电冰箱温度控制系统设计样本

合集下载

冰箱温度控制器的设计

冰箱温度控制器的设计

目录摘要 (1)引言 (2)1 总的设计方案 (3)1.1总体方案 (3)1.2方案选择 (5)2系统硬件设计 (7)2.1系统结构图 (7)2.2微处理器 (7)2.3温度传感器 (9)2.4显示电路 (11)2.5功能按键 (12)2.6压缩机,风机,电磁阀控制 (13)2.7过欠压保护 (13)3 模糊控制算法 (15)3.1对精确值的模糊化处理 (16)3.2模糊推理规则的归纳 (17)3.3模糊量向精确量的转化 (18)4系统软件设计 (19)4.1主程序 (19)4.2中断服务程序 (20)5 技术总结 (21)6结束语 (22)7参考文献 (23)摘要近年来随着计算机在社会领域的渗透,模糊控制电冰箱的成功开发引起了人们的注意。

这种电冰箱可以使食品迅速冷冻,延长保存期;并可以防止冷藏室的温度过低而冻坏食品;还可以根据冰箱使用状态,在适当时候进行除霜,以减小由于除霜而对食品产生的影响;尚可根据使用情况不免不必要的冷却,以节约能源。

通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

现从冰箱的硬件结构框图和模糊控制器两个方面,以模糊控制算法为主线,将冰箱的温度控制过程完全地描述了出来。

具体分为硬件结构框图及各功能电路的介绍、模糊控制算法、软件程序框图等三部分。

由于冰箱的温度控制过程离不开对控制器的控制算法,因此本报告着重讨论了温度控制器的模糊控制算法,并举出例子进行了详细阐述。

关键字:模糊控制,温度控制ABSTRACTIn recent years, with the penetration of computers in the social sphere, the successful development of fuzzy control refrigerator attracted people's attention. This refrigerator can make quick frozen foods to extend shelf life; and can prevent the freezer temperature is too low and nipped food; refrigerator can also be used according to the state, at an appropriate time to defrost, to reduce due to defrost while the impact of food; can still be bound under the unnecessary use of cooling in order to save energy.Through the direct-cool refrigerator cooling system improvements and the adoption of fuzzy control technology to realize a dual-temperature refrigerator dual control, so that the use of refrigerators according to the conditions of a rapidly changing reasonably adjust cooling capacity, and energy-saving good effect.Are from the refrigerator and fuzzy controller hardware block diagram of the two aspects of the fuzzy control algorithm as the main line, the temperature of the refrigerator control process described completely out. The specific hardware block diagram is divided into functional circuits and the introduction of fuzzy control algorithms, software programs such as block diagram of three parts. As the refrigerator temperature control process can not be separated on the controller of the control algorithm, this report focused on the temperature controller of the fuzzy control algorithm, citing examples described in detail. Keywords: Fuzzy control, temperature control引言现代工业设计、工程建设及日常生活中常常需要用到温度控制,早期温度控制主要应用于工厂中,例如钢铁的水溶温度,不同等级的钢铁要通过不同温度的铁水来实现,这样就可能有效的利用温度控制来掌握所需要的产品了。

基于单片机的电冰箱温控器设计

基于单片机的电冰箱温控器设计

基于单片机的电冰箱温控器设计电冰箱温控器是电冰箱的重要组成部分,它用来测量和控制冰箱内部的温度,在一定的范围内保持冰箱内部的温度稳定。

本文将介绍一个基于单片机的电冰箱温控器的设计方案。

一、硬件设计1.温度传感器:选择一款精准度高、响应速度快的温度传感器。

常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。

本设计选择DS18B20作为温度传感器,它具有数字输出、精度高、抗干扰性强等优点。

2.单片机:选择适用于此应用的单片机,本设计选择51系列单片机。

3.显示屏:选择适合于温控器显示的LCD液晶显示屏,可以显示当前温度和设定温度。

4.继电器:选择一个合适的电压和电流的继电器,用于控制冰箱的压缩机开关。

5.按钮:选择适用于温控器操作的按钮,包括开关机/调节温度等功能。

二、软件设计1.初始化:在单片机启动时,对温度传感器、显示屏、继电器等外部设备进行初始化设置。

2.温度测量:通过温度传感器测量冰箱内部的温度,并将测量结果保存在指定的内存位置。

3.显示温度:通过LCD显示屏显示当前温度和设定温度。

可以通过按键操作,实现温度调节功能。

4.温度控制:通过单片机控制继电器的开关状态,从而控制冰箱的压缩机工作。

当温度高于设定温度时,继电器闭合,启动压缩机;当温度达到设定温度时,继电器断开,停止压缩机工作。

5.安全保护:当温度传感器发生故障或温度超出范围时,应提供相应的保护措施,如自动断电、显示故障信息等。

6.节能模式:可以设置一个节能模式,在不使用冰箱时,自动调整温度设置为较高的值,以节省能源。

三、工作流程1.开机初始化:单片机启动后进行外部设备的初始化设置。

2.温度测量:通过温度传感器测量冰箱内部的温度,并将测量结果保存。

3.显示温度:将测量的当前温度和设定温度显示在LCD显示屏上。

4.温度控制:根据设定温度和当前温度的比较结果,控制继电器的开关状态,从而控制冰箱的压缩机工作。

5.温度调节:通过按键操作,可以调节设定温度。

电冰箱温度控制设计

电冰箱温度控制设计

第一章电冰箱的温度控制原理液体化为气体时要吸热。

反之,气体化为液体时要放热。

电冰箱是利用蒸发致冷或气化吸热的作用而达到制冷的目的。

电冰箱的喉管内,装有一种商业上称为氟利昂:freon,俗称雪种的致冷剂。

常用的一种为二氟二氯甲烷(CCL2F2),是一种无色无臭无毒的气体,沸点为29℃。

氟利昂在气体状态时,被压缩器加压,如图下方所示。

加压后,经喉管流到电冰箱背部的冷凝器,借散热片散热(物质被压缩后,温度就会升高)后,冷凝而成液体。

液体的氟里昂进入蒸发器的活门之后,由于脱离了压缩器的压力,就立即化为蒸汽,同时向电冰箱内的空气和食物等吸取汽化潜热(latentheatofvaporization),引致冰箱内部冷却。

汽化后的氟里昂又被压缩器压回箱外的冷凝器散热,再变为液体,如此循环不息,把冰箱内的热能泵到箱外。

此次设计通过电机与传感器之间通过控制系统对电冰箱进行自动控制。

其工作原理图如下所示。

图1.1第二章系统的部件选择2.1 温控器的数学模型热力系统的数学模型。

图2.4是一个电加热热水器的示意图。

我们现在来建立热水器出口水温受加热器加热量影响的微分方程,为了使问题简化,假设没有热量向周围环境散失,加热器容器中的温度是均匀的,都具有和出口温度相同的温度。

设加热器出口水温相对于稳定状态下的增量为,为热水器中水的质量,为水的比热容,为电加热器传输给水的热流量的增量,为水的流量,根据热量平衡关系整理后为(2.8)若要考虑水入口温度的影响,设入口水温的变化量为,则有(2.9)若要考虑更多的因素,微分方程将变得更加复杂。

图2.1 冷却器2.2 热电偶的传递函数计算热电偶温度计的传递函数。

图3是用热电偶测量流体温度的示意图。

设被测介质温度为,热电偶输出电势为E,热电偶温度为,R为被测介质与热电偶间的放热热阻,C为热电偶的热容量,为热电偶的比例系数。

热电偶的热电势为被测介质流向热电偶的热流量热电偶接点温度可以得到微分方程按传递函数的定义写成规范形式式中,T=RC,称为热电偶的时间常数,为热电偶的放大系数。

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计目录第一章概论..................................... 错误!未定义书签。

一.电冰箱的系统组成 (2)二.工作原理: (3)三.本系统采用单片机控制的电冰箱主要功能及要求 (4)第二章硬件部分 (4)一.系统结构图 (4)二.微处理器(单片机) (5)三.温度传感器 (8)四.电压检测装置 (8)五.功能按键 (9)六.压缩机,风机、电磁阀控制 (9)七.故障报警电路 (9)第三章软件部分 (10)一、主程序:MAIN (10)二、初始化子程序:INTI1 ......................... 错误!未定义书签。

三、键盘扫描子程序:KEY ......................... 错误!未定义书签。

四.打开压缩机子程序:OPEN (13)五.关闭压缩机:CLOSE (15)六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。

七.延时子程序.................................. 错误!未定义书签。

第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃.传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择.一.电冰箱的系统组成液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。

基于单片机控制的电冰箱温度控制器设计

基于单片机控制的电冰箱温度控制器设计

基于单片机控制的电冰箱温度控制器设计一、设计思路随着人们生活水平的提高,家用电器越来越多,L电器电化智能化的要求也越来越高,本文主要研究在单片机的控制下将传统的机械温控器改成数字温控器,实现智能电子电冰箱的控制。

该电冰箱温度控制器的设计采用基于单片机控制的数字式温度控制方案。

具有温度设置和现场实时温度显示双重功能。

它的控制部分采用了AT89S52单片机,利用该单片机的高速计数器和多达8个比较器来实现精准的温度控制。

显示部分采用流行的LCD1602液晶显示模块,经过优化设计,它的显示效果更加清晰明了。

同时,为了实现温度显示的实时性,采用了DS18B20温度传感器,该温度传感器具有实时监测温度的快速响应能力,精度高,功耗小等特点。

本设计基于调制/解调器设计,实现了用户通过手机APP远程控制电冰箱的温度,方便快捷。

二、设计方案整个数字式控温系统分为数据采集、控制器和显示三个主要部分。

其中,数据采集部分包括温度传感器和电源电路两个主要部分,控制器部分包括单片机和控制电路两个部分,显示部分则使用了LCD液晶显示模块。

1、数据采集温度传感器是整个控温器的核心部件。

它的作用是实时监测冷藏室的温度,并将温度数据反馈给单片机。

本设计采用DS18B20数字式温度传感器,该传感器具有精度高、测量范围广、响应速度快、反应灵敏、稳定性好等优点,因此,在实现控温系统的过程中,采用DS18B20数字式温度传感器具有非常明显的优势。

2、控制器单片机控制系统是数字式控温器的核心部分。

本设计采用了AT89S52单片机,AT89S52是Atmel公司生产的51系列单片机中非常经典的产品,因其深受大多数用户的喜爱。

AT89S52单片机具有8位的数据总线和16位的地址总线,可执行各种运算,具有非常强的数据处理能力。

在本设计中,我们采用了AT89S52单片机的内部计数器和多个比较器来实现精准的温度控制。

3、显示整个数字式控温系统的显示部分采用了LCD1602液晶显示模块。

电冰箱温度控制系统设计范本

电冰箱温度控制系统设计范本

电冰箱温度控制系统设计电冰箱温度控制系统设计一、引言电冰箱是每个家庭现代化厨房必备的家用电器之一,它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。

它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的,即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。

从19 世界上第一台电机压缩式电冰箱研制成功,随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。

现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。

因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。

传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。

一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。

随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。

本次所设计的就是基于51单片机的电冰箱温度控制系统,以AT89C51单片机为核心控制压缩机的启动和停止,解决了传统电冰箱控制系统存在的不足,能够使控制更准确、更灵活。

本次设计的目的是设计一个温度控制系统,要求:1.利用键盘分别控制冷藏室、冷冻室温度(0~5℃,-7 ~ -18℃);2.显示各室的温度值;3.制冷压缩机运行后若突然断电要有30秒延时;4.各个门开后超过2分钟要报警。

本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解,掌握微机化测控系统设计的思路,了解一般设计过程。

二、电冰箱温度控制系统硬件电路设计1. 总体设计方案以AT89S51单片机为核心,来实现各个模块的功能。

冰箱电气系统设计和维修

冰箱电气系统设计和维修
冰箱电气控制系统
陈星
• 产品控制类型分类简介 • 经典冰箱控制系统构成 • 冰箱控制电路板经典功能单元电路
结束
冰箱控制系统分类
压缩式制冷方式(家用电冰箱)
•按冰箱制冷系统区别(控制系统构成及控制措施不同): ——直冷冰箱 ——无霜冰箱(风冷及风直冷冰箱) •按控制手段区别: ——机械温控 ——电子温控(电子电路进行控制,没有软件) ——电脑温控(单片机程序控制,软硬件控制)
显示电路板
1
7
1
7
1+ -
主控制板 1
JST XHP-7
JST VHR-10N
N 电源
L
压缩机 电磁阀 照明灯
双循环直冷 电脑温控 电气布局示意图
• 单片机程序控制 • 热敏电阻感温 • 双稳态电磁阀
• 多循环冰箱系统
双循环风直冷、电脑温控冰箱
干簧管+磁铁 (冷冻室门开关) 风扇电机控制 冷冻室加热除霜 (F蒸发器感温头 及加热器控制)
冰箱控制电路板经典功能单元——
控制电路原理图例
科龙BCD-199WAK风直冷电冰箱旳控制电路原理图
过压保护 冰箱控制电路板经典功能单元——
• 当电源电压过高,峰值 超出560V时压敏电阻 阻值突降接近短路,保 险管F1熔断,电路板 断电使板上旳主要元器 件不被损坏
• 过压保护电路动作后, 从显示及功能上体现出 冰箱整个控制系统断电, 停止工作。经过观察保 险管就能够得到判断
2.56
温度 (℃

5
电阻值 (kΩ)
5.06
25
2
37 1.21
电压 (V)
2.25 1.22 0.82
冰箱控制电路板经典功能单元——继电器负载驱动电路

直冷式电冰箱温度控制系统设计

直冷式电冰箱温度控制系统设计

直冷式电冰箱温度控制系统设计摘要:本文介绍了一种基于单片机的直冷式电冰箱温度控制系统的设计。

该系统采用了DS18B20数字温度传感器来获取冰箱内部的温度数据,并通过数据采集电路传输给单片机处理。

单片机通过PID算法控制制冷器的运行,从而调节冰箱内部的温度。

该系统能够准确稳定地控制冰箱内部的温度,提高冰箱的工作效率,降低能耗。

实验结果表明该系统具有较好的性能。

关键词:直冷式电冰箱;温度控制;单片机;PID算法;能耗Abstract:This paper presents the design of a direct refrigeration type electric refrigerator temperature control system basedon a single chip microcomputer. This system uses the DS18B20 digital temperature sensor to obtain the temperature data inside the refrigerator, which is transmitted to the single-chip microcomputer for processing through the dataacquisition circuit. The single-chip microcomputer controlsthe operation of the refrigeration compressor through the PID algorithm, so as to adjust the temperature inside the refrigerator. The system can accurately and stably controlthe temperature inside the refrigerator, improve the work efficiency of the refrigerator, and reduce energy consumption. Experimental results show that the system has good performance.Key words: direct refrigeration type electric refrigerator; temperature control; single chip microcomputer; PID algorithm; energy consumption一、引言随着人们生活水平的提高,电冰箱已成为现代家庭不可或缺的家电之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电冰箱温度控制系统设计
一、引言
电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。

它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。

从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。

现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。

因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。

传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。

一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。

随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。

本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。

本次设计的目的是设计一个温度控制系统, 要求:
1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ;
2.显示各室的温度值;
3.制冷压缩机运行后若突然断电要有30秒延时;
4.各个门开后超过2分钟要报警。

本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。

二、电冰箱温度控制系统硬件电路设计
1. 总体设计方案
以AT89S51单片机为核心, 来实现各个模块的功能。

温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原
理框图如图2-1所示:
温度传感器( 经指导老师建议, 使用DS18B20, 因其自带A/D 转换模块) 从设备环境的不同位置采集温度, 单片机AT89S51获取采集的温度值, 经处理得到当前环境中一个比较稳定的温度值, 再根据当前设定的温度上下限值, 经过加热和降温对当前温度进行调整。

当采集的温度经处理后超过设定温度上限时, 单片机经过三极管驱动继电器开启降温设备(压缩制冷器), 当采集的温度经处理后低于设定温度下限时, 单片机经过三极管驱动继电器开启升温设备(加热器)。

图2-1 冰箱控制原理图
当由于环境温度变化太剧烈或由于加热或降温设备出现故障, 或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候, 单片机经过三极管驱动扬声器发出警笛声。

系统中将经过串口通讯连接PC机存储温度变化时的历史数据, 以便观察整个温度的控制过程及监控温度的变化全过程。

2. 主控制部分方案
AT89S51是一个低功耗, 高性能CMOS 8位单片机, 片内含4k Bytes ISP(In-system programmable)的可重复擦写1000次的Flash只读程序存储器, 器件采用ATMEL公司的高密度、非易失性存储技术制造, 兼容标准MCS-51指令系统及80C51引脚结构, 芯片内集成了通用8位中央处理器和ISP Flash存储单元, AT89S51在众多嵌入式控制应用系统中得到广泛应用。

2.1 AT89S51主要性能特点
1、4k Bytes Flash片内程序存储器;
2、128 bytes的随机存取数据存储器( RAM) ;
3、32个外部双向输入/输出( I/O) 口;
4、2个中断优先级、2层中断嵌套中断;
5、6个中断源;
6、2个16位可编程定时器/计数器;
7、2个全双工串行通信口;
8、看门狗( WDT) 电路;
9、片内振荡器和时钟电路;
10、与MCS-51兼容;
11、全静态工作: 0Hz-33MHz;
12、三级程序存储器保密锁定;
13、可编程串行通道;
14、低功耗的闲置和掉电模式。

2.2管脚说明
VCC: 电源电压输入端。

GND: 电源地。

P0口: P0口为一个8位漏级开路双向I/O口, 每脚可吸收8TTL 门电流。

当P1口的管脚第一次写1时, 被定义为高阻输入。

P0能够用于外部程序数据存储器, 它能够被定义为数据/地址的低八位。

在FIASH编程时, P0 口作为原码输入口, 当FIASH进行校验时, P0输出原码, 此时P0外部必须被拉高。

PDIP封装的AT89S51管脚图。

相关文档
最新文档