7弹塑性有限元-课件【PPT】
合集下载
弹塑性力学与有限元-单轴状态下材料的特征和模型

单轴应力-应变特性
明显的四个阶段:
➢ 单调加载
e
b
b
e Pபைடு நூலகம்
a c s
1、弹性阶段ob
f P — 比例极限 E
e —
弹性极限 E
tan
2、屈服阶段bc(失去抵抗变形
的能力,塑性变形或塑性流动)
s — 屈服极限
o
3、强化阶段ce(恢复抵抗变形的能力) b — 强度极限
4、软化节段,局部径缩阶段ef
D(s下) A(p)
低碳钢拉伸 应力应变曲线
g
E=tg
Ey= tg
O
O1 O2 0.1
0.2
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
单轴应力-应变特性
➢ 卸载和再加载
初始屈服应力
1)弹性范围内卸载、再加载 e P
后继屈服应力
d
b a c s
2)过弹性范围卸载、再加载
d g
o p e
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
单轴状态下的全量应力-应变模型
➢ 塑性变形特点 应力~应变的多值性,塑性变形与加载的历程有关。
卸载规律
同一应力值σ对应 同一应变值ε对应 不同的应变值ε 不同的应力值σ
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
单轴状态下的全量应力-应变模型
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
单轴应力-应变特性
屈服应力
➢ 单调加载
B
C
0.2 A
O 0.2%
D
p e
无明显屈服流动阶段
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
弹塑性力学课件-塑性基本概念

ij yxx
xy y
xz yz
11 21
12 22
13
23
zx zy z 31 32 33
(4-1)
由于剪应力的互等性, yx xy zx xz zy yz
3.1应力—应变曲线的理想化模型
(1)理想弹性(perfectly elastic) (2)理想刚塑性(rigid-perfectly elastic) (3)刚—线性强化(rigid-linear strain-hardening) (4)理想弹塑性(elastic-perfectly plastic) (5)弹—线性强化(elastic-linear strain-hardening)
1.3静水压力实验
所谓静水压力就如同均匀流体从四面八方将压力作用于物体。 (1)体积变化 体积应变与压力的关系 (Bridgeman实验公式)
体积压缩模量 派生模量
铜:当p=1000MPa时,ap= 7.31×10-4,而bp2=2.7×10-6。 说明第二项远小于第一项,可以 略去不计。
Bridgeman的实验结果表明, 静水压力与材料的体积改变之 间近似地服从线性弹性规律。 若卸除压力,体积的变化可以 恢复,因而可以认为各向均压 时体积变化是弹性的,或者说 塑性变形不引起体积变化。试 验还表明,这种弹性的体积变 化是很小的,因此,对于金属 材料,当发生较大塑性变形时, 可以忽略弹性的体积变化,即 认为在塑性变形阶段材料是不 可压缩的。
s
n1
一般加载规律
( ) E[1 ( )]
A
其中
( )
弹塑性问题有限元分析

弹塑性问题的有限元分析
专硕-
1
材料的弹塑性行为实验
2
材料塑性行为的屈服准则
3
材料塑性行为的流动法则
4
材料塑性行为的强化准则
5
材料塑性行为的模型
研究弹塑性问题的关键在于物理方程的处理。下面主要讨论小 变形情形下的弹塑性问题。
1、材料的弹塑性行为实验
典型的材料性能实验曲线是通过标准试样的单向拉伸与压缩获 得的,如下图所示
但不发生新的塑性流动
4、塑性强化准则 该准则用来描述屈服面是如何改变的,以确定后续屈服面的新 状态,一般可以有几种模型: 等向强化模型 随动强化模型 混合强化模型 5、材料塑性行为的模型 基于以上准则,在根据各种材料的应力应变曲线、经过归纳和 分类给出以下几种典型的描述材料弹塑性行为的模型 (1)、双线性Bauschinger随动强化 (2)、多线性Bauschinger随动强化 (3)、双线性等向强化 (4)、多线性等向强化 (5)、非等向强化 (6)、Drucker-Prager模型 所谓Bauschinger效应为反向屈服点到卸载点的数值为 2 yd 。
I1 1 2 3
I2 1 2 2 3 31(2)
I3 1 2 3
基于主应力空间,由等倾面组成的八面体的平面上的正应力和剪应力具有
一些特殊的性质。
设某一点的应力状态为 ij ,其中三个主应力为 1、 2、 3 ,并且1> 2> 3
如果坐标轴与主方向重合,则应力不变量如式(2)
其中 yd 为临界屈服剪应力,将由实验来确定,一般通过单拉实
验获得,由于单拉实验获得的是临界屈服拉应力 yd ,所以通过
以下关系来换算:
如果定义等效应力为
eq
3 2
y
专硕-
1
材料的弹塑性行为实验
2
材料塑性行为的屈服准则
3
材料塑性行为的流动法则
4
材料塑性行为的强化准则
5
材料塑性行为的模型
研究弹塑性问题的关键在于物理方程的处理。下面主要讨论小 变形情形下的弹塑性问题。
1、材料的弹塑性行为实验
典型的材料性能实验曲线是通过标准试样的单向拉伸与压缩获 得的,如下图所示
但不发生新的塑性流动
4、塑性强化准则 该准则用来描述屈服面是如何改变的,以确定后续屈服面的新 状态,一般可以有几种模型: 等向强化模型 随动强化模型 混合强化模型 5、材料塑性行为的模型 基于以上准则,在根据各种材料的应力应变曲线、经过归纳和 分类给出以下几种典型的描述材料弹塑性行为的模型 (1)、双线性Bauschinger随动强化 (2)、多线性Bauschinger随动强化 (3)、双线性等向强化 (4)、多线性等向强化 (5)、非等向强化 (6)、Drucker-Prager模型 所谓Bauschinger效应为反向屈服点到卸载点的数值为 2 yd 。
I1 1 2 3
I2 1 2 2 3 31(2)
I3 1 2 3
基于主应力空间,由等倾面组成的八面体的平面上的正应力和剪应力具有
一些特殊的性质。
设某一点的应力状态为 ij ,其中三个主应力为 1、 2、 3 ,并且1> 2> 3
如果坐标轴与主方向重合,则应力不变量如式(2)
其中 yd 为临界屈服剪应力,将由实验来确定,一般通过单拉实
验获得,由于单拉实验获得的是临界屈服拉应力 yd ,所以通过
以下关系来换算:
如果定义等效应力为
eq
3 2
y
弹塑性力学ppt_精简版本

卸载:指材料产生从塑性状态回到弹性状态的应力改变。
一 、理想材料的加卸载准则
理想材料的加载面与初始屈服面是一样的。
由于屈服面不能扩大,所以当应力点达到屈服面上, 应力增量 d 不能指向屈服面外,而只能沿屈服面切线。
d 加载
f(ij)0,
弹性状态
d
n
卸载
f 0
f (ij) 0,
)
1 (w v) 2 y z
w
z
• 几何方程张量表示
1 ij 2(ui,j uj,i)
u i, j
u i x j
位移梯度
相对位移矢量对称部分
应变张量是位移梯度的对称化
应变分量的坐标变换 [][][][]T
第四章 本构关系 4.5 常用的屈服条件
1. 最大剪应力条件 Tresca 屈服条件
T 1 2 + T 2 2 + T 3 3 - N 21 22 7 48 2
例1 如图所示,试写出其边界条件。
q
(1) x 0,
u v
s s
0 0
u 0, v 0 y x
h
hx
(2) xa, l 1,m0 X0,Y 0
l(x)s m(xy)s X
M Mi
M Mi
解: 处于弯扭作用下,杆内主应力为
1,321 2 242,
2 0
其中
My J
32M
d3
Mir J0
16dM3i
(1) 由最大剪应力条件(特雷斯卡)给出
并考虑安全系数
r31 30s
d0.10m 9
(2) 由最大畸变能条件(米泽斯)给出
弹塑性有限元法基本理论与模拟方法

流体动力学
用于模拟流体流动和传热问题 ,如流体机械、航空航天和化 工等领域。
电磁场
用于分析电磁场问题和电气设 备性能,如电机、变压器和天 线等。
声学
用于模拟声音传播和噪声控制 问题,如声学器件和声学环境
等。
04 弹塑性有限元法的基本原 理
弹塑性有限元法的离散化方法
有限元离散化
将连续的物理场或结构体离散为有限个小的单元体, 每个单元体之间通过节点相互连接。
结构强度分析的模拟
结构强度评估
通过弹塑性有限元法模拟,可以对结构的强度进行评估,预测结构在不同载荷下的响应, 确保结构的安全性和稳定性。
疲劳寿命预测
利用弹塑性有限元法,可以模拟结构的疲劳载荷历程,预测结构的疲劳寿命,为结构的维 护和更换提供依据。
结构优化设计
通过模拟结构的应力分布和变形,可以优化结构设计,降低结构重量,提高结构效率。
边界条件和初始条件
在平衡方程中考虑边界条件和初始条件,以确保模拟的准确性和收 敛性。
弹塑性有限元法的边界条件和初始条件
边界条件的处理
01
根据实际情况,将边界条件转化为节点约束或单元载荷的形式。
初始条件的设置
02
在非稳态问题中,需要考虑初始条件的设置,以模拟问题的初
始状态。
边界条件和初始条件的实施
03
随着计算机技术的不断发展,弹塑性 有限元法在各个工程领域中得到了广 泛应用,如机械、航空航械设计中,弹塑性有限元法可用于分析各种复杂结构 的应力分布、变形和疲劳寿命等,提高产品的可靠性和安 全性。
航空航天
在航空航天领域,弹塑性有限元法可用于分析飞行器结构 在各种载荷下的响应,优化结构设计,提高飞行器的性能 和安全性。
用于模拟流体流动和传热问题 ,如流体机械、航空航天和化 工等领域。
电磁场
用于分析电磁场问题和电气设 备性能,如电机、变压器和天 线等。
声学
用于模拟声音传播和噪声控制 问题,如声学器件和声学环境
等。
04 弹塑性有限元法的基本原 理
弹塑性有限元法的离散化方法
有限元离散化
将连续的物理场或结构体离散为有限个小的单元体, 每个单元体之间通过节点相互连接。
结构强度分析的模拟
结构强度评估
通过弹塑性有限元法模拟,可以对结构的强度进行评估,预测结构在不同载荷下的响应, 确保结构的安全性和稳定性。
疲劳寿命预测
利用弹塑性有限元法,可以模拟结构的疲劳载荷历程,预测结构的疲劳寿命,为结构的维 护和更换提供依据。
结构优化设计
通过模拟结构的应力分布和变形,可以优化结构设计,降低结构重量,提高结构效率。
边界条件和初始条件
在平衡方程中考虑边界条件和初始条件,以确保模拟的准确性和收 敛性。
弹塑性有限元法的边界条件和初始条件
边界条件的处理
01
根据实际情况,将边界条件转化为节点约束或单元载荷的形式。
初始条件的设置
02
在非稳态问题中,需要考虑初始条件的设置,以模拟问题的初
始状态。
边界条件和初始条件的实施
03
随着计算机技术的不断发展,弹塑性 有限元法在各个工程领域中得到了广 泛应用,如机械、航空航械设计中,弹塑性有限元法可用于分析各种复杂结构 的应力分布、变形和疲劳寿命等,提高产品的可靠性和安 全性。
航空航天
在航空航天领域,弹塑性有限元法可用于分析飞行器结构 在各种载荷下的响应,优化结构设计,提高飞行器的性能 和安全性。
弹塑性力学与有限元-材料非线性问题和几何非线性问题

《弹塑性力学与有限元》
材料非线性问题和几何非线性问题 材料非线性问题
➢ 塑性力学的基本法则 (i) Prager运动硬化法则 规定加载曲面中心的移动是在表征现时应力状态的应力点的法线方向。
Prager运动法则一般说只能应用于九维应力空间。
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题 材料非线性问题
(3)按单元内各个积分点计算D的预测值
1)计算屈服函数值
,然后区分三种情况
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
材料非线性问题
➢ 弹塑性增量分析数值方法中的几个问题 弹塑性状态的决定和本构关系的积分 (i)
(ii) 若
,则该积分点为由弹性
进入塑性的过渡情况,计算比例因子m。
(iii)若
二. 应力的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
二. 应力的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
➢ 大变形条件下的应变和应力的度量 一. 应变的度量
《弹塑性力学与有限元》
材料非线性问题和几何非线性问题
几何非线性问题
➢ 大变形条件下的应变和应力的度量 二. 应力的度量 在大变形问题中,是从变形后的物体中截取出微元体建立平衡方 程和与之相等效的虚功原理,所以应从变形后的物体内截取单元 体定义应力张量--欧拉应力张量,tτij
➢ 大变形情况下的本构关系
《弹塑性力学与有限元》
弹塑性理论--应变 ppt课件

一、P点的正应变
x
(u
u dx) x dx
u
u x
在这里由于小变形,由y
方向位移v所引起的PA的伸缩
是高一阶的微量,略去不计。
o
u P
v
y
P
B v v dy
y
u u dx x
A
A
x
v v dx x
B
u u dy y
ppt课件
图3-1
3
同理可求得:
Sy
o(Sx2 , S y 2 )
(x
x)
( x0
x0 )
u x
Sx
u y
Sy
(y
y)
( y0
y0
)
v x
Sx
v y
Sy
Sx Sx Sx (x x) (x0 x0 )
S y
S y
Sx
(y ppt课件
16
这样,对于纯变形来说 Si ui, j S j Si i, j S j
现在说明应变张量 i, j 的物理意义。
如S平行X轴,则 S x S, S y 0
S x S y
u x
Sx
u y
Sy
v x
Sx
v y
Sy
11
wwyx ))
w
z
0
1 (u v) 2 y x
1 2
(
u z
《工程弹塑性力学》PPT课件

工程弹塑性力学
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA