A算法ppt课件
人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图

HONGNANJUJIAO
D典例透析
2.算法的特征
特征
有限性
确定性
可行性
有序性
说明
一个算法运行完有限个步骤后必须结束,而不能无限
地运行
算法的每一步计算,都必须有确定的结果,不能模棱
两可,即算法的每一步只有唯一的执行路径,对于相
同的输入只能得到相同的输出结果
算法中的每一步必须能用实现算法的工具精确表达,
并能在有限步内完成
算法从初始步骤开始,分为若干明确的步骤,每一个
步骤只能有一个确定的后续步骤,只有执行完前一步
才能执行后一步
IANLITOUXI
目标导航
特征
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
说明
算法一般要适用于不同形式的输入值,而不是局限于
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
1.算法的概念
12 世纪的算法 用阿拉伯数字进行算术运算的过程
按照一定规则解决某一类问题的明确和有限的步
数学中的算法
骤
通常可以编成计算机程序,让计算机执行并解决
现代算法
问题
名师点拨1.算法没有一个精确化的定义,可以理解为由基本运算
题型四
设计含有重复步骤的算法
【例4】 写出求1×2×3×4×5×6的算法.
分析:思路一:采取逐个相乘的方法;思路二:由于重复作乘法,故可
以设计作重复乘法运算的步骤.
解:算法1:第一步,计算1×2得到2.
《搜索技术》PPT课件

第三章 搜索技术
第二节 启发式搜索 七、A算法 使用估计值函数f(n)=g(n)+h(n)的完全展开的有序 搜索算法。
28
第三章 搜索技术
第二节 启发式搜索
八、A*算法 在A算法规定:h(n)h*(n), k*(ni,nj,nm)-k*(ni,nj)>e,则A算法成为A*算法
注:1)A*算法与H*算法的主要区别有
22
第三章 搜索技术
第二节 启发式搜索 五、H*算法 注:5)若估计值函数h(n)满足单调条件:
h(ni)-h(nj) k*(ni,nj)(其中k*(ni,nj)是从ni到nj的 最小代价,nj是ni的后续节点), 则H*算法是循着从初始状态通向该节点的最优路 径到达该节点的。
6)在H*算法中,每次只生成一个后续节点。
到具有相同估计值的状态的最前面;否则将相应 状态插入到具有相同估计值的状态的最后面
11
第三章 搜索技术
第二节 启发式搜索 二、有序搜索算法 2、算法 6)若在SS或SB中原有一个状态与当前新状态共一 个状态,则删去原有状态 7)若新状态在SS的最前面,则转11) 8)若某种状态极限已达到,则搜索失败,算法运 行结束,无解
算法要复杂些。
第三章 搜索技术
第一节 引言 二、研究和选用搜索算法的原则 6、有约束还是无约束?
问题空间搜索时,若子问题间互相无约束关系, 则求接比较简单,否则,一般需要回溯,即,放 弃已解决的子问题,走回头路,寻找新的解法。 7、数据驱动还是目标驱动?
数据驱动是向前搜索,目标驱动是向后搜索。 8、单向搜索还是双向搜索?
a)在H*算法中每次只生成一个后继节点,而在 A*算法中每次生成一个节点的所有节点 b)在H*算法中,每生成一个新节点,就询问它 是否是目标节点,而在A*算法中,只询问栈顶 节点是否是目标节点
A与A星算法

只是用一个二维状态数组,结果迂回搜索导致超时./showproblem.php?pid=4198Quick out of the HarbourProblem Description题目原文是英文的,而且比较繁琐。
我修饰转述如下:小强被海盗抓到了,海盗把他和他的船“小强号”关在一个水狱里。
小强拿到了小红给他的一张水狱地图,地图由h行w列字符组成(3 <= h;w <= 500), ,字符共有四种:S:小强和他的“小强号”的起始位置,他要从这里逃跑。
#:不能逾越的石墙. :水道,小强号可以直接通过@:栅栏水道已知:小强打开栅栏需要d分钟 (0 <= d <= 50);小强号通过单位水道的时间为1分钟;水狱一定有出口。
输入:t (一共有t组测试数据)h w d 以及水狱地图 (每组测试数据输入一次)输出:小强出狱的最短时间(和路线)。
Sample Input26 5 7######S..##@#.##...##@####.###4 5 3######S#.##@..####@#Sample Output1611分析:从S点开始,广度优先搜索,寻找出口。
由于有栅栏,不能保证搜索的当前结点是“耗时最少”的优先搜索,对当前结点耗时v取权重,采用优先队列。
code:(普通广度搜索,超时)#include<iostream>#include<queue>using namespace std;#define N 501#define big 999999999int h,w,d,sx,sy,t,i,j;int tv[N][N];char maze[N][N];int offset[4][2]={{-1,0},{0,-1},{1,0},{0,1}};struct pos{int x;int y;};int bfs(){int mymin=big;pos start,temp,temp1;start.x=sx,start.y=sy;tv[sx][sy]=0;queue<pos> q;q.push(start);while(!q.empty()){temp=q.front();q.pop();if(temp.x==0||temp.x==h-1||temp.y==0||temp.y==w-1)if(mymin>tv[temp.x][temp.y]+1)mymin=tv[temp.x][temp.y]+1;printf("path: %d %d %c\n",temp.x,temp.y,maze[temp.x][temp.y]);for(i=0;i<4;i++){pos temp1;temp1.x=temp.x+offset[i][0];temp1.y=temp.y+offset[i][1];if(temp1.x<0||temp1.x>=h||temp1.y<0||temp1.y>=w)continue;if(maze[temp1.x][temp1.y]=='.')if(tv[temp1.x][temp1.y]>tv[temp.x][temp.y]+1){tv[temp1.x][temp1.y]=tv[temp.x][temp.y]+1;q.push(temp1);}if(maze[temp1.x][temp1.y]=='@')if(tv[temp1.x][temp1.y]>tv[temp.x][temp.y]+d+1){tv[temp1.x][temp1.y]=tv[temp.x][temp.y]+1+d;q.push(tem p1);}}}return mymin;}int main(){cin>>t;while(t--){cin>>h>>w>>d;getchar();for(i=0;i<h;i++){for(j=0;j<w;j++){scanf("%c",&maze[i][j]);//cin>>maze[i][j];tv[i][j]=big;if(maze[i][j]=='S'){sx=i;sy=j;}}getchar();}printf("%d\n",bfs());//cout<<bfs()<<endl;}}code:改用优先队列,以到达该结点的时间v为权重,每次使v最小的结点出队,即所谓“A算法”#include<iostream>#include<queue>using namespace std;#define N 501int h,w,d,sx,sy,t,i,j;bool used[N][N];char maze[N][N];int offset[4][2]={{-1,0},{0,-1},{1,0},{0,1}};//方向数组struct pos{int x;int y;int v;};struct cmp//这样之后出队序列就是由小到大,搜索结点时优先搜索v(从S到当前结点耗费的时间)小的结点。
认识算法ppt课件

03
常见算法介绍
排序算法
冒泡排序
通过重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过 来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
选择排序
在未排序的序列中找到最小(或最大)的元素,存放到排序序列的起始位置,然后再从剩 余未排序的元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。以此类推 ,直到所有元素均排序完毕。
哈希搜索
通过哈希函数将关键字转换成数组下 标,然后直接访问该下标元素。如果 下标位置上的元素就是所查找的元素 ,则搜索成功;否则搜索失败。
图算法
Dijkstra算法
用于解决单源最短路径问题。它是一种贪心算法,按照路径长度从小到大的顺序生成最 短路径。
Floyd-Warshall算法
用于解决所有节点对之间的最短路径问题。它通过动态规划的思想,将问题分解为更小 的子问题并逐步求解。
算法表示
可以使用自然语言、伪代 码、流程图等多种方式表 示。
算法在计算机科学中的地位
算法是计算机科学的核心
01
计算机程序本质上是一组算法步骤,用于实现特定的功能或解
决特定的问题。
算法是计算机科学研究的重要领域
02
算法研究涉及理论计算机科学、数据结构、计算几何等多个领
域,是计算机科学领域的重要分支。
认识算法ppt课件
• 算法的定义与重要性 • 算法的分类与特点 • 常见算法介绍 • 算法设计与分析 • 算法在实际应用中的挑战与解决方
案
01
算法的定义与重要性
算法的基本概念
01
02
03
算法定义
算法是一组明确、有序的 步骤,用点
《AStar算法详解》课件

谢谢观看
01
定义
优先队列是一种数据结构,允许根据特定优先级对元素进行排序和检索
。
02
作用
在A*算法中,优先队列用于存储待探索节点,并根据优先级顺序进行检
索。优先级通常基于节点到目标的实际距离和启发式函数的预估距离。
03
注意事项
优先队列的选择和实现方式对算法性能有较大影响,应选择高效的数据
结构和实现方式。
路径修复
《astar算法详解》ppt课件
目录
• A算法简介 • A算法的关键技术 • A算法的步骤和流程 • A算法的优缺点分析 • A算法的案例分析
01
A算法简介
A*算法的起源和背景
起源
A*算法最初由Anthony Stentz于 1944年提出,用于解决路径规划 问题。
背景
随着计算机技术的发展,A*算法 逐渐成为一种广泛应用于图形搜 索和路径规划领域的算法。
案例二:游戏AI路径规划
总结词
在游戏中,AI角色的行为需要合理规 划路径,以确保其能够高效地完成任 务或达到目标位置。A*算法为游戏开 发者提供了一种有效的路径规划工具 。
详细描述
在游戏AI路径规划中,A*算法可以帮助AI角 色找到从起点到终点的最佳路径。通过在游 戏地图上建立节点和边,A*算法能够考虑游 戏逻辑、障碍物和角色移动能力等因素,从 而生成符合游戏规则的合理路径。
05
A算法的案例分析
案例一:地图导航
总结词
地图导航是A*算法最常见的应用场景之一,通过使用A*算法,可以快速找到两 点之间的最短路径。
详细描述
在地图导航中,A*算法通常用于在道路网络中寻找两点之间的最短路径。通过 将地图中的道路和障碍物表示为图中的节点和边,A*算法能够综合考虑路径长 度和方向变化,从而找到最短且最直接的路径。
《算法设计与分析》课件

常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。
人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?
是
输出x
《算法与程序设计》课件

栈与队列
总结词:空间需求
详细描述:栈空间需求较小,只需存储当前 元素。队列空间需求较大,需存储所有元素
。
二叉树与图论算法
总结词:层级结构
详细描述:二叉树是一种层级结构, 每个节点最多有两个子节点(左子节 点和右子节点)。图论算法涉及图的 结构和性质,节点和边是基本元素。
二叉树与图论算法
总结词:遍历方式
总结词:空间效率
详细描述:数组连续存储,空间利用率较高。链表节点可能存在大量空闲空间,空间利用率较低。
栈与队列
总结词:先进后
总结词:先进后
栈与队列
总结词:应用场景
VS
详细描述:栈常用于实现函数调用、 深度优先搜索等操作。队列常用于实 现任务调度、缓冲区处理等操作。
栈与队列
总结词:性能特点
详细描述:栈操作速度快,时间复杂度为O(1)。队列操作速度慢,因为需要移动 大量元素,时间复杂度为O(n)。
总结词
复杂度分析
详细描述
二叉树和图论算法的时间复杂度和空间复杂度分析取决于具体算法和应用场景。在某些情况下,二叉树和图论 算法的时间复杂度和空间复杂度可能较高。
04
算法设计与优化
分治策略
01
分治策略
将一个复杂的问题分解为两个或更多的相同或相似的子问题,直到最后
子问题可以简单的直接求解,原问题的解即子问题的解的合并。
02
合并排序
采用分治策略的经典算法,将数组分为两半,分别对两半进行排序,最
后合并两个有序的半部分。
03
快速排序
利用分治策略的排序算法,选择一个基准元素,重新排列数组,使得基
准元素左侧都比它小,右侧都比它大,然后递归地对左右两侧进行快速
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(S2)=d(S2)+W(S2)=2+2=4 从图1还可以看出,该问题的解为 S0 →S1 →S2 →S3 →Sg
5
图1 八数码难题的全局择优搜索树
6
7
2.局部择优搜索
对这一算法进一步分析也可以发现:如果取估 价函数f(n)=g(n),则它将退化为代价树的深度 优先搜索;如果取估价函数f(n)=d(n),则它将 退化为深度优先搜索。可见,深度优先搜索和 代价树的深度优先搜索是局部择优搜索的两个 特例。
9
A*算法
上一节讨论的启发式搜索算法,都没有 对估价函数f(n)做任何限制。实际上,估 价函数对搜索过程是十分重要的,如果 选择不当,则有可能找不到问题的解, 或者找到的不是问题的最优解。为此, 需要对估价函数进行某些限制。A*算法 就是对估价函数加上一些限制后得到的 一种启发式搜索算法。
退出; (5)若节点n不可扩展,则转到第(2)步; (6)扩展节点n,生成子节点ni(i=1,2,……),计算每一个子节点的
估价值f(ni) (i=1,2,……),并按估价值从小到大的顺序依次放入 Open表的首部,并为每一个子节点设置指向父节点的指针,然后 转第(2)步。
8
由于这一算法的第六步仅仅是把刚生成的子节 点按其估价函数值从小到大放入Open表中,这 样在算法第(3)步取出的节点仅是刚生成的子节 点中估价函数值最小的一个节点。因此,它是 一种局部择优的搜索方式。
2
1. 全局择优搜索
在全局择优搜索中,每当需要扩展节点时,总是从Open表的所有节点中 选择一个估价函数值最小的节点进行扩展。其搜索过程可能描述如下:
(1)把初始节点S0放入Open表中,f(S0)=g(S0)+h(S0); (2)如果Open表为空,则问题无解,失败退出; (3)把Open表的第一个节点取出放入Closed表,并记该节点为n; (4)考察节点n是否为目标节点。若是,则找到了问题的解,成功退出; (5)若节点n不可扩展,则转到第(2)步; (6)扩展节点n,生成子节点ni(i=1,2,……),计算每一个子节点的估价
一般来说,对任意一个状态空间图,当 从初始节点到目标节点有路径存在时, 如果搜索算法能在有限步内找到一条从 初始节点到目标节点的最佳路径,并在 此路径上结束,则称该搜索算法是可纳 的。A*算法是可采纳的。下面我们分三 步来证明这一结论。
13
定理1
对有限图,如果从初始节点S0到目标节 点Sg有路径存在,则算法A*一定成功结 束。
14
定理1证明:
首先证明算法必定会结束。由于搜索图为有限图,如
果算法能找到解,则会成功结束;如果算法找不到解, 则必然会由于Open表变空而结束。因此,A*算法必然 会结束。
然后证明算法一定会成功结束。由于至少存在一
条由初始节点到目标节点的路径,设此路径
S0= n0,n1 ,…,nk =Sg
f*(n)=g*(n) +h*(n)
把估价函数f(n)与 f*(n)相比,g(n)是对g*(n)的一
个估计,h(n)是对h*(n)的一个估计。在这两个估计中,
尽管g真正最小代价,很有可能从初始节点S0到
节点n的真正最小代价还没有找到,故有
g(n) g*(n) 11
A*算法 尚福华
1
A算法
在图搜索算法中,如果能在搜索的每一步都利 用估价函数f(n)=g(n)+h(n)对Open表中的节点 进行排序,则该搜索算法为A算法。由于估价 函数中带有问题自身的启发性信息,因此,A 算法又称为启发式搜索算法。
对启发式搜索算法,又可根据搜索过程中选择 扩展节点的范围,将其分为全局择优搜索算法 和局部择优搜索算法。
值f(ni) (i=1,2,……),并为每一个子节点设置指向父节点的指针,然后将 这些子节点放入Open表中; (7)根据各节点的估价函数值,对Open表中的全部节点按从小到大的 顺序重新进行排序; (8)转第(2)步。
3
由于上述算法的第(7)步要对Open表中的全部 节点按其估价函数值从小到大重新进行排序, 这样在算法第(3)步取出的节点就一定是Open 表的所有节点中估价函数值最小的一个节点。 因此,它是一种全局择优的搜索方式。
有了g*(n) 和h*(n)的定义,如果我们 对A算法(全局择优的启发式搜索算法) 中的g(n)和h(n)分别提出如下限制:
g(n)是对g*(n)的估计,且g(n)>0; h(n)是对h*(n)的下界,即对任意节点
n均有 则称得到的算法为A*算法。
h(n) h*(n)
12
1.A*算法的可纳性
在局部择优搜索中,每当需要扩展节点时,总是从刚生成的子节 点中选择一个估价函数值最小的节点进行扩展。其搜索过程可描 述如下:
(1)把初始节点S0放入Open表中,f(S0)=g(S0)+h(S0); (2)如果Open表为空,则问题无解,失败退出; (3)把Open表的第一个节点取出放入Closed表,并记该节点为n; (4)考察节点n是否为目标节点。若是,则找到了问题的解,成功
对上述算法进一步分析还可以发现:如果取估 价函数f(n)=g(n),则它将退化为代价树的广度 优先搜索;如果取估价函数f(n)=d(n),则它将 退化为广度优先搜索。可见,广度优先搜索和 代价树的广度优先搜索是全局择优搜索的两个 特例。
4
例 1: 八数码难题。
设问题的初始状态S0和目标状态Sg如图5-12所 示,估价函数与请用全局择优搜索解决该题。
10
假设f*(n)为从初始节点S0出发,约束经过节点n到达 目标节点的最小代价值。估价函数f(n)则是f*(n)的估 计值。显然,f*(n)应由以下两部分所组成:一部分是 从初始节点S0到节点n的最小代价,记为g*(n);另一 部分是从节点n到目标节点的最小代价,记为h*(n), 当问题有多个目标节点时,应选取其中代价最小的一 个。因此有