体育统计学简答

合集下载

体育统计学复习题答案

体育统计学复习题答案

体育统计学复习题答案一、单项选择题1. 在体育统计学中,用于描述一组数据集中趋势的统计量是()。

A. 方差B. 标准差C. 平均数D. 中位数答案:C2. 标准差是衡量数据()的统计量。

A. 一致性B. 离散程度C. 集中趋势D. 相关性答案:B3. 相关系数的取值范围是()。

A. -1到1之间B. 0到1之间C. 1到无穷大D. 负无穷大到正无穷大答案:A4. 在体育统计分析中,使用t检验的前提是()。

A. 数据呈正态分布B. 数据呈均匀分布C. 数据呈泊松分布D. 数据呈二项分布答案:A5. 体育比赛中,比较两组数据是否有显著差异时,常用的统计方法是()。

A. 卡方检验B. 方差分析C. t检验D. 回归分析答案:C二、多项选择题1. 体育统计学中,描述数据分布形态的统计量包括()。

A. 峰度B. 偏度C. 标准差D. 方差答案:A|B2. 下列哪些统计图可以用于展示数据的分布情况?()A. 条形图B. 折线图C. 散点图D. 直方图答案:A|D3. 在体育统计分析中,下列哪些因素会影响统计结果的可靠性?()A. 样本大小B. 测量误差C. 抽样方法D. 数据的离散程度答案:A|B|C三、判断题1. 体育统计学中的相关系数可以完全确定两个变量之间的因果关系。

()答案:错误2. 体育统计学中的回归分析可以用来预测未来数据。

()答案:正确3. 在体育统计分析中,使用卡方检验可以判断两个分类变量之间是否独立。

()答案:正确四、简答题1. 请简述体育统计学中平均数和中位数的区别。

答案:平均数是所有数据的总和除以数据的个数,而中位数是将一组数据按照大小顺序排列后,位于中间位置的数值。

当数据分布不对称时,中位数比平均数更能代表数据的中心趋势。

2. 描述体育统计学中标准差与方差的关系。

答案:标准差是方差的平方根,方差是各个数据与平均数差的平方和除以数据个数。

标准差和方差都是衡量数据离散程度的统计量,但标准差与原始数据具有相同的单位,更易于理解和解释。

体育统计学概念

体育统计学概念

体育统计学概念体育统计学是应用统计学原理和方法,对体育领域中的数据进行分析、解释和预测的一门学科。

它为体育科研、训练和决策提供了重要的参考依据。

以下是对体育统计学主要内容的简要介绍。

1.描述性统计描述性统计是体育统计学的基础,它通过对数据的概括和描述,使我们能够更好地理解数据。

描述性统计指标包括平均数、中位数、众数、方差、标准差等。

2.推论性统计推论性统计是从样本数据推断总体特征的方法。

在体育领域中,我们通常无法直接对总体进行全面调查,因此推论性统计就成为了一种重要的数据分析工具。

推论性统计方法包括参数估计和假设检验等。

3.变量的测量与分类变量的测量与分类是数据分析的前提。

在体育领域中,我们需要对各种变量进行测量和分类,例如运动员的技术水平、体能状态、比赛成绩等。

这些变量的测量和分类必须具有可靠性、有效性和可重复性。

4.数据分布特征数据分布特征是描述数据分布规律和特征的方法。

在体育统计学中,我们通常需要了解数据的分布特征,以便更好地选择合适的统计方法进行分析。

数据分布特征包括正态分布、偏态分布、分布的离散程度等。

5.置信区间与样本大小置信区间与样本大小是数据分析的重要概念。

在体育领域中,我们需要确定一个合适的置信区间和样本大小,以便对总体参数进行准确的估计和预测。

置信区间表示总体参数落在一定范围内的概率,而样本大小则表示样本的代表性程度。

6.假设检验假设检验是体育统计学中常用的方法,用于验证对总体参数的某种假设是否正确。

在体育科研和实践中,我们需要通过对样本数据的分析来检验某种假设或推论是否正确,进而做出科学决策。

7.方差分析方差分析是一种常见的实验设计方法,用于比较不同组之间的差异。

在体育科研和训练中,我们经常需要对不同组之间的差异进行分析,例如比较不同训练方法对运动员成绩的影响、分析不同营养补给对运动员表现的影响等。

方差分析可以对多组数据进行比较,判断各组之间的差异是否具有统计学意义。

8.相关与回归相关与回归是描述两个变量之间关系的方法。

体育统计学试题及答案

体育统计学试题及答案

体育统计学试题及答案一、选择题1. 下列选项中,属于体育统计学的内容是:A. 运动员的饮食安排B. 运动员的心理素质C. 运动员的竞技成绩D. 运动员的训练计划答案:C2. 体育统计学主要研究以下哪个方面:A. 运动员的养生保健B. 运动项目的规则制定C. 运动员的竞技表现D. 运动场馆的建设规划答案:C3. 体育比赛中的场上实施情景统计是指:A. 记录运动员的训练计划B. 记录比赛时的主要情景C. 记录运动员的心理变化D. 记录比赛中的技术统计数据答案:B4. 体育统计学常用的数据分析方法包括:A. 方差分析B. 回归分析C. 相关分析D. 所有选项都对答案:D5. 作为体育统计学的研究对象,下列哪个属于场外统计:A. 记录运动员的体格指标B. 记录运动员在场上的表现C. 记录比赛场馆的气候情况D. 记录运动员的训练计划答案:A二、简答题1. 简述体育统计学在运动训练中的应用。

答:体育统计学在运动训练中有着广泛的应用。

首先,通过对运动员的竞技表现进行统计分析,可以了解运动员的优势和不足,进而制定有针对性的训练计划。

其次,通过运动员的技术统计数据,可以评估运动员的技术水平,及时发现问题并加以改进。

此外,体育统计学还可以帮助教练员进行对抗性训练的安排,提高运动员的竞技能力。

2. 你认为体育统计学对于提高比赛规则的公正性有何作用?答:体育统计学对于提高比赛规则的公正性起着重要作用。

通过对比赛进行统计分析,可以客观地评估比赛规则的合理性和公正性。

例如,在某项运动中,通过对比赛过程中的技术统计数据进行分析,可以判断现有的规则是否存在利于某一方的偏差,从而对规则进行相应的修改和完善,确保比赛结果的公正性。

三、论述题体育统计学在竞技体育中的应用分析体育统计学作为一门交叉学科的研究领域,它与体育竞技密不可分。

通过对运动员的竞技表现数据进行统计分析,可以了解运动员的优势和不足,制定相应的训练计划,提高运动员的竞技能力。

体育统计学 (1)

体育统计学 (1)

一、名词解释。

1、体育统计学:是一门将概率论和数理统计的理论与方法应用于体育领域,为体育实践(体育教学、运动训练、体育管理和科学研究)提供解决问题的方法的工具学科。

属方法论学科范畴。

2、指标:对于自然科学研究者来说,是在实验观察中用来指示(反映)研究对象中某些特征的可被研究者或仪器感知的一种现象标志。

3、系统误差:由于实验仪器、操作人员的操作水平、以及实验环境等因素产生的误差。

4、概率:随机事件A 的频率)(A W 随着试验次数的变化而变化,当∞→n 时,)(A W 就越来越趋近于一个常数m, 则这个常数m 称为随机事件A 的概率。

记为)(A p ,即:∑==ni i A A W n p 1)()(1(n →∞) 5、机械抽样(系统、等距抽样): 预先给定一定的规则(当总体较大时),取一定数目的个体为一组,再从每一组中采用单纯随机抽样法抽取适当的个体组成样本。

6、分层抽样(类型抽样):当总体较大时,先根据总体的某些特征,将其分为若干类型(层次),然后从每一类型中采用适当地方法按一定的比例随机抽取适当个体组成样本。

7、整群抽样:当总体很大时,先将总体分为若干组,每一组被看作为总体的一个个体,再采用单纯随机抽样法抽取适当个体组成样本。

(此方法误差较大) 8统计量:由样本所得,关于样本特征的统计指标9体育统计学的研究对象及内容:体育领域内一些随机现象的数量规律,以及各现象间的相互关系 二、简答题。

1、研究设计的基本过程?分为哪两种?答:研究设计:确定研究方向―→选择课题―→作出研究设计(基本过程) 调查设计(问卷调查、专家访问、文献资料等)研究设计{试验设计2、对实验设计的几点要求?答:1)所取的每个试验对象的测量值,不能有系统误差。

2)应该选取适当的试验指标(价值)。

3)所测得的数据应能找到相应的数理统计方法进行分析,使得所取数据能够满足统计分析的基本模型。

3、数据的收集应注意的问题有哪些? 答:(1)保证资料的完整性、有效性和可能性。

体育统计学试题及答案

体育统计学试题及答案

体育统计学试题及答案一、选择题(每题2分,共20分)1. 体育统计学中,数据的收集方法不包括以下哪一项?A. 观察法B. 实验法C. 调查法D. 推理法答案:D2. 在统计学中,以下哪一项不是描述数据集中趋势的指标?A. 平均数B. 中位数C. 众数D. 方差答案:D3. 体育统计中,相关系数的取值范围是?A. -1到1B. 0到1C. 0到正无穷D. -1到正无穷答案:A4. 以下哪一项不是体育统计学中常用的概率分布?A. 正态分布B. 二项分布C. 泊松分布D. 指数分布答案:D5. 在体育统计中,以下哪一项不是假设检验的步骤?A. 建立假设B. 选择显著性水平C. 计算检验统计量D. 确定样本容量答案:D6. 体育统计中,以下哪一项是衡量数据离散程度的指标?A. 平均数B. 方差C. 众数D. 中位数答案:B7. 在体育统计中,以下哪一项不是非参数检验?A. 卡方检验B. 曼-惠特尼U检验C. 配对样本t检验D. 克鲁斯卡尔-瓦利斯检验答案:C8. 体育统计中,以下哪一项是描述数据分布形态的指标?A. 偏度B. 方差C. 标准差D. 峰度答案:A9. 在体育统计中,以下哪一项不是数据的预处理步骤?A. 数据清洗B. 数据转换C. 数据插补D. 数据分析答案:D10. 体育统计中,以下哪一项不是数据的类型?A. 定性数据B. 定量数据C. 计数数据D. 混合数据答案:D二、填空题(每题2分,共20分)11. 体育统计学中,数据的收集方法包括观察法、实验法和_________。

答案:调查法12. 在统计学中,描述数据集中趋势的指标包括平均数、中位数、众数和_________。

答案:极差13. 体育统计中,相关系数的取值范围是-1到1,其中1表示_________相关。

答案:完全正14. 在体育统计中,常用的概率分布包括正态分布、二项分布、泊松分布和_________。

答案:t分布15. 体育统计中,假设检验的步骤包括建立假设、选择显著性水平、计算检验统计量和_________。

体育统计学考试重点

体育统计学考试重点

体育统计学考试重点1、体育统计学:体育统计是揭示体育科研中大量随机事件现象的规律的学科。

2、体育统计的基本工作过程:1、统计调查2、统计整理3、统计分析3、体育统计的研究对象除了体育领域里的各种可量化的随机现象之外,还应包括非体育领域但对体育的发展有关的各种随机现象。

4、体育统计研究对象的特征:1、运动性特征2、综合型特征3、客观性特征5、体育统计是在体育教育科研活动的基础(简答)一、体育统计是体育教育科研活动的基础二、体育统计有助于训练工作的科学化三、体育统计能帮助研究者制定研究计划四、体育统计能帮助研究者有效的获得文献资料6、总体:根据统计科研的具体研究目的而确定的同质对象的全体。

7、样本:根据需要与可能从总体中抽取的部分研究对象所形成的子集。

8、必然事件:在一定条件下,必然会出现的事件。

9、随机事件:在一定的条件下,有可能发生的也有可能不发生的事件。

1、总体参数:反映总体的一些数量特征。

而有样本所获得的一些数量特征称为样本统计量2、概率:某个随机事件再一次实验中发生的可能性大小的数量指标,用p (a)表示。

3、全面普查:是指对研究对象总体中所有个体进行全部的测试或观察。

4、分层抽样;:将总体中的个体按某种属性特征分成若干类型,部分或层。

然后在各种类型、部分、或层中按比例进行简单随机抽样组成研究样本的方法。

5、资料审核的内容和步骤答:内容 1 、准确性2、完整性3、时效性步骤1、初审2、逻辑检查3、复核6、集中位置数的类型:中位数、众数、几何平均数、算术平均数7、中位数:将样本的观察值按从大到小的顺序排列起来,处于中间的位置的那个数。

8、众数:是样本观察值在频数分部分布表中频数最多的那一组的组中值。

9、离中位置数的种类:全距、绝对差、标准差、方差、平均差。

1、全距 ; :即两极差,就是一组观察值中最大值与最小值之差。

2、相对数:相对数也呈相对指标,是两个有联系的指标的比率。

即两个有联系的指标进行对比,所得到的统计指标称为相对指标3、相对数的意义答1、相对数可是原来不能直接相比的数量指标成为可比2、相对数时进行动态分析的重要依据。

体育统计学试题及答案

体育统计学试题及答案

体育统计学试题及答案一、选择题1. 体育统计学是运用统计学原理和方法进行体育研究和分析的学科。

以下哪个不是体育统计学的应用领域?a. 运动员表现评估b. 战术分析与预测c. 运动项目选材d. 体育休闲旅游答案:d2. 体育统计学中的“场均得分”是指运动员或球队平均每场比赛的得分数。

下列哪种统计方法可以计算“场均得分”?a. 算术平均b. 中位数c. 众数d. 方差答案:a3. 在体育比赛中,常用的得分统计方法有哪些?a. 助攻b. 投篮命中率c. 三分球命中率d. 上场时间答案:a、b、c4. 体育统计学中的“胜率”是指球队或运动员在一定时间内所获得的胜利数与总比赛数之比。

以下哪个是计算胜率的公式?a. 胜利次数 / 失败次数b. 胜利次数 / 总比赛数c. 总比赛数 / 失败次数d. 胜利次数 + 总比赛数答案:b5. 体育统计学中的“效率值”是综合评价运动员比赛表现的指标。

以下哪个不是计算效率值的方法?a. 得分 + 助攻 + 篮板 - 失误b. 得分 + 助攻 + 篮板 + 抢断 + 盖帽c. 得分 + 助攻 + 篮板 + 抢断 + 盖帽 - 失误d. 得分 + 投篮命中率 + 三分球命中率 + 罚球命中率答案:d二、解答题1. 请简要说明体育统计学在职业篮球中的应用,并列举一个具体的例子。

答案:体育统计学在职业篮球中起到至关重要的作用。

通过对比赛数据的统计和分析,我们可以评估球队的整体表现、战术效果和球员个人能力。

例如,在一场篮球比赛中,我们可以使用体育统计学的方法来分析球队的得分、篮板、助攻等数据,进而评估球队的进攻和防守水平。

同时,通过对球员个人数据的统计分析,我们可以评估球员的得分效率、篮板能力、组织能力等,为球队的选秀和人员调整提供参考依据。

2. 假设你是一名篮球教练,请列举至少三种体育统计学方法,以帮助你进行战术分析和指导球队训练。

答案:作为一名篮球教练,可以利用以下体育统计学方法进行战术分析和训练指导:a. 视频分析:通过观看比赛录像,分析球队在不同战术下的表现,包括进攻时的传球配合、位置调整等,以及防守时的盯人和篮板表现等。

体育统计学

体育统计学

体育统计学Prepared on 21 November 2021一.名词解释1.体育统计:是运用数据统计的原理和方法对体育领域里各种随机现象规律性尽兴研究的一门基础应用学科,属方法论学科范畴。

2.体育统计工作的基本过程:1统计资料的搜集;2统计资料的整理;3统计资料的分析。

3.体育统计研究对象的特征:1运动性;2综合性;3客观性。

4.体育统计在体育活动中的作用:1体育统计是体育教育科研活动的基础;2体育统计有助于训练工作的科学化;3体育统计能帮助研究者制定研究设计;4体育统计能帮助研究者有效地获取文献资料。

5.总体:根究统计研究的具体研究目的而确定的同质对象的全体。

6.总体可分为假想总体和现存总体。

现存总体又分为有限总体和无限总体。

7.有限总体:指基本研究单位的边界是明晰的,并且基本研究单位的数量是有限的总体。

8.无限总体:指基本研究单位的数量是无限多的总体。

9.样本:根据需要与可能从总体中抽取的部分研究对象所形成的子集。

可分为随机样本和肥随机样本。

10.随机样本:指采用随机取样方法获得的样本。

非随机样本:指研究者根据研究的需要,寻找具备一定条件的对象所形成的样本。

11.样本含量用n表示,n大于等于45为大样本;n小于45为小样本。

12.等距随机抽样:机械随机抽样是先将总体中的个体按照与研究目的无关的任一特征进行排列,然后根据要求按一定间隔抽取个体组成样本的方法。

13.必然事件:事先能够预言一定会发生的事件。

14.随机事件:在一定的实验条件下,有可能发生也有可能不发生的事件。

15.随机变量:在统计研究中随机事件需由数值来表示,我们把随机事件的数量表现成为随机变量。

随机变量分连续型变量和离散型变量。

16.连续型变量:在一定的范围里,变量的所有的可能取值不能一一列举出来。

17.离散型变量:变量所有的可能取值能一一列举出来。

18.总体参数:反映总体的一些数量特征。

19.样本统计量:样本所获得的一些数量特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简答单选判断1 事件包括:随机事件必然事件不可能事件2 概率的近似计算: P(A)=M/N3 如何在实际问题中确定总体和样本?总体和样本的关系?如果提高代表性?答:1 据概念(5名词解释) 2 包含,缩影,样本不完全等同于总体.样本对总体有一定代表性3 a严格按照随机抽样的原则进行抽样 b 尽可能增大样本含量.样本数越多统计越准确4 常用的抽样方法:简单随机抽样机械随机抽样整群随机抽样分层随机抽样5 体育统计工作步骤:收集---整理-----分析6 样本统计量和统计参数之间的差异是由抽样误差造成的.7 平均数标准差及变异系数在体育研究中有哪些意义?(区别)答:样本平均数反映样本数据的整体水平,但是要结合标准差.标准差和变异系数反映样本数据的离散程度,对于运动成绩,表现为成绩的稳定性8 相对数在体育中的意义?(区别)答: 1可使原来不能直接相比的数量指标有可比性.2 是进行动态分析的重要依据9 动态分析在体育研究的意义?(应用)答:1 考察某些指标(如身体形态,素质等)发展变化的速度和规律 2 预测事物发展的水平10 整台分布曲线的特点:1 为钟形曲线,在X轴上方 2 最高点在X=u处(u是总体标准差)3 以x=u为对称轴,两边逐渐接近X轴 4 随机变量X所有取值的概率之和为1.;即曲线下的面积为1. 5 总体的离散程度越大曲线越平缓.11 标准差百分,累进积分法,百分位数发的用途和优点是什么?答:1 标准百分用于正态分布及近似正态分布的资料上,能使不同计量单位的测量数据标准化,所以它适用于各种测量指标的比较和综合评价 2 累进积分法用于正态分布及近似正态分布的资料上,优点是运动水平越高,成绩上升一个单位的难度就越大,因此相应的得分也就越多 3 百分位数法可用于任何分布状态的资料上,(以分数反应某个运动成绩在集中的位置),优点通过位置,能了解某个成绩在集体中所处的位置,也能了解他的水平与集体水平的比较情况12 假设检验的目的:区分差异是由抽样误差引起的.(差异没有本质的区别.样本来自同一个总体)13 假设检验的基本原理:小概率事件 a=0.05显著水平 a=0.01非常显著水平14 单侧检验与双侧检验:单侧检验只看差别不看方向.双侧不仅看差别还判断方向15 u检验与t检验的实用条件:主要看样本含量n>30 u检验 n<30为t检验16 t分布的特点:a 平均数位于中央曲线两侧关于y轴对称,曲线下总面积为1b t分布的曲线随自由度(根据n得出)的变化而变化c 当样本数n趋向于无穷大时,t分布曲线接近正态分布17 标准正态分布曲线的特点:a 最高点在x=0处 b 以y轴为对称轴,两边逐渐接近x轴 c 其他特点都与正态分布曲线相同18 因素:试验所要考查的对象水平:因素在试验时所分的等级19 方差的意义: 方差和标准差一样,是描述数据离散程度的统计指标.20 方差的分析的基本思想(基本依据): a 如果u1 u2 u3之间没有差异,则三个样本之间的差异是抽样误差引起的,组内个体之间差异的大小和各组间个体差异的大小相近,即S间2/S内2≈1(无显著差异)b 如果u1 u2 u3之间有差异,则组间个体差异要比组内个体差异大的多,即 u不=u2不=u3 ,即 S间2/S内2>1(显著差异)21 变量之间的关系有两种,(函数关系和相关关系)有什么区别与联系?答区别:函数关系,对于某一变量的数值,都有另一个变量的确定值与之对应;相关关系,变量之间存在一定的关系,但不是确定的函数关系,变量之间这种有联系而又不确定的关系。

联系:即r=1或r=-1,当自变量x与因变量y的关系完全对应时,称为完全相关,也是指变量间有函数关系22 什么是相关系数?相关系数的正负有什么意义?答: 相关系数是描述变量之间关系密切程度的统计量,记做r正: r=1 完全相关,函数关系 y=kx+b负: r=-1 完全负相关函数关系 y=kx+b正相关,当变量x增加时,变量y相应增加 (0<r<1)负相关,当变量x增加时,变量y相应减小 (-1<r<1)零相关, x与y完全无关,不受影响 (r=0)23 相关系数的绝对值趋向于1 即|r|--1说明两个变量之间关系越密切相关系数的绝对值趋向于0 即|r|--0 说明两个变量之间关系越不密切24 回归分析的目的:经过相关分析后,确认为两个变量之间具有比较密切的直线相关关系后,期望着能够找到两个变量之间存在的数量关系,也就是找到一个最恰当的数字表达式,用函数关系来描述两个变量之间的关系,这就要借助回归分析的帮助25 一元线性回归方程: y=a+bx(y为近似值)26 相关分析和回归分析应注意的问题:a对变量进行相关和回归分析时要有实际意义b 先做相关分析,相关显著时再建立回归方程c y对x的回归方程与x对y的回归方程是不同回归方程,不能互推.d 相关分析与回归分析只适用于正态分布或近似正态分布的变量.27 统计表和统计图有哪些类型,各种统计图有什么特点?答: 有简单表分组表复合表统计图 1散点图.将两变量的数据在坐标轴上描点构成,由散点表看出两变量大致的关系(考察两变量之间相关关系时用散点图)2 条形图:用宽度相同,长短不同的直条行描述,各类统计资料的对比关系(比较不同组大小时进行对比时用条形图)3 图形图:用圆的面积描述统计资料的总体内部结构情况4 线形图:以线条的升降来表示统计指标数值大小及变动趋势,可以反映一事物随另一事物的变化而变化的情况.5 直方图:根据A样本频数分布资料可以做出统计直方图,各条形之间设有间隔,通常以横轴表示组限,以纵轴表示频数(反映同一组资料的内部分布情况)三、简答1.简述假设检验的步骤①根据实际情况建立“原假设”Ho;②在检验假设的前提下,选择和计算统计量;③根据实际情况确定显著水平α,一般取α=0.05或α=0.01,并根据α查出相应的临界值;④判断结果,将计算的统计量与相应的临界值比较,如果前者≥后者,概率P≤α,则差异显著,否定原假设;如果前者<后者,概率P>α,则差异不显著,接受原假设。

2.方差分析的前提条件:①来自每个总体的样本都是随机样本;②不同总体的样本是相互独立的;③每个样本都取自正态总体;④每个总体的方差都相等3.简述假设检验中的两类错误第Ⅰ类错误,错否定,即“原假设”实际上是正确的饿,而检验结论是否定Ho,此时犯下“弃真”错误,统计上称为第Ⅰ类错误。

第Ⅱ类错误,错接受,即“原假设”实际上是不正确的,而结论却接受了Ho,此时犯了“取伪”错误,统计上称为第Ⅱ类错误。

4.常用的抽样方法有几种简单随机抽样、分层抽样、整群抽样5.小概率事件的原理 P88进行检验的基本思想是带有概率性质的反证法思想,其依据是小概率事件的原理,即在一定的实际条件下,若某事件出现的概率很小(P≤0.05),则可以认为在一次试验中,该事件是不会发生的。

基于此,我们就可以得到一种推理方法,即在假设A事件是一个小概率事件成立的条件下,只做一次试验, A事件却发生了,则我们自然有理由认为原来的假设不成立。

6.简述在什么条件下必须对平均数进行多重比较F检验是一种整体性的检验,当经方差分析鉴别多个正态总体的平均数有差异显著时,并不能说明各组水平之间都存在显著差异,只是说至少有一对差异显著,究竟哪些均数差异显著,哪些差异不显著,则还需进行均数的多重比较。

当然,若F检验部显著时,则表明被检验的所有样本均数没有一对差异是显著地,此时无需进行均数的多重比较。

7.简述为什么要做相关系数的检验?(理解这段话,简述就行,不用这么多)P135根据样本资料计算得到的相关系数与其他统计量一样,也存在着抽样误差的问题。

如果在总体相关系数ρ=0(即,总体中不存在相关关系)的总体中随机抽样的话,由于存在抽样误差,也可能抽到r≠0的样本资料。

因此,当以样本资料计算出相关系数r时,不能简单的根据r的大小对随机变量X、Y间关系密切程度作出判断。

r≠0有两种可能:一种情况确实在ρ=0的总体中抽取,此时r与ρ=0的偏差仅仅是由抽样误差所致;另一种情况确实不是在ρ=0总体中抽取的,而是在ρ≠0的总体中抽取出来的,此时r与ρ=0有着统计学中的显著差异。

前者表明X与变量间没有线性相关关系,后者则表示X与Y变量有线性关系。

由于这两种情况都可能存在,所以,当用样本资料所得到的相关系数r去推断总体是否相关时,必须对样本的相关系数进行显著性检验。

8.正态分布的特点①曲线呈单峰型,在横轴上方,x=μ有最大值,称峰值。

②曲线关于直线x=μ左右对称,在区间(-∞,μ)上,f(x)单调上升,而在(μ,∞)区间上,f(x)单调下降,当x→±∞时,曲线以x轴为渐进线。

③变量x可在全横轴上(-∞<x<∞)取值,曲线覆盖的区域里的概率为1。

④因极大值为,故σ越大,极大值越小,峰值下降,曲线平缓,σ越小则结论相反。

形象地说,σ的大小决定峰图呈“胖型”或“瘦型”。

1、研究设计的基本过程?分为哪两种?答:研究设计:确定研究方向―→选择课题―→作出研究设计(基本过程)调查设计(问卷调查、专家访问、文献资料等)研究设计{试验设计2、对实验设计的几点要求?答:1)所取的每个试验对象的测量值,不能有系统误差。

2)应该选取适当的试验指标(价值)。

3)所测得的数据应能找到相应的数理统计方法进行分析,使得所取数据能够满足统计分析的基本模型。

3、数据的收集应注意的问题有哪些?答:(1)保证资料的完整性、有效性和可能性。

2)保证样本的代表性(遵循随机抽样原则)。

4、频数整理的基本步骤?答:(1)求极差R = x max—x min2.确定组数与组距3.确定分组点及各组的上下限4.整理频数分布表5.绘制频数直方图5、集中位置量的种类?答:1.中位数2.众数3.平均数6、离中位置量的种类?答:极差、绝对差、平均差、方差、标准差、变异系数。

7、变异系数的意义?答:意义:用于比较不同指标间数据的变化程度。

相关文档
最新文档