初中数学【四川】南充市高中阶段教育学校招生考试数学
2022年四川省南充市中考数学试卷和答案解析

2022年四川省南充市中考数学试卷和答案解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 2.(4分)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°3.(4分)下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b94.(4分)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35D.2x+4(35﹣x)=945.(4分)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E6.(4分)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差7.(4分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=98.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC 于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°9.(4分)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣10.(4分)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n (m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.﹣2≤m<0C.m>2D.m<﹣2二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)比较大小:2﹣230.(选填>,=,<)12.(4分)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.13.(4分)数学实践活动中,为了测量校园内被花坛隔开的A,B 两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.14.(4分)若为整数,x为正整数,则x的值是.15.(4分)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高m时,水柱落点距O点4m.16.(4分)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)三、参考答案题(本大题共9个小题,共86分)参考答案应写出必要的文字说明,证明过程或演算步骤.17.(8分)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x =﹣1.18.(8分)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.19.(8分)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息参考答案下列问题:项目A B C D515a b人数/人(1)a=,b=.(2)扇形统计图中“B”项目所对应的扇形圆心角为度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.20.(10分)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.21.(10分)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.22.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.23.(10分)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?24.(10分)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.25.(12分)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x 轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.参考答案与解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.【参考答案】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【解析】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.2.【参考答案】解:∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.故选:B.【解析】本题主要考查了图形旋转的性质,三角形的内角和定理,平角的意义,利用旋转不变性参考答案是解题的关键.3.【参考答案】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.【解析】本题考查了合并同类项,单项式除以单项式,同底数幂的除法,幂的乘方与积的乘方,掌握(ab)n=a n b n是解题的关键.4.【参考答案】解:∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.【解析】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.【参考答案】解:在正五边形ABCDE中内角和:180°×3=540°,∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,∴D不符合题意;∵以AB为边向内作正△ABF,∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,∵AE=AB,∴AE=AF,∠EAF=∠FBC=48°,∴A、B不符合题意;∴∠F≠∠EAF,∴C符合题意;故选:C.【解析】此题主要考查正多边形的计算问题、等边三角形的性质,掌握正多边形定义及内角和公式、等边三角形的性质的综合应用是解题关键.6.【参考答案】解:由统计图可知,平均数无法计算,众数无法确定,方差无法计算,而中位数是(9+9)÷2=9,故选:B.【解析】本题考查条形统计图、平均数、中位数、众数、方差,参考答案本题的关键是明确题意,利用数形结合的思想参考答案.7.【参考答案】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=,tan∠FDB=,∴,解得BF=,故选项A错误;故选:A.【解析】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质,参考答案本题的关键是明确题意,利用数形结合的思想参考答案.8.【参考答案】解:∵OF⊥BC,∴∠BFO=90°,∵∠BOF=65°,∴∠B=90°﹣65°=25°,∵弦CD⊥AB,AB为⊙O的直径,∴=,∴∠AOD=2∠B=50°.故选:C.【解析】本题考查垂径定理,圆周角定理,直角三角形的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.9.【参考答案】解:(+)2÷(﹣)=÷=•=﹣,∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab,∵a>b>0,∴a+b=,a﹣b=,∴﹣=﹣=﹣=﹣,故选:B.【解析】本题考查了分式的化简求值,掌握分式的加减法法则,分式的乘除法法则,把分式正确化简是解决问题的关键.10.【参考答案】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.【解析】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,参考答案本题的关键是明确题意,利用二次函数的性质参考答案.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.【参考答案】解:∵2﹣2=,30=1,∴2﹣2<30,故答案为:<.【解析】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.12.【参考答案】解:从中随机抽取一张卡片共有6种等可能结果,抽中生活现象是物理变化的有2种结果,所以从中随机抽取一张卡片,抽中生活现象是物理变化的概率为=,故答案为:.【解析】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.【参考答案】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.【解析】本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理,属于中考常考题型.14.【参考答案】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【解析】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.15.【参考答案】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.【解析】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.16.【参考答案】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接PA,AC.∵A,A1关于DE对称,∴PA=PA1,∴PA1+PC=PA+PC≥AC=,∴PA1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.【解析】本题考查正方形的性质,解直角三角形,翻折变换,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、参考答案题(本大题共9个小题,共86分)参考答案应写出必要的文字说明,证明过程或演算步骤.17.【参考答案】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1时,原式=(﹣1)2﹣4=﹣2.【解析】本题考查整数的混合运算﹣化简求值,解题的关键是熟练灵活运用所学知识解决问题,属于中考常考题型.18.【参考答案】证明:(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∵∠ADM=∠CDN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.【解析】本题考查菱形的性质、全等三角形的判定和性质,参考答案本题的关键是明确题意,利用数形结合的思想参考答案.19.【参考答案】解:(1)被调查的总人数为5÷10%=50(人),∴b=50×20%=10(人),则a=50﹣(5+15+10)=20,故答案为:20,10;(2)扇形统计图中“B”项目所对应的扇形圆心角为360°×=108°,故答案为:108;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,根据题意列表如下:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)共有20种等可能的情况数,其中这两人来自不同班级的有12种,则这两人来自不同班级的概率是=.【解析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【参考答案】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,∴Δ=32﹣4×1×(k﹣2)≥0,解得k≤,即k的取值范围是k≤;(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,∴x1+x1=﹣3,x1x2=k﹣2,∵(x1+1)(x2+1)=﹣1,∴x1x2+(x1+x2)+1=﹣1,∴k﹣2+(﹣3)+1=﹣1,解得k=3,即k的值是3.【解析】本题考查根与系数的关系、根的判别式,参考答案本题的关键是明确一元二次方有根时Δ≥0,以及根与系数的关系.21.【参考答案】解:(1)设双曲线的解析式为y=,∵点A(1,6)在该双曲线上,∴6=,解得k=6,∴y=,∵B(m,﹣2)在双曲线y=上,∴﹣2=,解得m=﹣3,设直线AB的函数解析式为y=ax+b,,解得,即直线AB的解析式为y=2x+4;(2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y 轴,FA∥x轴,BE和FA交于点E,如右图所示,直线BO的解析式为y=ax,∵点B(﹣3,﹣2),∴﹣2=﹣3a,解得a=,∴直线BO的解析式为y=x,,解得或,∴点C的坐标为(3,2),∵点A(1,6),B(﹣3,﹣2),C(3,2),∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC=8×6﹣﹣﹣=48﹣16﹣12﹣4=16.【解析】本题考查反比例函数与一次函数的交点问题、三角形的面积,参考答案本题的关键是明确题意,利用数形结合的思想参考答案.22.【参考答案】(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAC,∴∠OCB+∠DCB=90°,∴OC⊥CD,∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:过点O作OH⊥BC于点H.∵sin∠BAC==,∴可以假设BC=4k,AB=5k,则AO=OC=CE=2.5k,∵OH⊥BC,OC=OB∴CH=BH=2k,∵OA=OB,AC2=AB2﹣BC2,∴OH=AC=k,∴EH=CE﹣CH=2.5k﹣2k=0.5k,∴tan∠CEO===3.【解析】本题考查切线的判定,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.23.【参考答案】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.【解析】本题考查了一元一次方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w关于x的函数关系式;(3)根据各数量之间的关系,正确列出一元一次不等式.24.【参考答案】(1)解:△ABP是直角三角形,理由如下:∵点O是AB的中点,∴AO=OB=AB,∵OP=AB,∴OP=OA=OB,∴∠OBP=∠OPB,∠OAP=∠APO,∵∠OAP+∠APO+∠OBP+∠BPO=180°,∴∠APO+∠BPO=90°,∴∠APB=90°,∴△ABP是直角三角形;(2)证明:如图1,延长AM,BC交于点Q,∵M是CD的中点,∴DM=CM,∵∠D=∠MCQ=90°,∠AMD=∠QMC,∴△ADM≌△QCM(ASA),∴AD=CQ=BC,∵∠BPQ=90°,∴PC=BQ=BC,∴∠CPB=∠CBP,∵∠OPB=∠OBP,∴∠OBC=∠OPC=90°,∴∠OPN=∠OPA+∠APN=90°,∵∠OAP+∠PAN=90°,∠OAP=∠OPA,∴∠APN=∠PAN,∴PN=AN;(3)解:分两种情况:①如图2,点M在CD上时,过点P作GH∥CD,交AD于G,交BC于H,设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,∵PG∥DM,∴△AGP∽△ADM,∴=,即,∴PG=x﹣ax,∵∠CPQ=90°,∴∠CPH+∠QPG=90°,∵∠CPH+∠PCH=90°,∴∠QPG=∠PCH,∴tan∠QPG=tan∠PCH,即=,∴PH•PG=QG•CH,同理得:∠APG=∠PBH,∴tan∠APG=tan∠PBH,即=,∴PG•PH=AG•BH=AG2,∴AG2=QG•CH,即(﹣a)2=a(+a),∴a=,∵PG•PH=AG2,∴(x﹣x)•(5﹣x+x)=(﹣)2,解得:x1=12(舍),x2=,∴DM=;②如图3,当M在DC的延长线上时,同理得:DM=12,综上,DM的长是或12.【解析】本题主要考查了四边形综合题,涉及相似三角形的性质,动点问题,三角函数,三角形全等的性质和判定,直角三角形斜边中线的性质等知识,解题的关键是正确的画出图形,分情况讨论,难度较大.25.【参考答案】解:(1)由题意得,,∴,∴y=﹣;(2)如图1,作直线l∥BC且与抛物线相切于点P1,直线l交y轴于E,作直线m∥BC且直线m到BC的距离等于直线l到BC的距离,∵BC的解析式为y=x﹣4,∴设直线l的解析式为:y=x+m,由=x+m得,x2﹣4x﹣3(m+4)=0,∵Δ=0,∴﹣3(m+4)=4,∴m=﹣,∴x2﹣4x+4=0,y=x﹣,∴x=2,y=﹣,∴P1(2,﹣),∵E(0,﹣),C(0,﹣4),∴F(0,﹣4×2﹣(﹣)),即(0,﹣),∴直线m的解析式为:y=x﹣,∴,∴,,∴P2(2﹣2,﹣2﹣),P3(2+2,2﹣),综上所述:点P(2,﹣)或(2﹣2,﹣2﹣)或(2+2,2﹣);(3)如图2,作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,设D点的横坐标为a,∵BN=DN,∴BD=2BN,N点的横坐标为:,∴OH=,∵NH∥DF,∴△BHN∽△BFD,∴,∴DF=2NH,同理可得:△OMG∽△ONH,∴=,∴MG=2NH,OG=2OH=a+4,∴KF=MG=DF,∵tan∠DEB=2tan∠DBE∴=2•,∴EF=,∵BF=4﹣a,∴EF=,∵EF∥MK,∴△DEF∽△DMK,∴=,∴,∴a=0,∴OG=a+4=4,∴G(﹣4,0),当x=﹣4时,y=﹣﹣4=,∴M(﹣4,).【解析】本题考查了求二次函数的解析式,求一次函数的解析式,一次函数和二次函数图象的交点与方程组之间的关系,相似三角形的判定和性质等知识,解决问题的关键是利用相似三角形寻找线段间的数量关系.。
2006年四川省南充市(课改区)数学试卷

南充市二OO 六年高中阶段学校招生统一考试(课改区)数 学 试 卷(满分100分,考试时间90分)一、选择题(本大题共8个小题,每小题2.5分,共20分)以下每小题都有代号为A 、B 、C 、D 的四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记 2.5分,不填、填错或填出的代号超过一个记0分.1.下列式子中与2()a -计算结果相同的是( ) A .21()a -B .24a a -C .24aa -÷ D .42()a a --2.下列图形中,能肯定12>∠∠的是( )3.已知0a <,那么|2|a 可化简为( ) A .a -B .aC .3a -D .3a4.等腰三角形的底和腰是方程2680x x -+=的两根,则这个三角形的周长为( ) A .8 B .10 C .8或10 D .不能确定 5.某车间6月上旬生产零件的次品数如下(单位:个): 0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的( ) A .众数是4 B .中位数是1.5 C .平均数是2 D .方差是1.25 6.如图,矩形ABCD 中,BE AC ⊥于F , E 恰是CD 的中点,下列式子成立的是( )A .2212BF AF = B .2213BF AF =C .2212BF AF >D .2213BF AF <7.二次函数2y ax bx c =++中,2b ac =,且0x =时4y =-,则( )A .4y =-最大B .4y =-最小C .3y =-最大D .3y =-最小8.如图,在高为2m ,坡角为30的楼梯上铺地毯, 地毯的长度至少应计划( )A .4mB .6m C. D.(2+1 2 1 2 2 1A .B .C .D .(第8题)ABC EF D(第6题)二、填空题(本大题共4个小题,每小题2.5分,共10分) 将答案直接填在题中横线上.9.若不等式30x n -+>的解集是2x <,则不等式30x n -+<的解集是 .10.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是 .11.如图,O 的半径为3,6OA =,AB 切O 于B ,弦BC OA ∥,连结AC ,图中阴影部分的面积为 .12.老师给出一个函数,甲、乙各指出了这个函数的一个性质: 甲:第一、三象限有它的图象;乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数 . 三、(本大题共2个小题,每小题6分,共12分) 13.计算:265222x x x x -⎛⎫÷-- ⎪--⎝⎭.14.有规律排列的一列数:2,4,6,8,10,12,… 它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数? 四、(本大题共2个小题,每小题8分,共16分) 15.已知:如图,OA 平分BAC ∠,12=∠∠. 求证:ABC △是等腰三角形.(第10题)(第11题)ABC16.王老师家在商场与学校之间,离学校1千米,离商场2千米.一天王老师骑车到商场买奖品后再到学校,结果比平常步行直接到校迟20分.已知骑车速度为步行速度的2.5倍,买奖品时间为10分.求骑车的速度. 五、(本大题共2个小题,每小题8分,共16分)17.在三个相同乒乓球上分别写上1,2,3,放入布袋中供甲、乙两人做游戏.规则是: (1)每轮游戏两人各摸一个球,一人摸出记录编号后放回袋中另一人再摸.(2)如果两球的编号之和为奇数,则甲胜;如果两球的编号之和为偶数,则乙胜. 你认为这是否是一个公平的游戏?如果不公平,谁获胜的可能性较大?18.学校计划购买40支钢笔,若干本笔记本(笔记本数超过钢笔数).甲、乙两家文具店的标价都是钢笔10元/支,笔记本2元/本.甲店的优惠方式是钢笔打9折,笔记本打8折;乙店的优惠方式是每买5支钢笔送1本笔记本,钢笔不打折,购买的笔记本打7.5折.试问购买笔记本数在什么范围内到甲店更合算. 六、(本大题共2个小题,每小题8分,共16分)19.已知点(06)A ,-,(30)(2)B C m -,,,三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,可不写画法.)20.如图,PAB PCD ,是O 的两条割线,AB 是O 的直径,AC OD ∥. (1)求证:CD = (先填后证). (2)若56PA PC =,试求ABAD的值.xB七、(本题满分10分)21.如图,直线24y x =+与x 轴、y 轴分别交于A B ,两点,把OAB △绕点O 顺时针旋转90得到OCD △.(1)求经过AB D ,,三点的抛物线的解析式. (2)在所求抛物线上是否存在点P ,使得直线CP 把OCD △分成面积相等的两部分?如果存在,求出点P 的坐标;如果不存在,请说明理由.南充市二OO 六年高中阶段学校招生统一考试(课改区)数学试题参考答案及评分意见说明:1. 其他解法,如使用“⇒”,参照给出答案步骤计分.2. 分步计分,某步出错,前面满计.后续部分未改变内容和难度,可续计后续分数之半或13.二次错者,只计前面完全正确部分. 3. 计算问题允许省略非关键性步骤;明显笔误酌情少扣;公式定理出错不予计分. 一、1.D 2.C 3.C 4.B 5.D 6.A 7.C 8.D 二、9.2x > 10.国 11.3π212.(略,0k >的反比例函数即可) 三、13.解:原式265(2)22x x x x -⎡⎤=÷-+⎢⎥--⎣⎦2(3)5(2)(2)222x x x x x x -+-⎡⎤=÷-⎢⎥---⎣⎦············································· (2分) 22(3)5(4)22x x x x ---=÷-- ································································ (3分)22(3)922x x x x --=÷--·········································································· (4分)x2(3)22(3)(3)x x x x x --=-+- ······························································ (5分)122(3)(3)(3)3x x x x =-=--+-+. ······································ (6分) 14.解:(1)它的每一项可用式子1(1)n n +-(n 是正整数)来表示. ······················· (4分) (2)它的第100个数是100-. ··················································································· (5分)(3)2006不是这列数中的数,因为这列数中的偶数全是负数.(或正数全是奇数.) ··········· ········································································································································· (6分) 注:它的每一项也可表示为(1)n n --(n 是正整数).表示如下照样给分:当n 为奇数时,表示为n .当n 为偶数时,表示为n -.四、15.证明:作OE AB ⊥于E ,OF AC ⊥于F .…………(1又34=∠∠,(注:与OA 平分BAC ∠等同,直用)OE OF ∴=.………………………………(2分) 12=∠∠,OB OC ∴=.………………………………(3分)Rt Rt ()OBE OCF HL ∴△≌△.…………(5分)56∴=∠∠.…………………………………(6分)1526∴+=+∠∠∠∠, 即ABC ACB =∠∠. ··································································································· (7分) AB AC ∴=.(注:此步可不写.) ABC ∴△是等腰三角形. ······························································································ (8分) 16.解:设步行的速度为x 千米/时,则骑车速度为2.5x 千米/时.这天王老师骑车到校的行程为5km ,比平常步行多用时间10分.由题意,得 ········ (1分) 51012.560x x -=. ··········································································································· (4分) 即2116x x -=. 116x ∴=. 6x ∴=. ························································································································ (6分) 经检验6x =是原方程的根. ························································································· (7分) 当6x =时,2.515x =.答:骑车的速度为15千米/时.····················································································· (8分) 五、 C········································································································································· (4分) 由表可知,编号之和为奇数的可能性有4种,编号之和为偶数的可能性有5种. 即P (编号之和为奇数)49=,P (编号之和为偶数)59=. ································· (6分) 因此,这不是一个公平的游戏.乙获胜的可能性较大. ··································································································· (8分) 注:不列表画树状图亦可.18.解:设购买笔记本数(40)x x >本到甲店更合算. ··············································· (1分) 到甲店购买应付款100.94020.8x ⨯⨯+⨯; ································································ (2分) 到乙店购买40支钢笔可获赠8本笔记本,实际应付款104020.75(8)x ⨯+⨯-. ········································································· (4分) 由题意,得100.94020.8104020.75(8)x x ⨯⨯+⨯<⨯+⨯-. ·················································· (5分) 360 1.6400 1.512x x +<+-.····················································································· (6分) 0.128x <. 280x ∴<. ··················································································································· (7分)答:购买笔记本数小于280本(大于40本)时到甲店更合算. ································ (8分) 注:一处也未指明笔记本数大于40本扣1分.六、19.解:设直线AB 的解析式为1y k x b =+. ····················································· (1分) 则1630b k b =-⎧⎨-+=⎩,.············································································································ (2分)解得126k b =-=-,.所以直线AB 的解析式为26y x =--.………(3分)点(2)C m ,在直线26y x =--上, 262m ∴--=,4m ∴=-.即点C 的坐标为(42)C -,.……………………(4分) 由于(06)(30)A B --,,,都在坐标轴上, 反比例函数的图象只能经过点(42)C -,. ···································································· (5分)设经过点C 的反比例函数的解析式为2k y x=. 则224k =-,28k ∴=-.x即经过点C 的反比例函数的解析式为8y x=-.·························································· (6分) 图象如图所示.(正确) ································································································· (8分) 20.(1)求证:CD BD =. ························································································· (1分) 证明:AC OD ∥,12∴=∠∠.OA OD =,23∴=∠∠.………………(2分) 13∴=∠∠.CD BD ∴=.CD BD ∴=. ················································································································ (3分)(2)解:AC OD ∥, PA AO PC CD ∴=. ·············································································································· (4分) 56PA PC =,CD BD =, 56AO BD ∴=, ·················································································································· (5分) 2AB AO =, 53AB BD ∴=. ··················································································································· (6分) AB 是O 的直径,90ADB ∴=∠,222AD BD AB ∴+=. ································································································· (7分)由53AB BD =,设53AB k BD k ==,, 4AD k ∴=. 54AB AD ∴=. ·················································································································· (8分) 七、21.解:(1)由已知可知(20)(04)A B -,,,,(02)(40)C D ,,,. ····················· (2分) 设经过(20)(04)A B -,,,,(40)D ,的抛物线为2y ax bx c =++. ···························· (3分)则42041640a b c c a b c -+=⎧⎪=⎨⎪++=⎩,,,………………………………(4分) 解得1142a b c =-==,,. ∴抛物线的解析式为2142y x x =-++.…………(5分)Bx(2)若存在点P 满足条件,则直线CP 必经过OD 的中点(20)E ,.……(6分) 易知经过(02)(20)C E ,,,的直线为2y x =-+. ························································ (7分) 于是可设点P 的坐标为(2)P m m -+,. 将(2)P mm -+,代入2142y x x =-++, ··································································· (8分) 得21422m m m -++=-+, 整理,得2440m m --=.解得1222m m =+=- 于是满足条件的点P 有两个:12(2(2P P +--,. ································································· (10分)。
2008年四川省南充市数学中考真题(word版含答案)

.若1O 的半径为,2O 的半径为,则1O 与2O 的位置关系是( .外离 B .内切C .相交1是O 直径,130,则∠65.25C 15 35从O外一点引O的两条切线,两点不重合)作O的切线,上的一个动点(点与A B△的周长是,则PED本大题共2个小题,每小题.如图,ABCD的对角线相交于点OF(填“>”已知O的直径CO并延长交CG是O的切线吗?说明理由;E是OB的中点;,求CD的长.30.折叠后,点)若P的半径为P与两坐标轴都相切时,求P半径R的值.理由:四边形)(24)B -,反比例函数的解析式为:点y kx =+42k b k b -+⎧∴⎨+⎩)C 是直线0y =时,(20)C -,是O 的切线理由:CG AD ∥180FCG CFD +∠= CF AD ⊥90CFD ∴∠= 90.是O 的切线.)第一种方法:证明:连接AC ,如图(第CF AD ⊥,AE 且CF AE ,AC AD ∴=6030··········中,AB 为O 的直径90ADB ∴∠=又90AFO ∠=ADB AFO ∴∠=∠OE CE⊥AE CD且AE过圆心∴=CE DE∴=BE OEAB=)解:81AB=42=又BE OEOE=····2∴=⨯=CE OE3023⊥AB CD∴=2CD CE七、(本大题281288<∴最佳方案为:只在折购买90个乒乓球.八、(本大题30,AO⨯30OA6060=603)P与两坐标轴相切圆心P应在第一、三象限或第二、四象限的角平分线上.=或即在直线y xP在直线y=R>==∴R x R>R x∴==∴的半径P。
2012年四川南充中考数学真题(精析版)

南充市二O一二年高中阶段学校招生统一考试数学试卷(解析版)(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1.计算2-(-3)的结果是().(A)5 (B)1 (C)-1 (D)-5考点:有理数的计算专题:计算题。
分析:本题需先做有理数的减法把括号去掉,即可得出正确答案.解答:解:2-(-3)=2+3,=5.故选A.点评:本题主要考查了有理数的加减法,在解题时去括号要变号,是解题的关键.2.下列计算正确的是()(A)x3+ x3=x6(B)m2²m3=m6(C)3-2=3 (D)14³7=72考点:整式的加减、整式的基本性质、实数的运算。
专题:计算题。
分析:本题需先对每一项分别进行解答,得出正确的结果,最后选出本题的答案即可.解答:解:A、∵x3+ x3=2x3,故本答案错误;(B)m2²m3=m5本答案错误(C)3-2再不能合并了7 ³7=72答案正确(D)14³7=2点评:本题主要考查学生整式的加减、整式的基本性质、实数的运算等基本的运算能力。
3.下列几何体中,俯视图相同的是().考点:三视图的基本知识专题:几何题。
分析:① 俯视图是一个没圆心的圆 ②③俯视图是一个带圆心的圆 ④俯视图是两个不带圆心的同心圆解答:① 俯视图是一个没圆心的圆 ②③俯视图是一个带圆心的圆 ④俯视图是两个不带圆心的同心圆 答案选C点评:主要考查学生对三视图基础知识的理解和掌握4.下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =x8-( C )y =5x 2+6 (D )y = -0.5x -1 考点:正比例函数、反比例函数、一次比例函数 二次比例函数专题:常规题型。
【真题】南充市中考数学试卷含答案解析()

四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。
南充市2015年初中毕业考试暨高中阶段学校招生统一考试数学试卷

南充市2015年初中毕业考试暨高中阶段学校招生统一考试数学试卷全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.一、选择题(本题满分30分,共10小题,每小题3分) 1.下列计算错误的是( )A .-(-2)=2B .822=C .22x +32x =52x D .235()a a =2.保护水资源,人人有责任,我国是缺水的国家,目前可利用的淡水资源的总量仅仅为8990003米,用科学计数法表示这个数是( )A .630.89910⨯米B .538.9910⨯米C .438.9910⨯米D .3389.910⨯米3.如图1,在O 中,圆心角60BOC ∠=︒,则圆周角BAC ∠等于( )A .60︒B .50︒C .40︒D .30︒ 4.下列图形中,是轴对称图形的是( )A .B .C .D .5.一次函数1y x =--不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A .12 B .13 C . 16 D .187、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( )A.-4<a<5B.a>5C.a<-4D.无解8.二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9.为积极响应南充市创建“全国卫生城市”的号召,某校1 500名学生参加了卫生知识竞赛,成绩记为A 、B 、C 、D 四等。
从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是( ) A .样本容量是200 B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%OC BA图1D 等C 等B 等25%A 等60%人数等级2050DC B AD .估计全校学生成绩为A 等大约有900人10.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <3 二、填空题(本题满分18分,共6小题,每小题3分) 11.分解因式:=-2282b a .12.已知数据2,3,4,5,6,x 的平均数是4,则x 的值是 . 13.如图6,在平行四边形ABCD 中,DB=DC ,65=∠A ,CE ⊥BD 于E , 则=∠BCE .14、如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm , 弧长是6πcm ,那么围成的圆锥的高度是 cm .15 如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________。
2022年四川省南充市中考数学试卷(解析版)
2022年四川省南充市中考数学试卷(真题)一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)(2022•南充)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 2.(4分)(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°3.(4分)(2022•南充)下列计算结果正确的是()A.5a﹣3a=2 B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b94.(4分)(2022•南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35 B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35 D.2x+4(35﹣x)=945.(4分)(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E 6.(4分)(2022•南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差7.(4分)(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1 B.DC=3 C.AE=5 D.AC=98.(4分)(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°9.(4分)(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣10.(4分)(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n (m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)(2022•南充)比较大小:2﹣230.(选填>,=,<)12.(4分)(2022•南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.13.(4分)(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A,B 两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.14.(4分)(2022•南充)若为整数,x为正整数,则x的值是.15.(4分)(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高m时,水柱落点距O点4m.16.(4分)(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A处,连接A1B,将A1B绕点B1顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17.(8分)(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x =﹣1.18.(8分)(2022•南充)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.19.(8分)(2022•南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:项目A B C D人数/人 5 15 a b(1)a=,b=.(2)扇形统计图中“B”项目所对应的扇形圆心角为度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.20.(10分)(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.21.(10分)(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.22.(10分)(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC =,求tan∠CEO的值.23.(10分)(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300 100 (1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?24.(10分)(2022•南充)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.25.(12分)(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.2022年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)(2022•南充)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解答】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【分析】利用旋转不变性,三角形内角和定理和平角的意义解答即可.【解答】解:∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.故选:B.【点评】本题主要考查了图形旋转的性质,三角形的内角和定理,平角的意义,利用旋转不变性解答是解题的关键.3.(4分)(2022•南充)下列计算结果正确的是()A.5a﹣3a=2 B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【分析】根据合并同类项判断A选项;根据单项式除以单项式判断B选项;根据同底数幂的除法判断C选项;根据积的乘方判断D选项.【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项不符合题意;故选:D.【点评】本题考查了合并同类项,单项式除以单项式,同底数幂的除法,幂的乘方与积的乘方,掌握(ab)n=a n b n是解题的关键.4.(4分)(2022•南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35 B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35 D.2x+4(35﹣x)=94【分析】由上有三十五头且鸡有x只,可得出兔有(35﹣x)只,利用足的数量=2×鸡的只数+4×兔的只数,即可得出关于x的一元一次方程,此题得解.【解答】解:∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.(4分)(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E【分析】根据正多边形定义可知,每一个内角相等,每一条边相等,再根据内角和公式求出每一个内角,根据以AB为边向内作正△ABF,得出∠FAB=∠ABF=∠F=60°,AF=AB=FB,从而选择正确选项.【解答】解:在正五边形ABCDE中内角和:180°×3=540°,∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,∴D不符合题意;∵以AB为边向内作正△ABF,∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,∵AE=AB,∴AE=AF,∠EAF=∠FBC=48°,∴A、B不符合题意;∴∠F≠∠EAF,∴C符合题意;故选:C.【点评】此题主要考查正多边形的计算问题、等边三角形的性质,掌握正多边形定义及内角和公式、等边三角形的性质的综合应用是解题关键.6.(4分)(2022•南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差【分析】根据条形统计图中的数据,可以判断出平均数、众数、方差无法计算,可以计算出中位数,本题得以解决.【解答】解:由统计图可知,平均数无法计算,众数无法确定,方差无法计算,而中位数是(9+9)÷2=9,故选:B.【点评】本题考查条形统计图、平均数、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4分)(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1 B.DC=3 C.AE=5 D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC 的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDF+∠FDB=90°,∵∠CDF+∠DEC=90°,∴∠DEC=∠FDB,∵∠C=∠DFB,CD=FD,∴△ECD≌△DFB(AAS),∴CE=BF=4,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.(4分)(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°【分析】先根据三角形的内角和定理可得∠B=25°,由垂径定理得:=,最后由圆周角定理可得结论.【解答】解:∵OF⊥BC,∴∠BFO=90°,∵∠BOF=65°,∴∠B=90°﹣65°=25°,∵弦CD⊥AB,AB为⊙O的直径,∴=,∴∠AOD=2∠B=50°.故选:C.【点评】本题考查垂径定理,圆周角定理,直角三角形的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.9.(4分)(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣【分析】利用分式的加减法法则,乘除法法则把分式进行化简,由a2+b2=3ab,得出(a+b)2=5ab,(a﹣b)2=ab,由a>b>0,得出a+b=,a﹣b=,代入计算,即可得出答案.【解答】解:(+)2÷(﹣)=÷=•=﹣,∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab,∵a>b>0,∴a+b=,a﹣b=,∴﹣=﹣=﹣=﹣,故选:B.【点评】本题考查了分式的化简求值,掌握分式的加减法法则,分式的乘除法法则,把分式正确化简是解决问题的关键.10.(4分)(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n (m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2【分析】根据题意和题目中的抛物线,可以求得抛物线的对称轴,然后分类讨论即可得到m的取值范围.【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)(2022•南充)比较大小:2﹣2<30.(选填>,=,<)【分析】先分别计算2﹣2和30的值,再进行比较大小,即可得出答案.【解答】解:∵2﹣2=,30=1,∴2﹣2<30,故答案为:<.【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.12.(4分)(2022•南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.【分析】用物理变化的张数除以总张数即可.【解答】解:从中随机抽取一张卡片共有6种等可能结果,抽中生活现象是物理变化的有2种结果,所以从中随机抽取一张卡片,抽中生活现象是物理变化的概率为=,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A,B 两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是20 m.【分析】利用三角形中位线定理解决问题即可.【解答】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.【点评】本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理,属于中考常考题型.14.(4分)(2022•南充)若为整数,x为正整数,则x的值是4或7或8 .【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.15.(4分)(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8 m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.16.(4分)(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A处,连接A1B,将A1B绕点B1顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是①②③.(填写序号)【分析】①正确.根据SAS证明三角形全等即可;②正确.过点D作DT⊥CA1于点T,证明∠ADE+∠CDT=45°,∠CDT=∠BCA1即可;③正确.连接PA,AC.因为A,A1关于DE对称,推出PA=PA1,推出PA1+PC =PA+PC≥AC=,可得结论;④错误.过点A1作A1H⊥AB于点H,求出EB,A1H,可得结论.【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接PA,AC.∵A,A1关于DE对称,∴PA=PA1,∴PA1+PC=PA+PC≥AC=,∴PA1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.【点评】本题考查正方形的性质,解直角三角形,翻折变换,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17.(8分)(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x =﹣1.【分析】提取公因式x+2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1时,原式=(﹣1)2﹣4=﹣2.【点评】本题考查整数的混合运算﹣化简求值,解题的关键是熟练灵活运用所学知识解决问题,属于中考常考题型.18.(8分)(2022•南充)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【分析】(1)根据菱形的性质和全等三角形的判定SAS,可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质,可以得到DE=DF,DM=DN,从而可以得到ME=NF.【解答】证明:(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.【点评】本题考查菱形的性质、全等三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)(2022•南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:项目A B C D人数/人 5 15 a b(1)a=20 ,b=10 .(2)扇形统计图中“B”项目所对应的扇形圆心角为108 度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.【分析】(1)由A项目人数及其所占百分比可得总人数,总人数乘以D项目人数所占比例求出b,再根据四个项目人数之和等于总人数得出a;(2)用360°乘以B项目人数所占比例即可;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)被调查的总人数为5÷10%=50(人),∴b=50×20%=10(人),则a=50﹣(5+15+10)=20,故答案为:20,10;(2)扇形统计图中“B”项目所对应的扇形圆心角为360°×=108°,故答案为:108;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,根据题意列表如下:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)共有20种等可能的情况数,其中这两人来自不同班级的有12种,则这两人来自不同班级的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.【分析】(1)根据一元二次方程x2+3x+k﹣2=0有实数根,可知Δ≥0,即可求得k的取值范围;(2)根据根与系数的关系和(x1+1)(x2+1)=﹣1,可以求得k的值.【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,∴Δ=32﹣4×1×(k﹣2)≥0,解得k≤,即k的取值范围是k≤;(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,∴x1+x1=﹣3,x1x2=k﹣2,∵(x1+1)(x2+1)=﹣1,∴x1x2+(x1+x2)+1=﹣1,∴k﹣2+(﹣3)+1=﹣1,解得k=3,即k的值是3.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确一元二次方有根时Δ≥0,以及根与系数的关系.21.(10分)(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.【分析】(1)根据点A的坐标可以求得双曲线的解析式,然后即可求得点B 的坐标,再用待定系数法即可求得直线AB的解析式;(2)先求出直线BO的解析式,然后求出点C的坐标,再用割补法即可求得△ABC的面积.【解答】解:(1)设双曲线的解析式为y=,∵点A(1,6)在该双曲线上,∴6=,解得k=6,∴y=,∵B(m,﹣2)在双曲线y=上,∴﹣2=,解得m=﹣3,设直线AB的函数解析式为y=ax+b,,解得,即直线AB的解析式为y=2x+4;(2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y轴,FA∥x轴,BE 和FA交于点E,如右图所示,直线BO的解析式为y=ax,∵点B(﹣3,﹣2),∴﹣2=﹣3a,解得a=,∴直线BO的解析式为y=x,,解得或,∴点C的坐标为(3,2),∵点A(1,6),B(﹣3,﹣2),C(3,2),∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC=8×6﹣﹣﹣=48﹣16﹣12﹣4=16.【点评】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10分)(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.【分析】(1)连接OC,证明OC⊥CD即可;(2)过点O作OH⊥BC于点H.由sin∠BAC==,可以假设BC=4k,AB =5k,则AC=OC=CE=2.5k,用k表示出OH,EH,可得结论.【解答】(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAC,∴∠OCB+∠DCB=90°,∴OC⊥CD,∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:过点O作OH⊥BC于点H.∵sin∠BAC==,∴可以假设BC=4k,AB=5k,则AO=OC=CE=2.5k,∵OH⊥BC,∴CH=BH=2k,∵OA=OB,∴OH=AC=k,∴EH=CE﹣CH=2.5k﹣2k=0.5k,∴tan∠CEO ===3.【点评】本题考查切线的判定,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.23.(10分)(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x =300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.【点评】本题考查了一元一次方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w关于x的函数关系式;(3)根据各数量之间的关系,正确列出一元一次不等式.24.(10分)(2022•南充)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.【分析】(1)由已知得:OP=OA=OB,根据等腰三角形的性质和三角形内角和定理可得结论;(2)如图1,延长AM,BC交于点Q,先证明△ADM≌△QCM(ASA),得AD=CQ =BC,根据直角三角形斜边中线的性质可得PC=BQ=BC,由等边对等角和等量代换,及角的和差关系可得结论;(3)分两种情况:作辅助线,构建相似三角形,设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,①如图2,点M在CD上时,②如图3,当M在DC的延长线上时,根据同角的三角函数和三角形相似可解答.【解答】(1)解:△ABP是直角三角形,理由如下:∵点O是AB的中点,∴AO=OB=AB,∵OP=AB,∴OP=OA=OB,∴∠OBP=∠OPB,∠OAP=∠APO,。
四川省南充高级中学2022年面向省内外招收高中新生数学试卷(谢)
四川省南充高级中学2022年面向省内外招收高中新生考试数 学 试 卷(时间:120分钟 满分150分)一、填空题(每题5分,共70分,请将答案直接填在题中空白处)1.若a >0,b <0,则|a -b +1|-|b -a -1|的值为__________.2.若a 、b 都是正数,且b a b a +=-211,则22ba ab -=__________. 3.若x 、y 都是实数,且|53|1692---=+-y x x x ,则13x 2-y 的平方根为__________.4.已知a x =-3,y 2=b (y <0)且)4(8)4(2a b b a >=-,18)(33=+b a ,则xy 的值为__________.5.化简ab a ab a a +-的结果是__________.6.函数32)2(0+---=x x x y 中自变量x 的取值范围是__________. 7.若1222)(--+=n nx n n y 是二次函数,则n 的值为__________. 8.已知012=-+x x ,则2006223++x x =__________.9.右图是一个正方体的展开图,标注了字母P的面是正方体的正面,若正方体的左侧面与右侧面所标注的数值相等,则x 的值为__________. 10.如图,⊙M 与x 轴交于点A (2,0)、B (8,0),与y 轴切于点C ,则M 的坐标是__________.11.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式: 3x 2-213x-2P第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15……按照上述规律排下去,那么第10行从左边数第5个数等于__________.12.在Rt △ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,tanA 、tanB 是关于x的一元二次方程026371222=+-+-m m mx x 的两个实根,若c =10,a >b ,则ba =__________.13.已知:如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,则DMAB =__________. 14.下列所给命题中:①不等式x >2+ax 的解为ax ->12; ②圆的外切四边形的周长为4,它的一组对边中点连线长l 的取值范围或取值是0<l ≤1;③已知正方形的周长为x ,它的外接圆半径为y ,则y 与x 的函数关系是x y 82=; ④一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,6,5,9,10,7.这名学生射击环数的标准差是3.其中正确的命题是_______________(请将你认为正确命题的序号都填在题中横线上).二、选择题(每小题5分,共20分。
2021年四川省南充市高中阶段学校招生数学真题含答案解析(含答案)
南充市二O 一二年高中阶段学校招生统一考试数 学 试 卷(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1.计算2-(-3)的结果是( ).(A )5 (B )1 (C )-1 (D )-52.下列计算正确的是( )(A )x 3+ x 3=x 6 (B )m 2·m 3=m 6 (C )3-=3 (D )×=73.下列几何体中,俯视图相同的是( ).(A)①② (B )①③ (C )②③ (D )②④① ② ③ ④4.下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =( C )y =5x 2+6 (D )y = -0.5x -15.方程x (x -2)+x -2=0的解是( )(A )2 (B )-2,1 (C )-1 (D )2,-16.矩形的长为x ,宽为y ,面积为9,则y 与x221472x8之间的函数关系用图像表示大致为( )7.在一次学生田径运动会上。
参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数和众数是(A )1.65,1.70 (B )1.70,1.70 (C )1.70,1.65(D )3,48.在函数y=中,自变量的取值范围是A. x ≠ B.x ≤ C.x ﹤ D.x ≥9.一个圆锥的侧面积是底面积的2倍。
则圆锥侧面展开图的扇形的圆心角是A .1200 B.1800 C.2400 D.300010.如图,平面直角坐标系中,⊙O 半径长为1.点⊙P (),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,的值为2121--x x21212121(A )3 (B )1 (C )1,3 (D )±1,±3二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.11.不等式x+2>6的解集为 12.分解因式x 2-4x-12=13.如图,把一个圆形转盘按1﹕2﹕3﹕4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为14. 如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 cm.三、(本大题共3个小题,每小题6分,共18分)15.计算:+16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同1+a a 121--a a(2)两次取的小球的标号的和等于417.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD,求证:∠B=∠E四、(本大题共2个小题,每小题8分,共16分)18.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若2(x1+x2)+ x1x2+10=0.求m的值.19.矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:⊿AEF∽⊿DCE(2)求tan∠ECF的值.五、(本题满分8分)20.学校6名教师和234名学生集体外出活动,准备租用445座大客车或30座小客车,若租用1辆大车2辆小车供需租车费1000元。
2016年四川省南充市中考数学试卷-答案
3AM AD ;∴AN AM AD ;故②正确;AM AD ,故③正确;在正五边形ABCDE 中,∵12EBCS BC EH ==⨯故④错误;故选C.AM AD ; AM AD ,列方程得到1AD =+xy yy xy=,故答案为:【提示】根据分式的约分,即可解答∴能完全覆盖这个平面图形的圆面的最小半径是50mm.故答案为:50.18.【答案】(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率33==;(2)画树状图为:19.【答案】(1)证明:在ABD△和ACE△中,12AB ACAD AE=⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE△≌△()SAS,∴BD CE=;(2)证明:∵12∠=∠,∴12DAE DAE∠+∠=∠+∠,即B A N C A M∠=∠,由(1)得:ABD ACE△≌△,∴B C ∠=∠,在ACM △和ABN △中,C B AC AB CAM BAN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ACM ABN ASA △≌△,∴M N ∠=∠.【提示】(1)由SAS 证明ABD ACE △≌△,得出对应边相等即可(2)证出BAN CAM ∠=∠,由全等三角形的性质得出B C ∠=∠,由B C ∠=∠证明ACM ABN △≌△,得出对应角相等即可.【考点】全等三角形的判定及性质,三角形内角和定理20.【答案】(1)根据题意得2(6)4(21)0m ∆-+-=≥,解得4m ≤;433=,即坐标代入直线解析式求出是O 的切线BM x =,OB【提示】(1)如图作OM AB ⊥于M ,根据角平分线性质定理,可以证明OC OM =,由此即可证明. (2)设BM x =,OB y =,列方程组即可解决问题.【考点】切线的判定,相似三角形的判定及性质,三角函数的概念,勾股定理.23.【答案】(1)50,(020)1000,(2030)50500(3060)t t s t t t ≤≤⎧⎪=<≤⎨⎪-<≤⎩;(2)设小明的爸爸所走的路程s 与步行时间t 的函数关系式为:s kt b =+,则251000250k b b +=⎧⎨=⎩,解得,30250k b =⎧⎨=⎩,则小明和爸爸所走的路程与步行时间的关系式为:30250s t =+,当5050030250t t -=+,即37.5min t =时,小明与爸爸第三次相遇;(3)302502500t +=,解得,75t =,则小明的爸爸到达公园需要75min ,∵小明到达公园需要的时间是60min ,∴小明希望比爸爸早20min 到达公园,则小明在步行过程中停留的时间需减少5min .【提示】(1)根据函数图形得到020t ≤≤、2030t <≤、3060t <≤时,小明所走路程s 与时间t 的函数关系式;(2)利用待定系数法求出小明的爸爸所走的路程s 与时间t 的函数关系式,列出二元一次方程组解答即可; (3)分别计算出小明的爸爸到达公园需要的时间、小明到达公园需要的时间,计算即可. 【考点】一次函数的综合运用,数形结合的思想方法2代入得到1a =-,∴抛物线的解析式为2152y x x -=-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:计算-(-5)的结果是().(A)5 (B)-5 (C)(D)-试题2:如图,立体图形的主视图是().试题3:下列等式成立的是().(A)(B)(C)(D)试题4:评卷人得分三根木条的长度如图,能组成三角形的是().试题5:计算结果是().(A)0 (B)1 (C)-1 (D)x试题6:如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是().(A)1秒(B)2秒(C)3秒(D)4秒试题7:A、B、C、D四个班各选10名同学参加学校1 500米长跑比赛,各班选手平均用时及方差如下表:班A班B班C班D班平均用时(分钟) 5 5 5 5方差0.15 0.16 0.17 0.14各班选手用时波动性最小的是().(A)A班(B)B班(C)C班(D)D班试题8:甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是().(A)从甲箱摸到黑球的概率较大(B)从乙箱摸到黑球的概率较大(C)从甲、乙两箱摸到黑球的概率相等(D)无法比较从甲、乙两箱摸到黑球的概率试题9:如图,直线与双曲线相交于点A,点A的纵坐标为3,k的值为().(A)1 (B)2(C)3 (D)4试题10:如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是().(A)(B)若MN与⊙O相切,则(C)若∠MON=90°,则MN与⊙O相切(D)l1和l2的距离为2试题11:使有意义的x取值范围是______.试题12:如图,□ABCD中,点A关于点O的对称点是点____.试题13:在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是___________.试题14:如果方程的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tan A的值为___试题15:计算:.试题16:如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.求证:四边形ABCD是等腰梯形.试题17:电视台在南充城市某居民小区对电视节目的收视情况进行抽样调查,每人只能在被调查的五类电视节目中选择一类“最喜欢”的电视节目,将统计结果绘制了两幅不完整的统计图(图1,图2).请根据图中信息解答问题:(1)这次抽样调查了多少人?(2)在扇形统计图中,最喜欢娱乐节目对应的圆心角比最喜欢戏曲节目对应的圆心角大90°,调查中最喜欢娱乐节目比最喜欢戏曲节目的多多少人?(3)估计南充城区有100万人中最喜欢体育节目的有多少人?试题18:关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.试题19:如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.(1)求证:△ABD∽△CED.(2)若AB=6,AD=2CD,求BE的长.试题20:如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?(图1)(图2)试题21:如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC, OE=BC.(1)求∠BAC的度数.(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形.(3)若BD=6,CD=4,求AD的长.试题22:已知抛物线上有不同的两点E和F.(1)求抛物线的解析式.(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.(3)当m,n为何值时,∠PMQ的边过点F.试题1答案: A试题2答案: B试题3答案: A试题4答案: D试题5答案: C试题6答案: C试题7答案: D试题8答案: B试题9答案: C试题10答案:B试题11答案:X.>=1试题12答案:C试题13答案:接近试题14答案:或试题15答案:解:原式===1.试题16答案:证明:∵MA=MD,∴△MAD是等腰三角形,∴∠DAM=∠ADM.∵AD∥BC,∴∠AMB=∠DAM,∠DMC=∠ADM.∴∠AMB=∠DMC.又∵点M是BC的中点,∴BM=CM.在△AMB和△DMC中,∴△AMB≌△DMC.∴AB=DC,四边形ABCD是等腰梯形.试题17答案:解:(1)这次抽样调查人数为:(人);(2)最喜欢娱乐节目比最喜欢戏曲节目的多:=750(人);(3)估计南充城区最喜欢体育节目的有:=25(万人).答:(1)这次抽样调查了3000人;(2)最喜欢娱乐节目比最喜欢戏曲节目的多750人;(3)估计南充城区最喜欢体育节目的有25万人.试题18答案:解:(1)方程有两个不相等的实数根,∴>0.即,解得,.(2)若k是负整数,k只能为-1或-2.如果k=-1,原方程为.解得,,.(如果k=-2,原方程为,解得,,.)试题19答案:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.∠ACF=120°.∵CE是外角平分线,∴∠ACE=60°.∴∠BAC=∠ACE.又∵∠ADB=∠CDE,∴△ABD∽△CED.(2)解:作BM⊥AC于点M,AC=AB=6.∴AM=CM=3,BM=AB·sin60°=.∵AD=2CD,∴CD=2,AD=4,MD=1.在Rt△BDM中,BD==.由(1)△ABD∽△CED得,,,∴ED=,∴BE=BD+ED=.试题20答案:解:(1)以点O为原点,AB所在直线为x轴建立直角坐标系(如图).M(0,5),B(2,0),C(1,0),D(,0)设抛物线的解析式为,抛物线过点M和点B,则,.即抛物线解析式为.当x=时,y=;当x=时,y=.即P (1,),Q (,)在抛物线上.当竖直摆放5个圆柱形桶时,桶高=×5=.∵<且<,∴网球不能落入桶内.(2)设竖直摆放圆柱形桶m个时网球可以落入桶内,由题意,得,≤m≤.解得,≤m≤.∵m为整数,∴m的值为8,9,10,11,12.或12个时,网球可以落入桶内.∴当竖直摆放圆柱形桶8,9,10,11(1)解:连结OB和OC.∵OE⊥BC,∴BE=CE.∵OE=BC,∴∠BOC=90°,∴∠BAC=45°.(2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°.由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°.∴∠GAF=∠BAG+∠CAF+∠BAC=90°.∴四边形AFHG是正方形.(3)解:由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4.设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102.解得,x1=12,x2=-2(不合题意,舍去).∴AD=12.试题22答案:解:(1)抛物线的对称轴为.∵抛物线上不同两个点E和F的纵坐标相同,∴点E和点F关于抛物线对称轴对称,则,且k≠-2.∴抛物线的解析式为.(2)抛物线与x轴的交点为A(4,0),与y轴的交点为B(0,4),∴AB=,AM=BM=.在∠PMQ绕点M在AB同侧旋转过程中,∠MBC=∠DAM=∠PMQ=45°,在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,在直线AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°.∴∠BCM=∠AMD.故△BCM∽△AMD.∴,即,.故n和m之间的函数关系式为(m>0).(3)∵F在上,∴,化简得,,∴k1=1,k2=3.即F1(-2,0)或F2(-4,-8).①MF过M(2,2)和F1(-2,0),设MF为,则解得,∴直线MF的解析式为.直线MF与x轴交点为(-2,0),与y轴交点为(0,1).若MP过点F(-2,0),则n=4-1=3,m=;若MQ 过点F(-2,0),则m=4-(-2)=6,n =.②MF过M(2,2)和F1(-4,-8),设MF 为,则解得,∴直线MF的解析式为.直线MF与x轴交点为(,0),与y轴交点为(0,).若MP过点F(-4,-8),则n=4-()=,m=;若MQ过点F(-4,-8),则m=4-=,n=.故当或时,∠PMQ的边过点F.。