2016-2017学年湖北省宜昌市部分重点中学高二(上)期末数学试卷(文科)
数学-高二-湖北省宜昌市部分师范高中联考高二上期末数学试卷(文)

2015-2016学年湖北省宜昌市部分师范高中联考高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分)1.若直线l经过点A(2,5)、B(4,3),则直线l倾斜角为()A.B.C. D.2.“命题P:对任何一个数x∈R,2x2﹣1>0”的否定是()A.∀x∈R,2x2﹣1≤0 B.∀x∉R,2x2﹣1≤0 C.∃x∈R,2x2﹣1≤0 D.∃x∉R,2x2﹣1≤03.已知x、y都是正实数,那么“x≥2或y≥2”是“x2+y2≥8”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.如表是某厂1﹣4月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4用水量 4.5 4 3 2.5由散点可知,用水量y与月份x之间由较好的线性相关关系,其线性回归方程是=0.7x+a,则a等于()A.5.1 B.5.2 C.5.3 D.5.45.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()A.3,2 B.2,3 C.2,30 D.30,26.从1,2,3,4这四个数中依次随机地取两个数,则其中一个数是另一个数的两倍的概率是()A.B.C.D.7.设抛物线y2=8x的焦点为F,过点F作直线l交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则弦AB的长为()A.5 B.8 C.10 D.128.如图所示程序框图,其作用是输入空间直角坐标平面中一点P(a,b,c),输出相应的点Q(a,b,c).若P的坐标为(2,3,1),则P,Q间的距离为()(注:框图中的赋值符号“=”也可以写成“←”或“:=”).A.0 B.C.D.9.已知双曲线﹣=1上一点P到左焦点F1的距离为10,则当PF1的中点N到坐标原点O的距离为()A.3或7 B.6或14 C.3 D.710.函数f(x)=x3﹣3x2+3x的极值点的个数是()A.0 B.1 C.2 D.311.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于()A.2 B.3 C.6 D.912.已知定义在R上的函数f(x)和g(x)满足g(x)≠0,f′(x)•g(x)<f(x)•g′(x),f(x)=a x•g(x),.令,则使数列{a n}的前n项和S n 超过的最小自然数n的值为()A.5 B.6 C.7 D.8二、填空题(每小题5分,共20分)13.已知圆心坐标为(1,2),且与x轴相切的圆的标准方程为.14.已知函数f(x)的图象在点M(1,f(1))处的切线方程是2x﹣3y+1=0,则f(1)+f′(1)=.15.在区间上随机取一个数x,则cos的值介于0到之间的概率为.16.已知f1(x)=sinx+cosx,f2(x)=f1′(x),f3(x)=f2′(x),…f n(x)=f n′(x),…(n∈N*,n≥2).﹣1则的值为.三、解答题(共6小题,共70分)17.已知命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.18.已知圆x2+y2﹣4x+2y﹣3=0和圆外一点M(4,﹣8),过M作圆的割线交圆于A、B两点,若|AB|=4,求直线AB的方程.19.某班几位同学组成研究性学习小组,对岁的人群随机抽取n人进行了一次日常生活中是否具有环保意识的调查.若生活习惯具有环保意识的称为“环保族”,否则称为“非环保族”.得到如下统计表:组数分组环保族人群占本组的频率本组占样本的频率第一组hslx3y3h25,30)120 0.6 0.2第二组hslx3y3h30,35)195 0.65 q第三组hslx3y3h35,40)100 0.5 0.2第四组hslx3y3h40,45) a 0.4 0.15第五组hslx3y3h45,50)30 0.3 0.1第六组15 0.3 0.05(1)求q、n、a的值.(2)从年龄段在的“环保族”中采用分层抽样法抽取7人参加户外环保活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在2,+∞)上为增函数,求a的取值范围.2015-2016学年湖北省宜昌市部分师范高中联考高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.若直线l经过点A(2,5)、B(4,3),则直线l倾斜角为()A.B.C. D.【考点】直线的倾斜角.【分析】设直线l倾斜角为θ,利用斜率计算公式可得tanθ,即可得出.【解答】解:设直线l倾斜角为θ,则tanθ==﹣1,θ∈﹣1,10,10,10,1∪25,55hslx3y3h岁的人群随机抽取n人进行了一次日常生活中是否具有环保意识的调查.若生活习惯具有环保意识的称为“环保族”,否则称为“非环保族”.得到如下统计表:组数分组环保族人群占本组的频率本组占样本的频率第一组hslx3y3h25,30)120 0.6 0.2第二组hslx3y3h30,35)195 0.65 q第三组hslx3y3h35,40)100 0.5 0.2第四组hslx3y3h40,45) a 0.4 0.15第五组hslx3y3h45,50)30 0.3 0.1第六组15 0.3 0.05(1)求q、n、a的值.(2)从年龄段在的“环保族”中采用分层抽样法抽取7人参加户外环保活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在40,55)年龄段的“环保族”人数中采用分层抽样法抽取7人,50,55)年龄段的有5人,45,50)的概率.【解答】解:(1)第二组的频率为:q=1﹣(0.2+0.2+0.15+0.1+0.05)=0.3.第一组的人数为120÷0.6=200,第一组的频率为0.2,所以:n=2000÷2=1000,第四组人数1000×0.15=150;所以:a=150×0.4=60.(2)因为40,45)和45,50)年龄段的有2人;设50,55)年龄段的5人为a、b、c、d,e、45,50)的有(a,m)、(a,n)、(b,m)、(b,n)、(c,m)、(c,n)、(d,m)、(d,n),(e,m)、(e,n);共10种.所以选取的2名领队中恰有1人年龄在(x﹣6)2+2(x﹣3)(x﹣6)2,+∞)上为增函数,求a的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)求出函数的导数,计算f′(1),从而求出函数的表达式,解关于导函数的不等式,求出函数的单调区间即可;(2)求出g(x)的导数,即2x2﹣x+2a≥0在2,+∞)上恒成立,即2x2﹣x+2a≥0在2,+∞)上单调递增,因此只需使u(2)≥0,解得a≥﹣3;易知当a=﹣3时,g'(x)≥0且不恒为0.故a≥﹣3.2016年11月18日。
湖北省宜昌市第一中学1617学年度高二上学期期末考试—

宜昌一中2016秋季学期高二年级数学(文)试题答案一、选择题二、填空题13、10111 14、 15、6 16、4032三、解答题17、(1) (2)18、(1) 若21l l ⊥, 则.320)1(21=⇒=-+⨯a a a (2) 若21//l l , 则(1)1201 2.a a a ⋅--⨯=⇒=-或经检验,时,与重合.时, 符合条件. 19、(1)(0.0420.080.120.1620.40.52)0.51a +⨯+++++⨯=(2)样本中月均用水量不低于3吨的频率为(0.120.080.04)0.50.12++⨯=估计全市居民月均用水量不低于3吨的人数为600×0.12=72(万人) (3)由图知(2.5,3)x ∈,故(3)0.30.120.15x -⨯+= (吨) 20、(1)设,则22(22)(2)4x y ∴-+=,即(2)由题意,所求切线斜率必存在,设其方程为, 由,得,则所求直线方程为。
21、 (1)证明:连接,1C B 设O BC C B =⋂11,连接,OD 11B BCC 是平行四边形, ∴点O 是C B 1的中点, D 是AC 的中点, ∴OD 是C AB 1∆的中位线,∴OD AB //1又D BC D,BC 111平面平面⊂⊄OD AB ∴ AB 1//平面BC 1D(2) ABC,BE ABC,1平面平面⊂⊥A A ∴BE,A 1⊥A又A A A AC AC,BE 1=⋂⊥ ∴直线BE ⊥平面C C AA 11 (2)的解法2:ABC C C AA C,C AA A A ABC,111111平面平面平面平面⊥∴⊂⊥A AABC,BE AC,BE AC,ABC C C AA 11平面平面又平面⊂⊥=⋂∴直线BE ⊥平面CC AA 11 (3) 设AC 2x BE BC,AB BE AC ,,0=∴⋅=⋅∆>=中ABC Rt x BC ,再根据311AA C D V =建立关于x 的方程, 解出x 值. 由(2)知BE 的长度是四棱锥B —AA 1C 1D 的体高1 2.A A AB ==设AC2x BE BC,AB BE AC ,,0=∴⋅=⋅∆>=中ABC Rt x BC()AC,232AC 2321A A AD C A 21S 111D C AA 11=⋅=⋅+⋅=∴=∴D C AA 11V 3,A C2x A C 2331BE S 31D C AA 11=⋅⋅=⋅3BC 3,x =∴=∴22、(1)(1)由,知,,∴, ∴,,∴的方程为,由221,321,x y y x ⎧+=⎪⎨⎪=+⎩整理得, 设,,的中点为,则1265x x +=-,1235x x =-,,121212011212225y y x x x x y +++++===+= 所以的中点坐标为.(2)要使面积最大,只需要两点纵座标差的绝对值最大。
湖北省2016-2017学年高二上学期期末数学试卷(文科)(B卷)Word版含解析

湖北省2016-2017学年高二上学期期末试卷(文科数学)(B 卷)一、选择题(共12小题,每小题5分,共60分)1.数列的前4项为1,﹣,,﹣,则此数列的通项公式可以是( )A .(﹣1)nB .(﹣1)n+1C .(﹣1)nD .(﹣1)n+12.“x 2+2x ﹣8>0”是“x>2”成立的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3.已知﹣9,a 1,a 2,﹣1四个实数成等差数列,﹣9,b 1,b 2,b 3,﹣1五个实数成等比数列,则b 2(a 2﹣a 1)=( )A .8B .﹣8C .±8D .4.若<<0,则下列结论不正确的是( ) A .a 2<b 2 B .ab >b 2 C .a+b <0 D .|a|+|b|>a+b5.已知椭圆的中心在原点,离心率e=,且它的一个焦点与抛物线y 2=﹣8x 的焦点重合,则此椭圆方程为( )A . +=1 B .+=1C .+y 2=1 D . +y 2=16.已知两函数y=x 2﹣1与y=1﹣x 3在x=x 0处有相同的导数,则x 0的值为( )A .0B .﹣C .0或﹣D .0或17.我国古代数典籍《九章算术》》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.( ) A .3B .4C .5D .6、8.已知F 1、F 2分别为椭圆+y 2=1的左右两个焦点,过F 1作倾斜角为的弦AB ,则△F 2AB 的面积为( )A .B .C .D .﹣19.已知直线y=kx 是y=lnx 的切线,则k 的值是( )A .eB .﹣eC .D .﹣10.已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于3p ,则直线MF 的斜率为( )A .±B .±1C .+D .±11.已知f (x )=ax 3+bx 2+cx+d 与x 轴有3个交点(0,0),(x 1,0),(x 2,0),且f (x )在x=,x=时取极值,则x 1•x 2的值为( ) A .4B .2C .6D .不确定12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a 2,b 2,c 2成等差数列,则sinB 最大值为( )A .B .C .D .二、填空题(共8小题,每小题5分,共40分) 13.命题“∀x ∈R ,4x 2﹣3x+2<0”的否定是 .14.△ABC 的周长等于3(sinA+sinB+sinC ),则其外接圆直径等于 .15.已知x ,y 满足约束条件,则3x ﹣y 的最小值为 .16.在△ABC 中,已知当A=, •=tanA 时,△ABC 的面积为 .17.如果方程﹣=1表示双曲线,那么实数m 的取值范围是 .18.若f (x )=x 3﹣3x+m 有三个零点,则实数m 的取值范围是 .19.已知等差数列{a n }的前n 项和为S n ,a 1>0且=,则S n 为非负值的最大n 值为 .20.已知函数f (x )=x+,g (x )=2x +a ,若∃x 1∈[,3],∀x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围 .三、解答题(共5小题,每小题10分,共50分)21.(10分)已知命题p:x2+2mx+(4m﹣3)>0的解集为R,命题q:m+的最小值为4,如果p与q只有一个真命题,求m的取值范围.22.(10分)设等差数列{an }的公差为d,前n项和为Sn,已知a5=9,S7=49.(1)求数列{an}的通项公式;(2)令bn =an•2n,求数列{bn}的前n项和.23.(10分)已知△ABC的内角A,B,C所对的边分别为a,b,c, =.(1)求角A的大小;(2)若△ABC为锐角三角形,求的范围.24.(10分)已知椭圆E: +=1,(a>b>0)的e=,焦距为2.(1)求E的方程;(2)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.25.(10分)设函数f(x)=lnx+x2﹣2ax+a2,a∈R.(1)当a=2时,求函数f(x)的单调区间;(2)若函数f(x)在[1,3]上不存在单调增区间,求a的取值范围.湖北省2016-2017学年高二上学期期末数学试卷(文科)(B卷)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分)1.数列的前4项为1,﹣,,﹣,则此数列的通项公式可以是()A.(﹣1)n B.(﹣1)n+1 C.(﹣1)n D.(﹣1)n+1【考点】数列的概念及简单表示法.【分析】根据数列项与项数之间的关系进行求解即可.【解答】解:数列为分式形式,奇数项为正数,偶数项为负数,则符合可以用(﹣1)n+1表示,每一项的分母和项数n对应,用表示,则数列的通项公式可以为(﹣1)n+1,故选:B【点评】本题主要考查数列通项公式的求解,根据条件观察数列项和项数之间的关系是解决本题的关键.2.“x2+2x﹣8>0”是“x>2”成立的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】解不等式,根据充分必要条件的定义结合集合的包含关系判断即可.【解答】解:由x2+2x﹣8>0,解得:x>2或x<﹣4,故“x2+2x﹣8>0”是“x>2”成立的必要不充分条件,故选:A.【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.3.已知﹣9,a1,a2,﹣1四个实数成等差数列,﹣9,b1,b2,b3,﹣1五个实数成等比数列,则b2(a2﹣a1)=()A.8 B.﹣8 C.±8 D.【考点】等差数列与等比数列的综合.【分析】先由已知条件和等差数列以及等比数列的性质求得,再利用等比数列中的第三项与第一项同号即可求出答案.【解答】解:由题得,又因为b2是等比数列中的第三项,所以与第一项同号,即b2=﹣3∴b2(a2﹣a1)=﹣8.故选 B.【点评】本题是对等差数列以及等比数列性质的综合考查.在做关于等差数列以及等比数列的题目时,其常用性质一定要熟练掌握.4.若<<0,则下列结论不正确的是()A.a2<b2B.ab>b2C.a+b<0 D.|a|+|b|>a+b【考点】不等关系与不等式.【分析】根据不等式的基本性质依次判断即可.【解答】解:∵<<0,可得:a<b<0,|a|>|b|,a2>b2,显然A不对,故选:A.【点评】本题考查了不等式的基本性质,属于基础题.5.已知椭圆的中心在原点,离心率e=,且它的一个焦点与抛物线y2=﹣8x的焦点重合,则此椭圆方程为()A. +=1 B. +=1C. +y2=1 D. +y2=1【考点】抛物线的简单性质;椭圆的标准方程.【分析】求出抛物线的焦点坐标,得到椭圆的焦点坐标,利用离心率求出a,然后求出b,即可得到椭圆方程.【解答】解:椭圆的中心在原点,离心率e=,且它的一个焦点与抛物线y2=﹣8x的焦点(﹣2,0)重合,可得c=2,则a=4,b=2,则此椭圆方程为: +=1.故选:A .【点评】本题考查椭圆的简单性质的应用,椭圆方程的求法,考查计算能力.6.已知两函数y=x 2﹣1与y=1﹣x 3在x=x 0处有相同的导数,则x 0的值为( )A .0B .﹣C .0或﹣D .0或1【考点】导数的运算.【分析】由y=x 2﹣1,得=2x 0,由y=1﹣x 3,得,由此根据两函数y=x 2﹣1与y=1﹣x 3在x=x 0处有相同的导数,能求出x 0的值.【解答】解:∵y=x 2﹣1,∴y′=2x, =2x 0,∵y=1﹣x 3,∴y′=﹣3x 2,,∵两函数y=x 2﹣1与y=1﹣x 3在x=x 0处有相同的导数,∴,解得x 0=0或x 0=﹣.故选:C .【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意导数性质的合理运用.7.我国古代数典籍《九章算术》》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.( ) A .3B .4C .5D .6、【考点】等比数列的前n 项和;等比数列的通项公式. 【分析】利用等比数列的求和公式即可得出.【解答】解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列, 前n 天打洞之和为=2n ﹣1,同理,小老鼠每天打洞的距离=2﹣,∴2n ﹣1+2﹣=10,解得n ∈(3,4),取n=4. 即两鼠在第4天相逢. 故选:B .【点评】本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.8.已知F 1、F 2分别为椭圆+y 2=1的左右两个焦点,过F 1作倾斜角为的弦AB ,则△F 2AB 的面积为( )A .B .C .D .﹣1【考点】直线与椭圆的位置关系.【分析】求出直线AB 的方程,代入椭圆方程,求得交点A ,B 的坐标,利用S=•|F 1F 2|•|y 1﹣y 2|,即可得出S .【解答】解:椭圆+y 2=1的左右两个焦点(﹣1,0),过F 1作倾斜角为的弦AB ,可得直线AB 的方程为:y=x+1,把 y=x+1 代入 x 2+2y 2=2 得3x 2+4x=0,解得x 1=0 x 2=﹣,y 1=1,y 2=﹣,∴S=•|F 1F 2|•|y 1﹣y 2|==.故选:B .【点评】本题考查了直线与椭圆相交问题、椭圆的标准方程及其性质、三角形的面积计算公式,考查了计算能力,属于中档题.9.已知直线y=kx 是y=lnx 的切线,则k 的值是( )A .eB .﹣eC .D .﹣【考点】导数的几何意义.【分析】欲求k 的值,只须求出切线的斜率的值即可,故先利用导数求出在切处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=lnx ,∴y'=,设切点为(m ,lnm ),得切线的斜率为,所以曲线在点(m ,lnm )处的切线方程为:y ﹣lnm=×(x ﹣m ). 它过原点,∴﹣lnm=﹣1,∴m=e ,∴k=. 故选C .【点评】本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.10.已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于3p ,则直线MF 的斜率为( )A .±B .±1C .+D .±【考点】直线与抛物线的位置关系.【分析】设P (x 0,y 0)根据定义点M 与焦点F 的距离等于P 到准线的距离,求出x 0,然后代入抛物线方程求出y 0即可求出坐标.然后求解直线的斜率. 【解答】解:根据定义,点P 与准线的距离也是3P ,设M (x 0,y 0),则P 与准线的距离为:x 0+,∴x 0+=3p ,x 0=p , ∴y 0=±p ,∴点M 的坐标(p ,± p ).直线MF 的斜率为: =.故选:D .【点评】本题考查了抛物线的定义和性质,解题的关键是根据定义得出点M 与焦点F 的距离等于M 到准线的距离,属于中档题.11.已知f (x )=ax 3+bx 2+cx+d 与x 轴有3个交点(0,0),(x 1,0),(x 2,0),且f (x )在x=,x=时取极值,则x 1•x 2的值为( ) A .4B .2C .6D .不确定【考点】利用导数研究函数的极值.【分析】由f (0)=0,可得d=0.f′(x )=3ax 2+2bx+c .根据f (x )在x=,x=时取极值,可得f′()=0,f′()=0,又f (x )=x (ax 2+bx+c ),可得f (x 1)=f (x 2)=0,x 1,x 2≠0.可得x 1x 2=. 【解答】解:∵f (0)=0,∴d=0. f′(x )=3ax 2+2bx+c ,∵f (x )在x=,x=时取极值,∴f′()=0,f′()=0,a ≠0,可得2×++3=0,4×++12=0,解得: =6, 又f (x )=x (ax 2+bx+c ), f (x 1)=f (x 2)=0,x 1,x 2≠0.∴x 1x 2==6. 故选:C .【点评】本题考查了利用导数研究函数的单调性极值、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a 2,b 2,c 2成等差数列,则sinB 最大值为( )A .B .C .D .【考点】正弦定理;余弦定理.【分析】由等差数列的定义和性质可得2b 2=a 2 +c 2 ,再由余弦定理可得cosB=,利用基本不等式可得cosB ≥,从而求得角B 的取值范围,进而利用正弦函数的单调性即可得解.【解答】解:由题意可得2b2=a2 +c2 ,由余弦定理可得cosB==≥,当且仅当a=c时,等号成立.又 0<B<π,∴0<B≤,∵sinB在(0,]单调递增,∴可得sinB的最大值是sin=.故选:D.【点评】本题主要考查余弦定理、等差数列的定义和性质,以及基本不等式的应用,求得cosB≥,是解题的关键,属于基础题.二、填空题(共8小题,每小题5分,共40分)13.命题“∀x∈R,4x2﹣3x+2<0”的否定是∃x∈R,4x2﹣3x+2≥0 .【考点】命题的否定.【分析】根据全称命题的否定要改成存在性命题的原则,可写出原命题的否定【解答】解:原命题为“∀x∈R,4x2﹣3x+2<0∵原命题为全称命题∴其否定为存在性命题,且不等号须改变∴原命题的否定为:∃x∈R,4x2﹣3x+2≥0故答案为:∃x∈R,4x2﹣3x+2≥0【点评】本题考查命题的否定,本题解题的关键是熟练掌握全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,熟练两者之间的变化.14.△ABC的周长等于3(sinA+sinB+sinC),则其外接圆直径等于 3 .【考点】正弦定理.【分析】由正弦定理和△ABC的外接圆半径表示出sinA、sinB、sinC,代入已知的式子化简后求出答案.【解答】解:由正弦定理得,,且R是△ABC的外接圆半径,则sinA=,sinB=,sinC=,因为△ABC的周长等于3(sinA+sinB+sinC),所以a+b+c=3(sinA+sinB+sinC)=3(++),化简得,2R=3,即其外接圆直径等于3,故答案为:3.【点评】本题考查了正弦定理的应用:边角互化,属于基础题.15.已知x,y满足约束条件,则3x﹣y的最小值为﹣3 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z由图象可知当直线y=3x﹣z经过点A时,直线y=3x﹣z的截距最大,此时z最小.由,解得,即A(0,3),此时z=3×0﹣3=﹣3,故答案为:﹣3.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.16.在△ABC中,已知当A=,•=tanA时,△ABC的面积为.【考点】平面向量数量积的运算.【分析】由已知求出,然后代入三角形面积公式得答案.【解答】解:由A=,•=tanA,得•=tanA=tan=.∴,则,∴==.故答案为:.【点评】本题考查平面向量的数量积运算,考查正弦定理求面积,是中档题.17.如果方程﹣=1表示双曲线,那么实数m的取值范围是(﹣1,1)∪(2,+∞).【考点】双曲线的标准方程.【分析】方程表示双曲线的充要条件是mn<0.【解答】解:∵方程﹣=1表示双曲线,∴(|m|﹣1)(m ﹣2)>0, 解得﹣1<m <1或m >2,∴实数m 的取值范围是(﹣1,1)∪(2,+∞). 故答案为:(﹣1,1)∪(2,+∞).【点评】本题考查双曲线的定义,是基础题,解题时要熟练掌握双曲线的简单性质.18.若f (x )=x 3﹣3x+m 有三个零点,则实数m 的取值范围是 ﹣2<m <2 . 【考点】利用导数研究函数的极值.【分析】已知条件转化为函数有两个极值点,并且极小值小于0,极大值大于0,求解即可. 【解答】解:由函数f (x )=x 3﹣3x+m 有三个不同的零点, 则函数f (x )有两个极值点,极小值小于0,极大值大于0. 由f′(x )=3x 2﹣3=3(x+1)(x ﹣1)=0,解得x 1=1,x 2=﹣1, 所以函数f (x )的两个极值点为 x 1=1,x 2=﹣1.由于x ∈(﹣∞,﹣1)时,f′(x )>0; x ∈(﹣1,1)时,f′(x )<0; x ∈(1,+∞)时,f′(x )>0,∴函数的极小值f (1)=m ﹣2和极大值f (﹣1)=m+2. 因为函数f (x )=x 3﹣3x+m 有三个不同的零点,所以,解之得﹣2<m <2.故答案为:﹣2<m <2.【点评】本题是中档题,考查函数的导数与函数的极值的关系,考查转化思想和计算能力.19.已知等差数列{a n }的前n 项和为S n ,a 1>0且=,则S n 为非负值的最大n 值为 20 .【考点】等差数列的性质.【分析】设出等差数列的公差d ,由=得到首项和公差的关系,代入等差数列的通项公式,由S n ≥0求出n 的范围,再根据n 为正整数求得n 的值.【解答】解:设等差数列的公差为d ,由=,得=,即2a 1+19d=0,解得d=﹣,所以S n =na 1+×(﹣)≥0,整理,得:S n =na 1•≥0.因为a 1>0,所以20﹣n ≥0即n ≤20, 故S n 为非负值的最大n 值为20. 故答案是:20.【点评】本题考查等差数列的前n 项和,考查了不等式的解法,是基础题.20.已知函数f (x )=x+,g (x )=2x +a ,若∃x 1∈[,3],∀x 2∈[2,3],使得f (x 1)≥g(x 2),则实数a 的取值范围 a ≤ .【考点】利用导数求闭区间上函数的最值;函数的最值及其几何意义.【分析】由∀x 1∈[,3],都∃x 2∈[2,3],使得f (x 1)≥g (x 2),可得f (x )在x 1∈[,3]的最大值不小于g (x )在x 2∈[2,3]的最大值,构造关于a 的不等式,可得结论.【解答】解:当x 1∈[,3]时,由f (x )=x+得,f′(x )=,令f′(x )>0,解得:x >2,令f′(x )<0,解得:x <2,∴f (x )在[,2]单调递减,在(2,3]递增,∴f ()=8.5是函数的最大值,当x 2∈[2,3]时,g (x )=2x +a 为增函数, ∴g (3)=a+8是函数的最大值,又∵∀x 1∈[,3],都∃x 2∈[2,3],使得f (x 1)≥g (x 2),可得f (x )在x 1∈[,3]的最大值不小于g (x )在x 2∈[2,3]的最大值,即8.5≥a+8,解得:a≤,故答案为:a≤.【点评】本题考查的知识是指数函数以及对勾函数函数的图象和性质,考察导数的应用,函数的单调性问题,本题是一道中档题.三、解答题(共5小题,每小题10分,共50分)21.(10分)(2016秋•珠海期末)已知命题p:x2+2mx+(4m﹣3)>0的解集为R,命题q:m+的最小值为4,如果p与q只有一个真命题,求m的取值范围.【考点】命题的真假判断与应用.【分析】对命题p,使不等式解集为R,△<0,求出m的范围;命题q利用对对勾函数的性质可求出此处的m的范围,然后利用复合命题的真值表即可求出【解答】解:命题p真:△=4m2﹣4(4m﹣3)<0⇒1<m<3命题q真:m+=m﹣2++2的最小值为4,则m>2,当p真,q假时,1<m<3且m≤2,⇒1<m≤2;当p假,q真时,m≤1或m≥3且m>2,⇒m>3;综上:m的取值范围(1,2]∪(3,+∞)【点评】考查了复合命题的真假判断表,另外还考查了对勾函数的性质,属于基础题.22.(10分)(2016秋•珠海期末)设等差数列{an }的公差为d,前n项和为Sn,已知a5=9,S7=49.(1)求数列{an}的通项公式;(2)令bn =an•2n,求数列{bn}的前n项和.【考点】数列的求和;等差数列的通项公式.【分析】(1)由S7=49结合等差数列的性质求得a4=7,再求等差数列的公差和通项式;(2)bn =an•2n=(2n﹣1)•2n,用错位相减法求数列{bn}的前n项和为Tn【解答】解:(1)在等差数列{an }中,由S7=7(a1+a7)=49,得:a4=7,又∵a5=9,∴公差d=2,a1=1,∴数列{an }的通项公式an=2n﹣1 (n∈N+),(2)bn =an•2n=(2n﹣1)•2n,令数列{bn }的前n项和为Tn,Tn=1×21+3×22+5×23+…+(2n﹣3)×2n﹣1+(2n﹣1)•2n…①2 Tn=1×22+3×23++…+(2n﹣5)×2n﹣1+(2n﹣3)•2n+(2n﹣1)•2n+1…②﹣Tn=2+2(22+23++…+2n﹣1+•2n)﹣(2n﹣1)•2n+1=2+2n+2﹣8﹣+(2n﹣1)•2n+1;∴Tn=(2n﹣3)2n+1+6.【点评】本题考查了等差数列的通项,及错位相减法求和,属于基础题.23.(10分)(2016秋•珠海期末)已知△ABC的内角A,B,C所对的边分别为a,b,c,=.(1)求角A的大小;(2)若△ABC为锐角三角形,求的范围.【考点】正弦定理.【分析】(1)由正弦定理化简已知的式子后,由余弦定理求出cosA的值,由内角的范围和特殊角的三角函数值求出角A的值;(2)由(1)和内角和定理表示出B,由锐角三角形的条件列出不等式组,求出C的范围,由正弦定理、两角差的正弦公式、商的关系化简后,由正切函数的图象与性质求出答案.【解答】解:(1)由题意知,,由正弦定理得,,化简得,,即,由余弦定理得,cosA==,又0<A<π,则A=;(2)由(1)得A=,又A+B+C=π,则B=﹣C,因为△ABC是锐角三角形,所以,解得,由正弦定理得, ====,由得,tanC>1,即,所以,即的范围是.【点评】本题考查了正弦定理、余弦定理,两角差的正弦公式,内角和定理,商的关系等,以及正切函数的图象与性质,考查转化思想,化简、变形能力.24.(10分)(2016秋•珠海期末)已知椭圆E: +=1,(a>b>0)的e=,焦距为2.(1)求E的方程;(2)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)由椭圆中,e=,焦距为2,列出方程组,求出a,b,由此能求出椭圆E 的方程.=2.当(2)当AB为长轴(或短轴)时,依题意C是椭圆的上下顶点(或左右顶点)时,S△ABC直线AB的斜率不为0时,设其斜率为k,直线AB的方程为y=kx,联立方程组,得|OA|2=,直线直线OC 的方程为y=﹣,由,得|OC|2=.从而求出,由此能求出△ABC 面积的最小值为,此时直线直线AB 的方程为y=x 或y=﹣x .【解答】解:(1)∵椭圆E : +=1,(a >b >0)的e=,焦距为2,∴,解得a=2,b=1,∴椭圆E 的方程为.(2)当AB 为长轴(或短轴)时,依题意C 是椭圆的上下顶点(或左右顶点),此时S △ABC =|OC|×|AB|=2.当直线AB 的斜率不为0时,设其斜率为k ,直线AB 的方程为y=kx ,联立方程组,得=,,∴|OA|2==,由|AC|=|CB|知,△ABC 为等股三角形,O 为AB 的中点,OC ⊥AB ,∴直线直线OC 的方程为y=﹣,由,解得=, =,|OC|2=.S △ABC =2S △OAC =|OA|×|OC|==.∵≤=,∴,当且仅当1+4k 2=k 2+4,即k=±1时,等号成立,此时△ABC面积的最小值是,∵2>,∴△ABC面积的最小值为,此时直线直线AB的方程为y=x或y=﹣x.【点评】本题考查椭圆方程的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意椭圆、直线方程、三角形面积等知识点的合理运用.25.(10分)(2016秋•珠海期末)设函数f(x)=lnx+x2﹣2ax+a2,a∈R.(1)当a=2时,求函数f(x)的单调区间;(2)若函数f(x)在[1,3]上不存在单调增区间,求a的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)将a=2代入f(x),求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)假设函数f(x)在[1,3]上不存在单调递增区间,必有g(x)≤0,得到关于a的不等式组,解出即可.【解答】解:(1)a=2时,f(x)=lnx+x2﹣4x+4,(x>0),f′(x)=+2x﹣4=,令f′(x)>0,解得:x>或x<,令f′(x)<0,解得:<x<,故f(x)在(0,)递增,在(,)递减,在(,+∞)递增;(2)f′(x)=+2x﹣2a=,x∈[1,3],设g(x)=2x2﹣2ax+1,假设函数f(x)在[1,3]上不存在单调递增区间,必有g(x)≤0,于是,解得:a≥.【点评】本题考查了函数的单调性问题,考查曲线的切线方程以及导数的应用,是一道中档题.。
湖北省宜昌市部分示范高中教学协作体高二上学期期末联

宜昌市部分示范高中教学协作体2017年秋期末联考高二(文科)数学(全卷满分:150分 考试用时:120分钟)一、选择题:(共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
)1、若直线经过((1,0),A B 两点,则直线AB 斜率为( ) A.33B.1C.3 D .-3 2、设变量,x y ,满足约束条件1133x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩错误!未找到引用源。
则目标函数4z x y =+的最大值为( ) A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
3下列说法错误的是( )A.对于命题2:,10P x R x x ∀∈++>,则200:,10P x R x x ⌝∃∈++≤B.“1x =”是“2x -3x+2=0”的充分不必要条件C.若命题p q ∧为假命题,则p ,q 都是假命题D.命题“若2x -3x+2=0则1x =”的逆否命题为:“若1x ≠则2≠x -3x+20”4、在空间中,两不同直线a 、b ,两不同平面α、β,下列命题为真命题的是( ) A.若//,//a b a α,则//b αB. 若//,//,,a b a b ααββ⊂⊂,则//βαC. 若//,//b αβα,则//b βD. 若//,a αβα⊂,则//a β5.某几何体的三视图如图所示, 则该几何体的体积为( ) A .476 B .152C .233D . 66.送快递的人可能在早上6:307:30-之间把快递送到张老师家里, 张老师离开家去工作的时间在早上7:008:00-之间, 则张老师离开家前能得到快递的概率为( ) A .12.5% B .50% C .75% D .87.5%7、以两点(3,1)A --和(5,5)B 为直径端点的圆的方程是( ) A .22(1)(2)25x y -+-= B .22(1)(2)25x y +++= C .22(1)(2)100x y +++= D .22(1)(2)100x y -+-= 8、对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,539、现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样10、有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为( ) A .320 B .25 C .15 D .31011、在正三棱柱ABC ﹣A 1B 1C 1中,若1AB =,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .75° D .105°12、已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,若椭圆C 上存在点P ,使得线段1PF 的垂直平分线恰好过焦点2F ,则椭圆C 的离心率的取值范围是( )A .2[,1)3B .[13,2]C .1[,1)3D .1(0,]3二、填空题(共4小题,每题5分,共20分)13、已知直线(3a+2)x+(1-4a )y+8=0与(5a -2)x+(a+4)y -7=0垂直,则a =14、已知一个回归直线方程为45+y=1.5x (x i ∈{1,5,7,13,19}),则y =________.15、下图是一个算法的流程图,则输出S 的值是__________16、已知三棱锥ABC O -,A,B,C 三点均在球心为O 的球表面上,AB=BC=1,∠ABC=120°,三棱锥ABC O -的体积为45,则球O 的表面积是__________ 三、解答题(70分)17、(本小题满分10分)已知0m >,p :()()260x x +-≤,q :22m x m -≤≤+ . (I )若p 是q 的充分条件,求实数m 的取值范围;(Ⅱ)若5m =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围18(本小题满分12分)、已知直线l:3x-y+3=0,求:(1)点P(4,5)关于l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程.19、(本小题满分12分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A地至少72吨的货物,派用的每辆车需满载且只能送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,问该公司如何合理计划当天派用两类卡车的车辆数,可得最大利润?并求出最大利润.20、(本小题满分12分)如图,已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,且2BCD BCE π∠=∠=,平面ABCD ⊥平面BCEG ,BC=CD=CE=2,AD=BG=1.(1)求证:DE ⊥BC ; (2)求证:AG ∥平面BDE ;21 、(本小题满分12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表1:表2:①先确定x ,y ,再补全下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1 A 类工人生产能力的频率分布直方图 图2 B 类工人生产能力的频率分布直方图②分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22.(本题满分12分)设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的投影,M 为线段PD上一点,且45MD PD,(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为45的直线被轨迹C所截线段的长度.宜昌市部分示范高中教学协作体2017年秋期末联考高二(文科)数学参考答案一、选择题:二、填空题13、0或1 14、58.515、6316、64π三、解答题(解答应写出文字说明,证明过程或演算过程.) 17.解:(I ):26p x -≤≤p 是q 的充分条件[]2,6∴-是[]2,2m m -+的子集022426m m m m m >⎧⎪∴-≤-⇒≥∴⎨⎪+≥⎩的取值范围是[)4,+∞ ………………………5分 (Ⅱ)当5m =时,:37q x -≤≤,由题意可知,p q 一真一假,……………6分p 真q 假时,由2637x x x x -≤≤⎧⇒∈∅⎨<->⎩或 ………………………7分p 假q 真时,由26326737x x x x x <->⎧⇒-≤<-<≤⎨-≤≤⎩或或 ………………………9分所以实数x 的取值范围是[)(]3,26,7-- ………………………10分18,解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7,∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).………………………6分 (2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0. ……………………12分19.设该公司当天派用甲、乙型卡车的车辆数分别为 , ……………1分则根据条件得 , 满足的约束条件为 ……………5分目标函数 .……………6分作出约束条件所表示的平面区域如图,……………9分然后平移目标函数对应的直线 (即 )知,当直线经过直线 与的交点时,目标函数取得最大值,即……………12分答:该公司派用甲、乙型卡车的车辆数分别 辆和 辆时可获得最大利润 元.20. 证明:(Ⅰ)∵∠BCD =∠BCE =2π, ∴CD ⊥BC , CE ⊥BC , 又 CD ∩CE =C , ∴BC ⊥平面DCE , ∵DE ⊂ 平面DCE , ∴DE ⊥BC . ……………6分(Ⅱ)如图,在平面BCEG 中,过G 作GN ∥BC ,交BE 于M ,交CE 于N ,连结DM ,则BGNC 是平行四边形, ∴CN =BG =21CE , 即N 是CE 中点,∴MN =21BC=1 , ∴MG ∥AD ,MG =21BC =AD=1 ,∴四边形ADMG 是平行四边形, ∴AG ∥DM ,∵DM ⊂平面BDE ,AG ⊄平面BDE , ∴AG ∥平面BDE . ……………12分21.解 (1)A 类工人中和B 类工人中分别抽查25名和75名.—————2分(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. —————4分 频率分布直方图如下:图1 A 类工人生产能力的频率分布直方图 —————6分图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小. —————9分 ②x A =425×105+825×115+525×125+525×135+325×145=123, x B =675×115+1575×125+3675×135+1875×145=133.8, x =25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. —————12分 22. (Ⅰ)设的坐标为,的坐标为,由已知得,因为在圆上,所以,即的方程为. —————6分(Ⅱ)过点且斜率为的直线方程为,设直线与的交点为。
高二数学上学期期末试卷(文科含解析)

高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
【精品】2016-2017年湖北省宜昌一中高二上学期数学期末试卷(文科)与答案

2016-2017学年湖北省宜昌一中高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分1.(5分)如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等2.(5分)若直线l经过点A(5,2)、B(3,4),则直线l倾斜角为()A.B.C.D.3.(5分)在对20和16求最大公约数时,整个操作如下:20﹣16=4,16﹣4=12,12﹣4=8,8﹣4=4由此可以看出20与16的最大公约数是()A.16B.12C.8D.44.(5分)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题C.命题“∃x∈R,x2﹣x>0”的否定是:“∀x∈R,x2﹣x≤0”D.已知x∈R,则“x>1”是“x>2”的充分不必要条件5.(5分)如图给出的是计算的值的一个程序框图,其中判断框中应填入的是()A.i>100B.i≤100C.i>50D.i≤506.(5分)为了调查某产品的销售情况,销售部门从下属的102家销售连锁店中抽取20家了解情况.若采用系统抽样法,则抽样间隔和随机剔除的个体分别为()A.5、2B.2、5C.2、20D.20、27.(5分)与曲线共焦点,而与双曲线共渐近线的双曲线方程为()A.B.C.D.8.(5分)如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B.C.πD.9.(5分)已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A.B.C.D.=0.08x+1.2310.(5分)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶11.(5分)正方体ABCD﹣A1B1C1D1中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,⑤MN与A1C1成30°.其中有可能成立的结论的个数为()A.5B.4C.3D.212.(5分)直线4kx﹣4y﹣k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于()A.B.2C.D.4二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)进制换算:43(5)=(2).14.(5分)设五个数值1,8,4,5,x的平均数是4,则这组数据的标准差是.15.(5分)已知可导函数f(x)的导函数为f'(x),且满足f(x)=3x2+2xf'(2),则f'(5)=.16.(5分)已知数列{a n}(n=1,2,3,…,2016),圆C1:x2+y2﹣4x﹣4y=0,圆C2:x2+y2﹣2a n x﹣2a2017﹣n y=0,若圆C2平分圆C1的周长,则数列{a n}的所有项的和为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)现在有5枝圆珠笔,其中3枝一等品,2枝二等品,求随机抽取2枝都是一等品的概率;(2)在长为9cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于25cm2与64cm2之间的概率.18.(12分)已知直线l1:ax+2y+6=0和.(1)若l1⊥l2,求实数a的值;(2)若l1∥l2,求实数a的值.19.(12分)某地为了鼓励居民节约用水,计划调整居民用水收费方案,拟确定一个合理的月用水量标准x(吨).一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了2016年10000位居民的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值.(2)该地现有600万居民,估计全市居民中月均用水量不低于3吨的人数.(3)若希望使85%的居民每月的用水量不超过标准x(吨),估计x的值.20.(12分)已知P为圆x2+y2=4上的动点,A(2,0),B(3,0)为定点,(1)求线段AP中点M的轨迹方程;(2)求过点B且与点M轨迹相切的直线方程.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D 为AC的中点,A1A=AB=2.(1)求证:AB1∥平面BC1D;(2)过点B作BE⊥AC于点E,求证:直线BE⊥平面AA1C1C(3)若四棱锥B﹣AA1C1D的体积为3,求BC的长度.22.(12分)已知椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆相交于A,B两点.(1)若直线l倾斜角为45°,求AB的中点坐标;(2)求△ABF2面积的最大值及此时直线的方程.2016-2017学年湖北省宜昌一中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等【解答】解:斜二测画法的法则是平行于x的轴的线平行性与长度都不变;平行于y轴的线平行性不变,但长度变为原长度的一半.故在原来的图形中两条线段平行且相等,则在直观图中对应的两条线段也平行且相等.故选:A.2.(5分)若直线l经过点A(5,2)、B(3,4),则直线l倾斜角为()A.B.C.D.【解答】解:设直线l倾斜角为θ,θ∈[0,π).则tanθ=k AB==﹣1,∴θ=.故选:D.3.(5分)在对20和16求最大公约数时,整个操作如下:20﹣16=4,16﹣4=12,12﹣4=8,8﹣4=4由此可以看出20与16的最大公约数是()A.16B.12C.8D.4【解答】解:由已知可得:该操作是用更相减损术求20和16的最大公约数,当减数与差相等时,即得到最大公约数,故20与16的最大公约数是4,故选:D.4.(5分)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题C.命题“∃x∈R,x2﹣x>0”的否定是:“∀x∈R,x2﹣x≤0”D.已知x∈R,则“x>1”是“x>2”的充分不必要条件【解答】解:对于A,命题“若am2<bm2,则a<b”(a,b,m∈R)的逆命题是“若a<b,则am2<bm2”(a,b,m∈R),由于当m=0时,am2=bm2;故A 是假命题;对于B,命题“p或q”为真命题,则命题“p”和命题“q”至少有一个是真命题,∴B 不正确;对于C,命题“∃x∈R,x2﹣x>0”的否定是:“∀x∈R,x2﹣x≤0”符合命题的否定性质,∴C正确;对于D,x∈R,则“x>1”不能说“x>2”,但是“x>2”可得“x>1”,∴D不正确;故选:C.5.(5分)如图给出的是计算的值的一个程序框图,其中判断框中应填入的是()A.i>100B.i≤100C.i>50D.i≤50【解答】解:程序运行过程中,各变量值如下表所示:第一圈:S=0+,i=4,第二圈:S=+,i=6,第三圈:S=++,i=8,…依此类推,第50圈:S=,i=102,退出循环,其中判断框内应填入的条件是:i≤100,故选:B.6.(5分)为了调查某产品的销售情况,销售部门从下属的102家销售连锁店中抽取20家了解情况.若采用系统抽样法,则抽样间隔和随机剔除的个体分别为()A.5、2B.2、5C.2、20D.20、2【解答】解:∵102÷20不是整数,∴必须先剔除部分个体数,又102÷20=5…2,∴剔除2个,间隔为5.故选:A.7.(5分)与曲线共焦点,而与双曲线共渐近线的双曲线方程为()A.B.C.D.【解答】解:由题意知椭圆焦点在y轴上,且c==5,双曲线的渐近线方程为y=±x,设欲求双曲线方程为,则,解得a=4,b=3,所以欲求双曲线方程为.故选:D.8.(5分)如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B.C.πD.【解答】解:由已知中的三视力可得该几何体是一个圆柱,∵几何体的正视图和侧视图都是边长为1的正方形,∴圆柱的底面直径和母线长均为1,故圆柱的底面周长为:π,故圆柱的侧面面积为:π×1=π,故选:C.9.(5分)已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A.B.C.D.=0.08x+1.23【解答】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选:C.10.(5分)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶【解答】解:“至多有一次中靶”和“至少有一次中靶”,能够同时发生,故A错误;“两次都中靶”和“至少有一次中靶”,能够同时发生,故B错误;“只有一次中靶”和“至少有一次中靶”,能够同时发生,故C错误;“两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.故选:D.11.(5分)正方体ABCD﹣A1B1C1D1中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,⑤MN与A1C1成30°.其中有可能成立的结论的个数为()A.5B.4C.3D.2【解答】解:①作NE⊥BC,MF⊥AB,垂足分别为E,F,∵AM=BN,∴NE=MF,∴四边形MNEF是矩形,∴MN∥FE,∵AA1⊥面AC,EF⊂面AC,∴AA1⊥EF,∴AA1⊥MN,故①正确;由①知,MN∥面AC,面AC∥平面A1B1C1D1,∴MN∥平面A1B1C1D1,故③正确;MN∥FE,FE与AC所在直线相交时,MN与A1C1异面,FE与AC平行时,则平行,故②④可能成立;⑤EF与AC成30°时,MN与A1C1成30°.故选:A.12.(5分)直线4kx﹣4y﹣k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于()A.B.2C.D.4【解答】解:直线4kx﹣4y﹣k=0可化为k(4x﹣1)﹣4y=0,故可知直线恒过定点(,0)∵抛物线y2=x的焦点坐标为(,0),准线方程为x=﹣,∴直线AB为过焦点的直线∴AB的中点到准线的距离==2∴弦AB的中点到直线x+=0的距离等于2+=故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)进制换算:43(5)=10111(2).【解答】解:43(5)=4×5+3=23(10),23=1×24+1×22+1×2+1=10111(2).故答案为:1011114.(5分)设五个数值1,8,4,5,x的平均数是4,则这组数据的标准差是.【解答】解:∵五个数值1,8,4,5,x的平均数是4,∴=4,解得x=2,∴这组数据的方差是:S2=[(1﹣2)2+(8﹣2)2+(4﹣2)2+(5﹣2)2+(2﹣2)2]=10,∴这组数据的标准差S=.故答案为:.15.(5分)已知可导函数f(x)的导函数为f'(x),且满足f(x)=3x2+2xf'(2),则f'(5)=6.【解答】解:∵f(x)=3x2+2xf'(2),∴f′(x)=6x+2f′(2)令x=2得f′(2)=6×2+2f′(2)∴f′(2)=﹣12∴f′(x)=6x﹣24∴f′(5)=30﹣24=6故答案为:616.(5分)已知数列{a n}(n=1,2,3,…,2016),圆C1:x2+y2﹣4x﹣4y=0,圆C2:x2+y2﹣2a n x﹣2a2017﹣n y=0,若圆C2平分圆C1的周长,则数列{a n}的所有项的和为4032.【解答】解:设圆C1与圆C2交于A,B,则直线AB的方程为:x2+y2﹣4x﹣4y﹣(x2+y2﹣2a n x﹣2a2017﹣n y)=0,﹣2)y=0,化简得:(a n﹣2)x+(a2017﹣n∵圆C1:x2+y2﹣4x﹣4y=0的标准方程为圆(x﹣2)2+(y﹣2)2=8,∴圆心C1:(2,2).又圆C2平分圆C1的周长,则直线AB过C1:(2,2).,代入AB的方程得:2(a n﹣2)+2(a2017﹣2)=0,﹣n=4,即a n+a2017﹣n∴{a n}的所有项的和为a1+a2+…+a2017=(a1+a2016)+(a2+a2015)+…+(a1008+a1009)=1008×4=4032.故答案为:4032.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)现在有5枝圆珠笔,其中3枝一等品,2枝二等品,求随机抽取2枝都是一等品的概率;(2)在长为9cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于25cm2与64cm2之间的概率.【解答】解:(1)设3枝一等品分别为A、B、C,2枝二等品分别为m、n,则从中任取3枝的总的取法为:(A、B),(A、C),(B、C),(m、n),(A、m),(B、m),(C、m),(A、n),(B、n),(C、n),共10种,其中恰有两枝一等品的取法有(A、B),(A、C),(B、C),共3种,∴从中任取2枝,两枝都是一等品的概率p=;(2)由题意可知,以线段AM为边长的正方形面积要介于25cm2与64cm2之间,即要求AM介于5cm与8cm之间,记“以线段AM为边长的正方形面积介于25cm2与64cm2之间”为事件A,则由几何概型的求概率的公式得P(A)═.18.(12分)已知直线l1:ax+2y+6=0和.(1)若l1⊥l2,求实数a的值;(2)若l1∥l2,求实数a的值.【解答】解:(1)a=1时,两条直线不垂直,舍去.∵l1⊥l2,∴﹣×=﹣1,解得a=.综上可得:实数a=.(2)由a(a﹣1)﹣2=0,解得a=2或﹣1.经过验证:a=2时,两条直线相互重合.∴a=﹣1.19.(12分)某地为了鼓励居民节约用水,计划调整居民用水收费方案,拟确定一个合理的月用水量标准x(吨).一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了2016年10000位居民的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值.(2)该地现有600万居民,估计全市居民中月均用水量不低于3吨的人数.(3)若希望使85%的居民每月的用水量不超过标准x(吨),估计x的值.【解答】解:(1)∵0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1,∴a=0.3;(2)由图可得月均用水量不低于3吨的频率为:0.5×(0.12+0.08+0.04)=0.12,由30×0.12=3.6得:全市居民中月均用水量不低于3吨的人数约为3.6万;(3)由图可得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%;月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%;则x=2.5+0.5×=2.920.(12分)已知P为圆x2+y2=4上的动点,A(2,0),B(3,0)为定点,(1)求线段AP中点M的轨迹方程;(2)求过点B且与点M轨迹相切的直线方程.【解答】解:(1)设AP中点为M(x,y),由中点坐标公式可知,P点坐标为(2x﹣2,2y)∵P点在圆x2+y2=4上,∴(2x﹣2)2+(2y)2=4.故线段AP中点的轨迹方程为(x﹣1)2+y2=1.(2)易得切线的斜率存在,设切线方程为y=k(x﹣3),由圆心(1,0)到直线y=k(x﹣3)的距离对于半径R=1,得,解得k=,∴过点B且与点M轨迹相切的直线方程为y=.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D 为AC的中点,A1A=AB=2.(1)求证:AB1∥平面BC1D;(2)过点B作BE⊥AC于点E,求证:直线BE⊥平面AA1C1C(3)若四棱锥B﹣AA1C1D的体积为3,求BC的长度.【解答】(1)证明:连接B1C 设B1C∩BC1=O,连接OD∵BCC1 B1是平行四边形∴点O是B1 C的中点∵D为AC的中点∴OD是△AB1C的中位线.∴AB1∥ODAB1⊊平面BC1D OD⊂平面BC1DAB1∥平面BC1D;(2)∵A1A⊥平面ABC,A1A⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC又平面AA1C1C∩平面ABC=AC,BE⊥AC,BE⊂平面ABC,∴直线BE⊥平面AA1C1C(3)由(2)知BE的长度是四棱锥B﹣AA1C1D的体高A1A=AB=2.设BC=x>0.在Rt△ABC中,AC•BE=AB•BC,∴∴,∴=,∴x=3即∴BC=3故:(1)(2)略(3)BC=322.(12分)已知椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆相交于A,B两点.(1)若直线l倾斜角为45°,求AB的中点坐标;(2)求△ABF2面积的最大值及此时直线的方程.【解答】解:(1)椭圆的左焦点F1(﹣1,0),过F1且倾斜角为45°的直线l为y=x+1,设A(x1,y1),B(x2,y2),联立方程组:,消去y得:5x2+6x﹣3=0,则,,那么:,,∴AB的中点坐标位(﹣,);(2)当直线l垂直x轴时,直线l的方程为x=﹣1,此时|AB|=,;当直线l不垂直x轴时,设直线方程为x=ty﹣1(t≠0),联立,得(2t2+3)y2﹣4ty﹣4=0.∴.∴==.∴=,令(m >1),则t 2=m 2﹣1,∴(m >1).∴△ABF 2面积的最大值为,此时直线的方程为x=﹣1.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =. xxxx>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q) ()2b f a-0x xf xfxx<O-=f(p)f(q)()2bfa-xx<O-=f(p)f(q)()2bfa-x。
湖北省宜昌市第一中学高二上学期期末考试数学(文)Word版含答案

宜昌市第一中学2017年秋季学期高二年级期末考试文科数学试题考试时间:120分钟 考试满分:150分命题人:赵波 审题人:孙红波★祝考试顺利★一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.1.双曲线2211625x y -=的渐近线方程为 A .45y x =±B .45x y =± C .54y x =±D .54x y =±2.命题“6πα=”是命题“1cos 22α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若复数z 满足(34)|43|i z i -=+,则z 的虚部为 A .4-B .45-C .4D .454.下列有关命题的说法中错误的是A .在频率分布直方图中,中位数左边和右边的直方图的面积相等.B .一个样本的方差是2222121(3)(3)...(3)20n s x x x ⎡⎤=-+-++-⎣⎦,则这组数据的总和等于60.C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越差.D .对于命题:p x R ∃∈使得21x x ++<0,则:p x R ⌝∀∈,使210x x ++≥. 5.掷一枚均匀的硬币4次,出现正面的次数多于反面的次数的概率为A.12 B. 516C. 716D.386.我国南宋数学家秦九韶(约公元1202—1261年)给出了求(N )n n *∈次多项式1110n n n n a x a x a x a --++++ 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:323210a x a x a x a +++3210(())a x a x a x a =+++然后进行求值.运行如下图所示的程序框图,能求得多项式的值.A .432234x x x x ++++B .4322345x x x x ++++C .3223x x x +++D .32234x x x +++7.某四棱锥的三视图如右上图所示,则该四棱锥的体积是A .12 B .14C .16D .1128.直线()1y kx k R =+∈与椭圆2215x y m+=恒有两个公共点,则m 的取值范围为 A .()1,+∞B .[)1,+∞C .()()1,55,⋃+∞D .[)()1,55,⋃+∞9.设函数)(x f 在R 上可导,其导函数为)(x f ',且函数)(x f 在2-=x 处取得极大值,则函数)(x f x y '=的图象可能是A B C D10.已知直线23y x =-与抛物线24y x =交于A B 、两点,O 为坐标原点,OA OB 、的斜率分别为12,k k ,则1211k k += A .12B .2C .12-D .13-11.若曲线2ln y x ax =+(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是A .1(,)2-+∞B .),21[+∞-C .),0(+∞D .),0[+∞12.若函数()sin cos f x x ax ax x =--⋅,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()0f x ≤恒成立,则a 的取值范围是 A .2a π≥B .2a π≥C .12a ≥D .1a ≥二、填空题:本大题共4个小题,每小题5分,共20分。
2017-2018学年湖北省宜昌市部分示范高中教学协作体高二上学期期末联考数学(文)试卷

宜昌市部分示范高中教学协作体2017年秋期末联考高二(文科)数学(全卷满分:150分 考试用时:120分钟)一、选择题:(共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
)1、若直线经过((1,0),A B 两点,则直线AB 斜率为( )A.33B.1C.3 D .-3 2、设变量,x y ,满足约束条件1133x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩错误!未找到引用源。
则目标函数4z x y =+的最大值为( ) A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
3下列说法错误的是( )A.对于命题2:,10P x R x x ∀∈++>,则200:,10P x R x x ⌝∃∈++≤ B.“1x =”是“2x -3x+2=0”的充分不必要条件 C.若命题p q ∧为假命题,则p ,q 都是假命题D.命题“若2x -3x+2=0则1x =”的逆否命题为:“若1x ≠则2≠x -3x+20”4、在空间中,两不同直线a 、b ,两不同平面α、β,下列命题为真命题的是( ) A.若//,//a b a α,则//b αB. 若//,//,,a b a b ααββ⊂⊂,则//βαC. 若//,//b αβα,则//b βD. 若//,a αβα⊂,则//a β5.某几何体的三视图如图所示, 则该几何体的体积为( ) A .476 B .152C .233D . 66.送快递的人可能在早上6:307:30-之间把快递送到张老师家里, 张老师离开家去工作的时间在早上7:008:00-之间, 则张老师离开家前能得到快递的概率为( ) A .12.5% B .50% C .75% D .87.5%7、以两点(3,1)A --和(5,5)B 为直径端点的圆的方程是( ) A .22(1)(2)25x y -+-= B .22(1)(2)25x y +++= C .22(1)(2)100x y +++= D .22(1)(2)100x y -+-= 8、对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,539、现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样10、有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为( ) A .320 B .25 C .15 D .31011、在正三棱柱ABC ﹣A 1B 1C 1中,若1AB ,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .75° D .105°12、已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,若椭圆C 上存在点P ,使得线段1PF 的垂直平分线恰好过焦点2F ,则椭圆C 的离心率的取值范围是( )A .2[,1)3B .[13]C .1[,1)3D .1(0,]3二、填空题(共4小题,每题5分,共20分)13、已知直线(3a+2)x+(1-4a )y+8=0与(5a -2)x+(a+4)y -7=0垂直,则a =14、已知一个回归直线方程为45+y=1.5x (x i ∈{1,5,7,13,19}),则y =________.15、下图是一个算法的流程图,则输出S 的值是__________16、已知三棱锥ABC O -,A,B,C 三点均在球心为O 的球表面上,AB=BC=1,∠ABC=120°,三棱锥ABC O -的体积为45,则球O 的表面积是__________ 三、解答题(70分)17、(本小题满分10分)已知0m >,p :()()260x x +-≤,q :22m x m -≤≤+ . (I )若p 是q 的充分条件,求实数m 的取值范围;(Ⅱ)若5m =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围18(本小题满分12分)、已知直线l:3x-y+3=0,求:(1)点P(4,5)关于l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程.19、(本小题满分12分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A地至少72吨的货物,派用的每辆车需满载且只能送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,问该公司如何合理计划当天派用两类卡车的车辆数,可得最大利润?并求出最大利润.20、(本小题满分12分)如图,已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,且2BCD BCE π∠=∠=,平面ABCD ⊥平面BCEG ,BC=CD=CE=2,AD=BG=1.(1)求证:DE ⊥BC ; (2)求证:AG ∥平面BDE ;21 、(本小题满分12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表1:表2:①先确定x ,y ,再补全下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1 A 类工人生产能力的频率分布直方图 图2 B 类工人生产能力的频率分布直方图②分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22.(本题满分12分)设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的投影,M 为线段PD上一点,且45MD PD,(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为45的直线被轨迹C所截线段的长度.宜昌市部分示范高中教学协作体2017年秋期末联考高二(文科)数学参考答案一、选择题:二、填空题13、0或1 14、58.515、6316、64π三、解答题(解答应写出文字说明,证明过程或演算过程.) 17.解:(I ):26p x -≤≤p 是q 的充分条件[]2,6∴-是[]2,2m m -+的子集022426m m m m m >⎧⎪∴-≤-⇒≥∴⎨⎪+≥⎩的取值范围是[)4,+∞ ………………………5分 (Ⅱ)当5m =时,:37q x -≤≤,由题意可知,p q 一真一假,……………6分p 真q 假时,由2637x x x x -≤≤⎧⇒∈∅⎨<->⎩或 ………………………7分p 假q 真时,由26326737x x x x x <->⎧⇒-≤<-<≤⎨-≤≤⎩或或 ………………………9分所以实数x 的取值范围是[)(]3,26,7-- ………………………10分18,解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7,∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).………………………6分 (2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0. ……………………12分19.设该公司当天派用甲、乙型卡车的车辆数分别为 , ……………1分则根据条件得 , 满足的约束条件为 ……………5分目标函数 .……………6分作出约束条件所表示的平面区域如图,……………9分然后平移目标函数对应的直线 (即 )知,当直线经过直线 与的交点时,目标函数取得最大值,即……………12分答:该公司派用甲、乙型卡车的车辆数分别 辆和 辆时可获得最大利润 元.20. 证明:(Ⅰ)∵∠BCD =∠BCE =2π, ∴CD ⊥BC , CE ⊥BC , 又 CD ∩CE =C , ∴BC ⊥平面DCE , ∵DE ⊂ 平面DCE , ∴DE ⊥BC . ……………6分(Ⅱ)如图,在平面BCEG 中,过G 作GN ∥BC ,交BE 于M ,交CE 于N ,连结DM ,则BGNC 是平行四边形,∴CN =BG =21CE , 即N 是CE 中点,∴MN =21BC=1 , ∴MG ∥AD ,MG =21BC =AD=1 ,∴四边形ADMG 是平行四边形, ∴AG ∥DM ,∵DM ⊂平面BDE ,AG ⊄平面BDE , ∴AG ∥平面BDE . ……………12分21.解 (1)A 类工人中和B 类工人中分别抽查25名和75名.—————2分(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. —————4分 频率分布直方图如下:图1 A 类工人生产能力的频率分布直方图 —————6分图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小. —————9分 ②x A =425×105+825×115+525×125+525×135+325×145=123, x B =675×115+1575×125+3675×135+1875×145=133.8, x =25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. —————12分 22. (Ⅰ)设的坐标为,的坐标为,由已知得,因为在圆上,所以,即的方程为. —————6分(Ⅱ)过点且斜率为的直线方程为,设直线与的交点为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年湖北省宜昌市部分重点中学高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)复数的共轭复数是()A.i+2 B.i﹣2 C.﹣2﹣i D.2﹣i2.(5分)命题:“∃x0∈R,”的否定为()A.∃x∈R,B.∀x∈R,C.∃x∈R,D.∀x∈R,3.(5分)在长为3m的线段AB上任取一点P,则点P与线段两端点A、B的距离都大于1m的概率是()A.B.C.D.4.(5分)经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为()A.y=2x或x﹣y+1=0 B.y=2x,x+y﹣3=0C.x+y﹣3=0,或x﹣y+1=0 D.y=2x,或x+y﹣3=0,或x﹣y+1=05.(5分)某产品的广告费用x与销售额y的不完整统计数据如表:若已知回归直线方程为=9x﹣6,则表中m的值为()A.40 B.39 C.38 D.376.(5分)已知约束条件若目标函数z=x+ay(a≥0)恰好在点(2,2)处取得最大值,则a的取值范围为()A.0<a<B.a≥C.a>D.0<a<7.(5分)已知直线mx+4y﹣2=0与2x﹣5y+n=0互相垂直,垂足为P(1,p),则m﹣n+p的值是()A.24 B.20 C.0 D.﹣48.(5分)如图,给出的是计算×××…×的值的程序框图,其中判断框内不能填入的是()A.i≤2017?B.i<2018?C.i≤2015?D.i≤2016?9.(5分)“m=1”是“直线mx+y﹣2=0与直线x+my+1﹣m=0平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件10.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.11.(5分)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是()A.若m、n都平行于平面α,则m、n一定不是相交直线B.若m、n都垂直于平面α,则m、n一定是平行直线C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥βD.若m、n在平面α内的射影互相平行,则m、n互相平行12.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L ﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在空间直角坐标系中,点A(1,3,﹣2),B(﹣2,3,2),则A,B 两点间的距离为.14.(5分)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人).则x=,y=;若从高校B,C抽取的人中选2人作专题发言,则这2人都来自高校C的概率=.15.(5分)将某选手的6个得分去掉1个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则4个剩余分数的方差为.16.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=,b=.三、解答题(17小题10分,18-22小题每题12分;共70分)17.(10分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.18.(12分)已知命题p:∀x∈R,不等式恒成立,命题q:椭圆的焦点在x轴上.若命题p∨q为真命题,求实数m的取值范围.19.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.20.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.21.(12分)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(I)求n的值;(II)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取两个实数x,y,求事件“x2+y2>(a﹣b)2恒成立”的概率.22.(12分)已知椭圆+=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(﹣a,b)、N(a,b)、F2和F1组成了一个高为,面积为3的等腰梯形.(1)求椭圆的方程;(2)过点F1的直线和椭圆交于两点A、B,求△F2AB面积的最大值.2016-2017学年湖北省宜昌市部分重点中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)(2014•南海区模拟)复数的共轭复数是()A.i+2 B.i﹣2 C.﹣2﹣i D.2﹣i【解答】解:∵复数==﹣2﹣i,∴共轭复数是﹣2+i故选B.2.(5分)(2016秋•宜昌期末)命题:“∃x0∈R,”的否定为()A.∃x∈R,B.∀x∈R,C.∃x∈R,D.∀x∈R,【解答】解:命题:“∃x0∈R,”的否定为“∀x∈R,”,故选:B3.(5分)(2016•云南一模)在长为3m的线段AB上任取一点P,则点P与线段两端点A、B的距离都大于1m的概率是()A.B.C.D.【解答】解:设“长为3m的线段AB”对应区间[0,3]“与线段两端点A、B的距离都大于1m”为事件A,则满足A的区间为[1,2]根据几何概率的计算公式可得,故选:B4.(5分)(2016秋•宜昌期末)经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为()A.y=2x或x﹣y+1=0 B.y=2x,x+y﹣3=0C.x+y﹣3=0,或x﹣y+1=0 D.y=2x,或x+y﹣3=0,或x﹣y+1=0【解答】解:经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线:当截距为0时,直线过原点:y=2x;当斜率为1时,直线方程:x﹣y+1=0;当斜率为﹣1时,直线方程:x+y﹣3=0.综上所述,直线方程为y=2x或x+y﹣3=0或x﹣y+1=0.故选D.5.(5分)(2016秋•宜昌期末)某产品的广告费用x与销售额y的不完整统计数据如表:若已知回归直线方程为=9x﹣6,则表中m的值为()A.40 B.39 C.38 D.37【解答】解:由题意,回归方程过样本平均数点(,),可求出=4代入得;=36﹣6=30,则30=,∴m=40.故选:A.6.(5分)(2014•安徽模拟)已知约束条件若目标函数z=x+ay(a≥0)恰好在点(2,2)处取得最大值,则a的取值范围为()A.0<a<B.a≥C.a>D.0<a<【解答】解:画出已知约束条件的可行域为△ABC内部(包括边界),如图,易知当a=0时,不符合题意;当a>0时,由目标函数z=x+ay得y=﹣x+,则由题意得﹣3=k AC<﹣<0,故a>.综上所述,a>.故选C.7.(5分)(2010•广东模拟)已知直线mx+4y﹣2=0与2x﹣5y+n=0互相垂直,垂足为P(1,p),则m﹣n+p的值是()A.24 B.20 C.0 D.﹣4【解答】解:∵直线mx+4y﹣2=0与2x﹣5y+n=0互相垂直,∴×=﹣1,∴m=10,直线mx+4y﹣2=0 即5x+2y﹣1=0,垂足(1,p)代入得,5+2p﹣1=0,∴p=﹣2.把P(1,﹣2)代入2x﹣5y+n=0,可得n=﹣12,∴m﹣n+p=20,故选B.8.(5分)(2016•衡水校级模拟)如图,给出的是计算×××…×的值的程序框图,其中判断框内不能填入的是()A.i≤2017?B.i<2018?C.i≤2015?D.i≤2016?【解答】解:∵程序运行后输出的是S=×××…×的值,∴分析倒数第一圈,i=2016时,满足条件,执行循环S=×××…×,i=i+2=2018,此时不满足条件,终止循环,输出S=×××…×的值;∴判断框内能填入“i≤2017?”,“i<2018?”,“i≤2016?”,不能填入“i≤2015?”.故选:C.9.(5分)(2016秋•宜昌期末)“m=1”是“直线mx+y﹣2=0与直线x+my+1﹣m=0平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:m=1时,直线mx+y﹣2=0与直线x+my+1﹣m=0相互平行,是充分条件,若直线mx+y+2=0与直线x+my+1﹣m=0相互平行,则,解得:m=1,是必要条件,故选:C.10.(5分)(2016•湖南校级模拟)一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【解答】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B11.(5分)(2016秋•宜昌期末)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是()A.若m、n都平行于平面α,则m、n一定不是相交直线B.若m、n都垂直于平面α,则m、n一定是平行直线C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥βD.若m、n在平面α内的射影互相平行,则m、n互相平行【解答】解:对于A,平行于同一平面的两条直线可能相交,也可能平行,故错;对于B,垂直于同一平面的两条直线一定平行,故正确;对于C,α、β互相平行,m、n互相平行,若m∥α,则n∥β或n⊂β,故错;对于D,m、n在平面α内的射影互相平行,则m、n互相平行或相交,故错,故选:B.12.(5分)(2014•福建)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B.C.D.【解答】解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2016秋•宜昌期末)在空间直角坐标系中,点A(1,3,﹣2),B (﹣2,3,2),则A,B两点间的距离为5.【解答】解:∵在空间直角坐标系中,点A(1,3,﹣2),B(﹣2,3,2),∴A,B两点间的距离:|AB|==5,故答案为:5.14.(5分)(2013•台江区校级二模)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人).则x=1,y=3;若从高校B,C抽取的人中选2人作专题发言,则这2人都来自高校C的概率=.【解答】解:由已知得,解得x=1,y=3,从高校B,C抽取的人中选2人作专题发言,基本事件总数n==10,这2人都来自高校C包含基本事件个数m==3,∴这2人都来自高校C的概率:p=.故答案为:1,3,.15.(5分)(2014•鄂州校级模拟)将某选手的6个得分去掉1个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则4个剩余分数的方差为.【解答】解:去掉最低分87,若x≥3,则90+x被去掉,此时剩余的分数为90,90,91,93,平均数为91,满足条件,此时对应的方差为[(90﹣91)2+(90﹣91)2+(91﹣91)2+(93﹣91)2]=(1+1+4)=,故答案为:.16.(5分)(2016•北京)已知双曲线﹣=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=1,b=2.【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),∴,解得a=1,b=2.故答案为:1,2.三、解答题(17小题10分,18-22小题每题12分;共70分)17.(10分)(2016•四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【解答】解:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量=30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.(Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5,0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x=0.5,解得x=0.06;∴中位数是2+0.06=2.06.18.(12分)(2016秋•宜昌期末)已知命题p:∀x∈R,不等式恒成立,命题q:椭圆的焦点在x轴上.若命题p∨q为真命题,求实数m的取值范围.【解答】解:p真:,∴…(3分)q真:m﹣1>3﹣m>0∴2<m<3…6分若p∨q为假命题,则…(11分)∴实数m的取值范围是…(12分)19.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,∵sinC≠0,sin(A+B)=sinC∴cosC=,又0<C<π,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.20.(12分)(2016•新课标Ⅲ)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S===2,△BCM∴四面体N﹣BCM的体积V N===.﹣BCM21.(12分)(2014•市中区校级二模)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(I)求n的值;(II)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取两个实数x,y,求事件“x2+y2>(a﹣b)2恒成立”的概率.【解答】解:(Ⅰ)根据从袋子随机抽取1个小球,取到标号为2的小球的概率是可得,解得n=2.(Ⅱ)①从袋子中不放回地随机抽取2个球,共有基本事件12个,其中“a+b=2”为事件A的基本事件有4个,则P(A)=.②记“x2+y2>(a﹣b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立,(x,y)可以看成平面中的点,则全部结果所构成的区域为Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)=1﹣.22.(12分)(2013•济南一模)已知椭圆+=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(﹣a,b)、N(a,b)、F2和F1组成了一个高为,面积为3的等腰梯形.(1)求椭圆的方程;(2)过点F1的直线和椭圆交于两点A、B,求△F2AB面积的最大值.【解答】解:(1)由题意知b=,=3,所以a+c=3①,又a2=b2+c2,即a2=3+c2②,联立①②解得a=2,c=1,所以椭圆方程为:;(2)由(1)知F1(﹣1,0),设A(x1,y1),B(x2,y2),过点F1的直线方程为x=ky﹣1,由得(3k2+4)y2﹣6ky﹣9=0,△>0成立,且,,△F2AB的面积S==|y1﹣y2|===12=,又k2≥0,所以递增,所以9+1+6=16,所以≤=3,当且仅当k=0时取得等号,所以△F2AB面积的最大值为3.参与本试卷答题和审题的老师有:涨停;豫汝王世崇;ywg2058;lcb001;yhx01248;caoqz;742048;刘老师;陈远才;sxs123;zlzhan;maths;w3239003;wyz123(排名不分先后)hu2017年3月7日。