捷的表示方式。
三、小数的性质小数具有以下几个基本性质:1. 小数的有限和无限循环:小数可以被分为有限小数和无限小数。
有限小数是指小数部分有限个数的小数,例如0.25、0.5等。
无限小数则是指小数部分有无限个数的小数,例如0.333...、0.123456789...等。
无限小数又可以分为循环小数和非循环小数,循环小数是指小数部分有循环模式重复出现,例如0.666...、1.363636...等。
非循环小数则是指小数部分没有循环模式,例如圆周率π。
2. 小数与分数的关系:小数与分数之间存在一一对应的关系。
任何一个有限小数都可以表示为一个分数,例如0.5可以表示为1/2;而任何一个无限小数都可以表示为一个无限循环的分数,例如0.333...可以表示为1/3。
这种关系为我们在小数和分数之间进行转换提供了便利。
3. 小数的运算规律:小数的加减乘除运算与整数的运算规律基本相同。
人教版小学数学4.小数的意义和性质

4 小数的意义和性质一、小数的意义1.小数的意义:分母是10、100、1000……的分数可以用小数表示。
2.小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……3.小数的数位顺序表。
一个小数包括三部分:整数部分、小数点和小数部分。
4.每相邻两个计数单位之间的进率是...............10..。
.二、小数的读法1.读小数时,先读整数部分,按照整数的读法来读。
整数部分是0时,就读作“零”。
2.小数点读作“点”。
3.最后读小数部分.......,.要依次读出小数部分每一位上的数...............字。
..小数部分有几个0,就读出几个零。
三、小数的写法1.写小数时,先写整数部分,按照整数的写法来写,如果整.数部分是零.....,.那么就直接写“.......0.”.。
2.在个位的右下角...点上小数点。
3.最后写小数部分,要依次写出小数部分每一位上的数..............字。
..四、小数的性质1.小数的末尾添上“........0.”或去掉“.....0.”.,.小数的大小不变。
........注意:只能是小数末尾的“0”,其他位置的“0”不可以随意删掉或添加。
2.运用小数的性质可以化简和改写小数。
(1)化简小数就是不改变小数的大小..............,.依据小数的性质.......,.去.掉小数末尾的......0.,使小数读写起来更简便。
注意:只能去掉小数末尾的0,其他位置的0不能去掉,否则会改变小数的大小。
110=0.1,1100=0.01,11000=0.001……小数部分最大的计数单位是十分之一,没有最小的计数单位。
没有最大的小数,也没有最小的小数。
易错点:误认为计数单位之间的进率都是10,这是不对的,一定要注意“相邻”二字。
易错题:30.050读作:错误答案:三十点零五十分析:读小数时,小数部分依次读出每一位上的数字,有几个0就读出几个零。
小数的意义和性质

小数的意义和性质小数是数学中的一种表示方式,它用于表示不是整数的数值。
小数的意义和性质是数学中的基础概念,对于数学的学习和应用具有重要的作用。
本文将详细介绍小数的意义和性质。
一、小数的意义小数是指在整数的右侧,与整数部分以小数点隔开的数。
小数点右边的数字表示小数的位数或进位数。
1.小数的意义之精确表示2.小数的意义之连续性与分割理论小数还可以表示数轴上的每一个点,使得一个区间之间的点可以用无限个小数表示。
例如,在0和1之间的任何一个实数,都可以用小数表示。
小数的表示使得一个区间可以分割为无限个子区间,这在数学中有着重要的应用,如积分。
3.小数的意义之近似计算小数的另一个重要意义是用于近似计算。
当无法精确计算一个数时,可以用小数进行近似计算。
近似计算时,可以截取小数的有限位数进行计算,以达到所需精确度。
二、小数的性质小数具有独特的性质,理解和掌握这些性质对于进行小数的计算和运算非常重要。
1.小数的有序性小数按大小排列时,位数靠前的数比位数靠后的数要大。
例如,0.01比0.001要大。
这种有序性使得小数的大小比较和排列成为可能。
2.小数的相等性小数的相等性可以通过小数的位数和数字大小进行判断。
例如,0.5和0.50是相等的,因为它们的位数相同且数字大小相等。
小数的相等性也可以通过有限小数的截断或无限小数的周期性进行判断。
3.小数的加减性小数的加减法与整数的加减法类似,可以按照十进制的规则进行计算。
例如,0.3+0.7=1,0.8-0.5=0.3、需要注意的是,小数的加减法结果可能是无限循环小数,这时需要进行适当的化简和近似。
4.小数的乘除性小数的乘除法也可以按照十进制的规则进行计算。
例如,0.3×0.4=0.12,0.7÷0.5=1.4、需要注意的是,小数的乘除法结果可能是无限不循环小数,这时需要进行适当的近似。
5.小数的进位和退位规则小数进行进位和退位时,需要根据十进制的原则进行。
小数的意义和小数的基本性质

小数的意义和小数的基本性质小数的意义和小数的基本性质小数是数学中一种非常重要的数,它在现实生活中应用非常广泛。
小数可以用来表示介于整数之间的数字,它提供了一种有效的方式来表达分数或者比例关系。
在日常生活中,我们经常会遇到小数的运用,比如度量长度、计算货币、测量时间、表示比例等等。
小数无处不在,对于我们的日常生活具有重要的意义。
小数的基本性质可以帮助我们更好地理解和运用小数。
下面,我们将详细介绍小数的意义以及其基本性质。
一、小数的意义小数源于人们在生活中对连续的数量的分割和抽象。
它是一种表示分数或比率关系的数字形式。
以十进制为例,小数点是一个重要的符号,它将整数和小数部分分开。
小数点的位置表示了不同位数的权值,使得我们能够准确地读取和解释小数。
小数的意义在于它能够更加精确地表示一些非整数的数量。
二、小数的基本性质1. 十进制小数的每一位数所代表的权值是递减的,从左到右依次减小10倍。
2. 小数可以通过分数表示。
例如,0.5可以表示为1/2,0.25可以表示为1/4。
3.小数的大小比较可以通过其整数部分和小数部分的比较来进行。
如果整数部分相同,可以依次比较每一位上的数字。
如果某一位数字相同,可以进一步比较下一位数字;如果所有位数都相同,那么小数的大小就相同。
4. 小数的四则运算可以按照整数的运算规则进行。
加法和减法需要先对齐小数点,然后依次相加或相减。
乘法需要先将小数转化为分数进行计算,然后再将结果转化回小数形式。
除法需要将小数转化为整数,然后进行相应的计算。
5. 无限小数是指小数部分有无限个数字,并且数字没有重复的模式。
无限小数可以用省略号来表示,例如,π=3.14159...6. 循环小数是指小数部分有限个数字之后便不断重复的数字,可以用括号来表示循环部分。
例如,1/3=0.3333...这些基本性质可以帮助我们更好地理解和使用小数,同时也为我们深入学习和应用更高级的数学概念打下基础。
小数作为现实生活和数学领域中的重要概念,在教育中也起着重要的作用。
小学数学小数的意义和性质

小学数学小数的意义和性质小学数学小数的意义和性质小数是数学中的一个重要概念,是整数和分数之间的数。
相比于整数和分数,小数更具有精确度,可以更准确地表示实际生活中的测量、计算和比较。
小数的意义和性质在小学数学教育中具有重要的地位,它们帮助学生更好地理解数学的抽象概念和实际运用。
一、小数的意义1. 小数的定义小数是指整数之间的数,常用一个小数点来表示整数和小数部分的分割。
小数包括有限小数和无限小数两种形式。
有限小数是指小数部分有限的数,如0.5、3.21等;无限小数是指小数部分是无限循环或无限不循环的数,如1/3的小数表示为0.3333...。
2. 小数的测量和计算在实际生活中,我们经常需要进行测量和计算。
所使用的数字可以是小数,比如测量长度、重量、时间等。
小学数学教育中,教师会引导学生学习小数的概念,并通过测量实践和计算练习,让学生理解小数的意义和应用。
3. 小数的比较小数的比较是小学数学中的重要内容之一。
学生通过比较小数的大小,培养了解和运用数值顺序概念的能力。
比如,0.7比0.67大,0.14比0.1小等等。
小数的比较也是数学竞赛中常考的知识点,对于培养学生的逻辑思维和解题能力有很大帮助。
4. 小数的应用小数在日常生活中的应用非常广泛。
比如计算购买商品的总价格,将钱平均分给多个人,计算时间的长短等等。
学好小数的概念和应用,能够帮助孩子提高日常生活中的数学运用能力,提高数学素养。
二、小数的性质1. 小数的分辨率小数的分辨率指的是小数的精确度。
小数的精确度与小数点后的位数有关,位数越多,则精确度越高。
比如,0.5和0.5000是两个不同的数,前者保留了一位小数,后者保留了四位小数,所以后者的分辨率更高。
2. 小数的进位和退位小学数学中,我们学习了进位和退位的概念,小数也是可以进行进位和退位的。
比如0.94进位到个位数为1,0.15退位到个位数为0。
3. 小数的运算规律小数的运算规律与整数和分数的运算规律有些不同。
小数的意义和性质重点知识整理

小数的意义和性质重点知识整理小数的意义和性质重点知识整理一、小数的意义小数是一种特殊的有限小数和无限小数,是数学中用来表示介于两个整数之间的数的一种表示形式。
在日常生活中,小数用于表示比整数更精确的数值或者比例关系,因此具有重要的意义。
1. 小数的精确性:小数可以表示更精确的数值。
在一些需要高精度的领域,如科学研究、工程测量、金融计算等,小数的使用可以提高计算结果的准确性。
2. 小数的比较能力:小数可以用来比较两个数的大小。
通过小数的表示形式,我们可以直观地判断两个数的大小关系,便于进行数值比较和排序。
3. 小数的实际应用:小数在日常生活和各个领域中具有广泛的应用。
例如,货币的计算、时间的表示、温度的测量、百分比的表示等,都需要使用小数来进行精确计算和表示。
二、小数的性质小数具有一些重要的性质,理解和掌握这些性质有助于我们正确应用小数进行数学计算和解决问题。
1. 有限小数和无限小数:小数可以分为有限小数和无限小数两种形式。
有限小数是指小数部分有限的小数,如0.5、1.25等;无限小数是指小数部分无限循环或无限不循环的小数,如0.333...、0.714285...。
无限小数可以表示为无限多个0到9的数字的排列。
2. 小数的循环节:有些无限小数具有循环节,即小数部分有一段数字循环出现。
循环节由一个或多个数字组成,表示为一对圆括号括起来的数字。
例如,0.333...的循环节为3,0.714285...的循环节为142857。
3. 小数的转换:小数可以与分数相互转换。
有限小数可以转换为分数,分子为小数的整数部分与小数部分的数字,分母为10的小数位数;无限循环小数可以通过运用数学技巧转换为分数。
4. 小数的运算:小数可以进行加、减、乘、除的四则运算。
在小数的加减运算中,需要根据小数位数对齐,保持小数位数一致;在小数的乘除运算中,可以先将小数转换成分数来进行计算,最后再将结果转换为小数。
5. 小数的近似值和有效数字:某些小数是无法被准确表示出来的,需要使用近似值来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)
五、总结延。
今天学习了什么内容,有哪些收获呢?
板书设计:
教后反思:
课题
小数的性质和大小比较
教学目标
1、结合现实情景,通过引导学生自主观察、比较和交流,自主探索并掌握比较小数大小的方法。
2、让学生通过自主探索积累数学活动的经验,进一步发展数感。
2、初步感知三位小数
如果把1米长的直尺平均分成1000份,每份的长度是多少?1毫米是1米的几分之几?也就是几分之几米? 米可以写成怎样的小数?
根据学生的回答,完成板书:
指出:0.001读作零点零零一。
提出要求:你能把40毫米、105毫米分别改写成用“米”作单位的分
教学过程
思考与调整
数和小数吗?
完成教材31填空,并要求他们分别读读写出的数。
2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。②由钱数等生活经验认为小数大小不变)谁的猜想正确?我们可以用什么方法证明?(举些例子)
二、实例作证,体验小数性质的合理
1、创设情境,初步感知
重点难点
理解小数的性质,会应用小数的性质改写小数。
教学准备
多媒体课件。
教学过程
思考与调整
一、复习旧知,引发冲突
1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)我们再从右往左看,500去掉一个0,发生了什么变化?
(2)知道涂色部分表示0.7,你还能用小数表示这个图形的空白部分吗?
出示三个正方形,要求学生选择其中合适的正方形,分别表示0.9、0.07、0.52。
四、做练习五第1—6题
第1、2题,先让学生填一填,再指名说说填空时的思考过程,进一步强调题中每个小数与相关分数的关联。
板书设计:
教后反思:
课题
小数的意义和读写
2、完成练一练第2题。
师生小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。
3、完成练习六第1题。学生练习后提问:为什么不把0.018和0.180连起来?
4、完成练习六第3题。学生独立改写。
交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。
(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。
(3)学生活动后组织全班交流,可能出现如下的比较方法:
谈话:根据想法二和想法三,都证明了2.80元末尾的“0”能去掉,看来小数的性质确实是合理的。
三、解决问题,体验小数性质的应用
1、小数的化简
根据小数的性质,2.80元就等于2.8元,所以我们通常可以去掉小数末尾的“0”,把小数化简。
化简下面的小数:0.4000.0801.75029.00
学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?
教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
2、试一试,加深体验
谈话:看来刚才的猜想有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。
(1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?
4、学生自主阅读上半部分的说明,并按要求把数位顺序表填写完整。集体校对,师在黑板上板书完整。
5、按顺序再读读数位顺序表中整数部分和小数部分的数位名称及计数单位,说说相邻计数单位之间的进率。
再次说明:一个小数的小数部分是几位,就是几位小数。
6、出示和。
(1)说说这两个小数各个数位的名称及计数单位。
(2)比较这两个小数有什么相同和不同。
提问:1厘米是1米的几分之几?是几分之几米?写成小数是多少米?
指出:1厘米是 , 写成小数是0.01米,0.01读作零点零一。
出示:
提问:4厘米是1米的几分之几?是几分之几米?写成小数是多少米?12厘米呢?
指出:像这样的小数都是两位小数,两位小数都表示百分之几。
启发:你认为什么样的分数可以写成三位小数?三位小数表示怎样的分数?
课题
小数的意义和读写
教学目标
1、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
2、初步养成善于观察、善于比较、善于交流等良好的学习习惯。
重点难点
理解小数的意义。
教学准备
多媒体课件。
教学过程
思考与调整
一、联系生活,引入课题
1、出示班级一组同学的身高数据和立定跳远的成绩数据
启发:老师在课前收集了一个小组同学的身高数据和立定跳远的成绩数据,你认识这些数吗?
二、师生探究,学习例题
1、你能举例说说和的关系吗?
如果有困难,师可以启发:
(1)多少个0.1米是1米?多少个0.1元是1元?
(2)出示一个平均分成份的正方形,问:从图中你能看出和的关系吗?
明确:6个0.1是0.6,0.6里面有6个0.1。
2、你知道和有什么关系吗?和呢?
同桌互相举例说说。全班交流。
3、小结:0.1、0.01、都是小数的计数单位,而且它们分别是小数不同数位上的计数单位。那么,小数有哪些数位,它们的顺序又是怎样的呢?
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。
②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
(3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?
使学生初步体验小数的末尾去掉“0”,小数的大小不变。
3、总结体验,概括表达
上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。
教学目标
使学生经历用小数描述生活现象的过程,体会小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的信心。
重点难点
1、探索1和0.1这两个相邻计数单位间的进率,并进而探索小数部分相邻计数单位间的进率。
2、明确小数的数位顺序。
教学准备
多媒体课件、数字卡片。
教学过程
思考与调整
一、复习导入
3、使学生在解决简单实际问题的过程中,体会小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的信心。
三、指导完成“试一试”和“练一练”
1、 指导完成,依次讨论三个问题:
(1)
(2)为什么写出的小数都是两位小数?
(3)你知道0.50元表示多少钱吗?
2、指导完成“练一练”。先让学生按要求填一填,再安排活动:
(1)要求说出每个小数表示的含义,通过分数与小数的比较,再次强调:分母是10、100、1000的分数,用小数表示一位小数、两位小数、三位小数。
(3)同桌说说:是由()个一、()个十分之一和()个百分之一组成的。
7、例3:“神舟”六号载人飞船在太空飞行时,与地球表面最远距离大约是344.725千米。
提问:344.725的整数部分是多少?小数部分是多少?你是怎么判断整数部分和小数部分的?
教学过程
思考与调整
小数部分的“7”,“2”和“5”分别在哪一位上,表示什么?
四、介绍你知道吗?
让学生自主阅读,再结合自己的视力情况说说体会,教育学生增强保护视力的自觉性。
板书设计:
教后反思:
课题
小数的性质和大小比较
教学目标
1、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力,
2、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
引导:这些数都是小数,其中有些小数的含义大家是知道的,有些小数的含义还不太清楚。本节课继续学习小数知识。
根据学生提出的问题揭示课题。
二、回顾一位小数的含义
提问:1分米是几分之几米?写成小数是多少米?3分米呢?学生讨论后完成填空。指出:0.1和0.3都是一位小数,一位小数表示十分之几。
三、探究新知
1、初步感知两位小数
比较、归纳。提问:0.001、0.040、0.105、0.003、0.086、0.160都是几位小数?所表示的分数又有什么共同之处?
概括小数意义。提出要求:回顾一位小数、两位小数、三位小数的认识过程,你认为什么样的分数可以改写成小数?含义又是什么?
学生讨论后小结:分母是10、100、1000......的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。还能接着往下说吗?
1、写出下面的小数,并说出各是几位小数
四点三九点五七零点零八三点零二零六点零四
2、读出下面的小数,并说出各表示几分之几
3、从右边起按顺序说说整数的数位。并说说每一位的计数单位,再说说相邻两个计数单位之间的进率是多少。(师相机板书)