【人教A版】2018年秋高中数学选修1-1:全一册学案(含答案)

合集下载

人教A版选修1-1教案:3.1函数的单调性与导数(含答案)

人教A版选修1-1教案:3.1函数的单调性与导数(含答案)

§1.3.1函数的单调性与导数(1课时)【学情分析】:高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。

在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。

本节内容就是通过对函数导数计算,来判定可导函数增减性。

【教学目标】:(1)正确理解利用导数判断函数的单调性的原理;(2)掌握利用导数判断函数单调性的方法(3)能够利用导数解释实际问题中的函数单调性【教学重点】:利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间教学环节教学活动设计意图情景引入过程从高台跳水运动员的高度h随时间t变化的函数:2() 4.9 6.510h t t t=-++分析运动动员的运动过程:上升→最高点→下降运动员瞬时速度变换过程:减速→0→加速从实际问题中物理量入手学生容易接受实际意义向函数意义过渡从函数的角度分析上述过程:()h t先增后减'()h t由正数减小到0,再由0减小到负数将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍引出函数单调性与导数正负的关系通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系'()10f x↔=>增函数进一步的函数单调性与导数正负验证,加深两者之间的关系0'()2x<0f x∞↔=(-,)减函数(0'()2x0f x∞↔=>,+)增函数200'()3x0f x∞∞↔=>U(-,)(,+)增函数210'()<0f xx∞↔=-(-,)减函数21'()<0f xx∞↔=-(0,+)减函数我们能否得出以下结论:在某个区间(a,b)内,如果'()0f x>,那么函数y=f(x)在这个区间内单调递增;如果'()0f x<,那么函数y=f(x)在这个区间内单调递减答案是肯定的从导数的概念给出解释0'()0f x>表明函数在此点处的切线斜率是由左下向右用导数的几何意义理解导数正负与单调性的内在关系,帮上,因此在0x 附近单调递增0'()0f x <表明函数在此点处的切线斜率是由左上向右下,因此在0x 附近单调递减00000()()()()'()0lim00x x f x f x f x f x f x x x x x →-->⇔>⇒>--所以,若0x x <,则0()()f x f x <,f(x)为增函数 同理可说明0'()0f x <时,f(x)为减函数 助理解与记忆导数正负与函数单调性总结若y=f(x)在区间(a,b )上可导,则(1)在(a,b )内,'()0f x >⇔y=f(x)在(a,b )单调递增(2)在(a,b )内,'()0f x <⇔y=f(x)在(a,b )单调递减抽象概括我们的心法手册(用以指导我们拆解题目)例题精讲1、根据导数正负判断函数单调性 教材例1在教学环节中的处理方式:以学生的自学为主,可以更改部分数据,让学生动手模仿。

【人教A版】2018版高中数学选修1-1全一册专题特色训练 汇编 195页含答案

【人教A版】2018版高中数学选修1-1全一册专题特色训练 汇编 195页含答案

【人教A版】2018版高中数学选修1-1全一册专题特色训练汇编目录2018版高中数学专题01解密命题充分必要性之含参问题特色训练新人教A版选修1含答案2018版高中数学专题02或且非命题的真假判断特色训练新人教A版选修1含答案2018版高中数学专题03探索否命题和命题的否定的区别特色训练新人教A版选修1含答案2018版高中数学专题04直击轨迹方程问题特色训练新人教A版选修1含答案2018版高中数学专题05探索离心率问题特色训练新人教A版选修1含答案2018版高中数学专题06探索直线与圆锥曲线位置关系之韦达定理的使用特色训练新人教A版选修1含答案2018版高中数学专题07解锁圆锥曲线中的定点与定值问题特色训练新人教A版选修1含答案2018版高中数学专题08解密导数的几何意义特色训练新人教A版选修1含答案2018版高中数学专题09解密含参函数的单调性特色训练新人教A版选修1含答案2018版高中数学专题10解密函数中的恒成立与能成立问题特色训练新人教A版选修1含答案专题01 解密命题充分必要性之含参问题一、选择题1.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中考】若“01x ≤≤”是“()(20x a x a ⎡⎤--+<⎣⎦)”的充分不必要条件,则实数a 的取值范围是( )A . ][01,)-∞⋃+∞(,B . []1,0-C . ()1,0-D . ()(),10,-∞-⋃+∞【答案】C点睛:设,p q 对应的集合分别为,A B ,则有以下结论: (1)若p q 是的充分条件,则A B ⊆; (2)若p q 是的充分不必要条件,则A B ;(3)若p q 是的充要条件,则A B =。

根据所给的命题间的充分必要性求参数的取值范围时,要学会根据以上结论将问题转化成集合间的包含关系去处理。

2.【上海市浦东新区2017-2018学年第一学期高三期中】若关于x 的一元二次方程2ax bx c ++=有两个实数根,分别是1x 、2x ,则“12122{1x x x x +>>”是“两根均大于1”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要.【答案】B【解析】若121,1x x >>,则12122{1x x x x +>>,但是1214,2x x ==,满足12122{ 1x x x x +>>,但不满足121,1x x >>。

2018版高中数学人教版A版选修1-1学案:1.4.3含有一个量词的命题的否定

2018版高中数学人教版A版选修1-1学案:1.4.3含有一个量词的命题的否定

1.4.3 含有一个量词的命题的否定[学习目标] 1.通过探究数学中一些实例,归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律.2.通过例题和习题的学习,能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.知识点一 全称命题的否定全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).知识点二 特称命题的否定特称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).知识点三 全称命题与特称命题的关系全称命题的否定是特称命题.特称命题的否定是全称命题.思考 (1)用自然语言描述的全称命题的否定形式惟一吗?(2)对省略量词的命题怎样否定?答案 (1)不惟一,如“所有的菱形都是平行四边形”,它的否定是“并不是所有的菱形都是平行四边形”,也可以是“有些菱形不是平行四边形”.(2)对于含有一个量词的命题,容易知道它是全称命题或特称命题.一般地,省略了量词的命题是全称命题,可加上“所有的”或“对任意”,它的否定是特称命题.反之,亦然.题型一 全称命题的否定例1 写出下列全称命题的否定:(1)任何一个平行四边形的对边都平行;(2)数列:1,2,3,4,5中的每一项都是偶数;(3)∀a,b∈R,方程ax=b都有惟一解;(4)可以被5整除的整数,末位是0.解 (1)其否定为:存在一个平行四边形,它的对边不都平行.(2)其否定为:数列:1,2,3,4,5中至少有一项不是偶数.(3)其否定为:∃a,b∈R,使方程ax=b的解不惟一或不存在.(4)其否定为:存在被5整除的整数,末位不是0.反思与感悟 全称命题的否定是特称命题,对省略全称量词的全称命题可补上量词后进行否定.跟踪训练1 写出下列全称命题的否定:(1)p:每一个四边形的四个顶点共圆;(2)p:所有自然数的平方都是正数;(3)p:任何实数x都是方程5x-12=0的根;(4)p:对任意实数x,x2+1≥0.解 (1)綈p:存在一个四边形,它的四个顶点不共圆.(2)綈p:有些自然数的平方不是正数.(3)綈p:存在实数x0不是方程5x0-12=0的根.20(4)綈p:存在实数x0,使得x+1<0.题型二 特称命题的否定例2 写出下列特称命题的否定,并判断其否定的真假.20(1)p:∃x0>1,使x-2x0-3=0;(2)p:有些素数是奇数;(3)p:有些平行四边形不是矩形.解 (1) 綈p:∀x>1,x2-2x-3≠0.(假).(2) 綈p:所有的素数都不是奇数.(假).(3) 綈p:所有的平行四边形都是矩形.(假).反思与感悟 特称命题的否定是全称命题,写命题的否定时要分别改变其中的量词和判断词.即p:∃x0∈M,p(x0)成立⇒綈p:∀x∈M,綈p(x)成立.跟踪训练2 写出下列特称命题的否定,并判断其否定的真假.(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;2(3)∃x0,y0∈Z,使得x0+y0=3.解 (1)命题的否定是“不存在一个实数,它的绝对值是正数”,即“所有实数的绝对值都不是正数”.它为假命题.(2)命题的否定是“没有一个平行四边形是菱形”,即“每一个平行四边形都不是菱形”.由于菱形是平行四边形,因此命题的否定是假命题.22(3)命题的否定是“∀x,y∈Z,x+y≠3”.当x=0,y=3时,x+y=3,因此命题的否定是假命题.题型三 特称命题、全称命题的综合应用例3 已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由;(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.解 (1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时,只需m>-4.(2)不等式m-f(x0)>0可化为m>f(x0),若存在一个实数x0,使不等式m>f(x0)成立,只需m>f(x)min.又f(x)=(x-1)2+4,∴f(x)min=4,∴m>4.∴所求实数m的取值范围是(4,+∞).反思与感悟 对于涉及是否存在的问题,通常总是假设存在,然后推出矛盾,或找出存在符合条件的元素.一般地,对任意的实数x,a>f(x)恒成立,只需a>f(x)max;若存在一个实数x0,使a>f(x0)成立,只需a>f(x)min.跟踪训练3 已知f(x)=3ax2+6x-1(a∈R).(1)当a=-3时,求证:对任意x∈R,都有f(x)≤0;(2)如果对任意x∈R,不等式f(x)≤4x恒成立,求实数a的取值范围.(1)证明 当a=-3时,f(x)=-9x2+6x-1,∵Δ=36-4×(-9)×(-1)=0,∴对任意x∈R,都有f(x)≤0.(2)解 ∵f(x)≤4x恒成立,∴3ax2+2x-1≤0恒成立,∴Error!即Error!解得a ≤-,13即实数a 的取值范围是(-∞,-].13含有一个量词的命题的否定例4 写出下列命题的否定,并判断其真假.(1)正方形都是菱形;(2)∃x 0∈R ,x -4x 0-3>0.20分析 (1)是省略了全称量词的全称命题,其否定是特称命题.(2)是特称命题,其否定是全称命题.解 (1)有的正方形不是菱形.假命题.(2)∀x ∈R ,x 2-4x -3≤0恒成立.假命题.解后反思 含有一个量词的命题在否定时,往往只改变前面的量词,而将后面的否定忽略,这种错误应当避免.1.命题p :“存在实数m ,使方程x 2+mx +1=0有实数根”,则“綈p ”形式的命题是( )A.存在实数m ,使方程x 2+mx +1=0无实数根B.不存在实数m ,使方程x 2+mx +1=0无实数根C.对任意的实数m ,方程x 2+mx +1=0无实数根D.至多有一个实数m ,使方程x 2+mx +1=0有实数根答案 C解析 命题p 是特称命题,其否定形式为全称命题,即綈p :对任意的实数m ,方程x 2+mx +1=0无实数根.2.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A.綈p :∀x ∈A,2x ∈BB.綈p :∀x ∉A,2x ∉BC.綈p :∃x ∉A,2x ∈BD.綈p :∃x ∈A,2x ∉B答案 D解析 命题p:∀x∈A,2x∈B是一个全称命题,其命题的否定綈p应为∃x∈A,2x∉B,选D.3.对下列命题的否定说法错误的是( )A.p:能被2整除的数是偶数;綈p:存在一个能被2整除的数不是偶数B.p:有些矩形是正方形;綈p:所有的矩形都不是正方形C.p:有的三角形为正三角形;綈p:所有的三角形不都是正三角形D.p:∃n∈N,2n≤100;綈p:∀n∈N,2n>100.答案 C解析 “有的三角形为正三角形”为特称命题,其否定为全称命题:“所有的三角形都不是正三角形”,故选项C错误.4.命题“∀x∈[0,+∞),x3+x≥0”的否定是( )A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥030C.∃x0∈[0,+∞),x+x0<030D.∃x0∈[0,+∞),x+x0≥0答案 C解析 全称命题的否定是特称命题.30全称命题:∀x∈[0,+∞),x3+x≥0的否定是特称命题:∃x0∈[0,+∞),x+x0<0.5.命题“零向量与任意向量共线”的否定为__________________________.答案 有的向量与零向量不共线解析 命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题“有的向量与零向量不共线”.1.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是特称命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等分别改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.2.通常对于“至多”“至少”的命题,应采用逆向思维的方法处理,先考虑命题的否定,求出相应的集合,再求集合的补集,可避免繁杂的运算.。

2017-2018学年高中数学人教A版选修1-1全册教学案含答案

2017-2018学年高中数学人教A版选修1-1全册教学案含答案

2017-2018学年高中数学人教A版选修1-1全册教学案目录第一章 1.1 命题及其关系第一章 1.2 充分条件与必要条件第一章 1.3 简单的逻辑联结词第一章 1.4 全称量词与存在量词第三章 3.1变化率与导数第三章 3.2 导数的计算第三章 3.3导数在研究函数中的应用第三章 3.4 生活中的优化问题举例第二章 2.1 椭圆第二章 2.2 双曲线第二章 2.3 抛物线第1课时 命 题[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 2~P 4,回答下列问题. 观察教材P 2“思考”中的6个语句. (1)这6个语句都是陈述句吗? 提示:是.(2)能否判断这6个语句的真假性? 提示:能.2.归纳总结,核心必记 命题及相关概念命题⎩⎪⎨⎪⎧定义:用语言、符号或式子表达的,可以判断真假的陈述句分类⎩⎪⎨⎪⎧真命题:判断为真的语句假命题:判断为假的语句形式:“若p ,则q ”.其中p 叫做命题的条件,q 叫做 命题的结论[问题思考](1)“x >5”是命题吗? 提示:不是.(2)陈述句一定是命题吗? 提示:不一定.(3)命题“当x =2时,x 2-3x +2=0”的条件和结论各是什么?提示:条件:x =2;结论:x 2-3x +2=0. (4)“若p 则q ”形式的命题一定是真命题吗? 提示:不一定.(5)数学中的定义、公理、定理、推论是真命题吗? 提示:是.[课前反思](1)命题的定义是: ;(2)真、假命题的定义是: ;(3)命题的条件和结论的定义是: .[思考] 一个语句是命题应具备哪两个要素? 提示:(1)是陈述句;(2)可以判断真假. 讲一讲1.判断下列语句中,哪些是命题?(链接教材P 2-例1) (1)函数f (x )=1x 在定义域上是减函数;(2)一个整数不是质数就是合数; (3)3x 2-2x >1;(4)在平面上作一个半径为4的圆; (5)若sin α=cos α,则α=45°; (6)2100是一个大数;(7)垂直于同一个平面的两条直线一定平行吗? (8)若x ∈R ,则x 2+2>0.[尝试解答] (1)是陈述句,且能判断真假,是命题. (2)是陈述句,且能判断真假,是命题.(3)当x ∈R 时,3x 2-2x 与1的大小关系不确定,无法判断其真假,不是命题.(4)不是陈述句,不是命题.(5)是陈述句,且能判断真假,是命题.(6)是陈述句,但是“大数”的标准不确定,所以无法判断其真假,不是命题. (7)不是陈述句,不是命题.(8)是陈述句,且能判断真假,是命题.(1)一个语句是命题应具备两个条件:一是陈述句;二是能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假.若能,就是命题;若不能,就不是命题.(3)还有一些语句,目前无法判断真假,但从事物的本质而论,这些语句是可辨别真假的,尤其是科学上的一些猜想等,这类语句也叫做命题.(4)数学中的定义、公理、定理和推论都是命题. 练一练1.下列语句中是命题的有________.(填序号) ①地球是太阳的一个行星. ②甲型H1N1流感是怎样传播的? ③若x ,y 都是无理数,则x +y 是无理数. ④若直线l 不在平面α内,则直线l 与平面α平行. ⑤60x +9>4.⑥求证:3是无理数.解析:根据命题的概念进行判断.因为②是疑问句,所以②不是命题.因为⑤中自变量x 的值不确定,所以无法判断其真假,故不是命题.因为⑥是祈使句,所以不是命题,故填①③④.答案:①③④2.判断下列语句是否是命题,并说明理由. (1)π3是有理数; (2)3x 2≤5;(3)梯形是不是平面图形呢? (4)x 2-x +7>0.解:(1)“π3是有理数”是陈述句,并且它是假的,所以它是命题.(2)因为无法判断“3x 2≤5”的真假,所以它不是命题. (3)“梯形是不是平面图形呢?”是疑问句,所以它不是命题.(4)因为x 2-x +7=⎝⎛⎭⎫x -122+274>0,所以“x 2-x +7>0”是真的,故是命题.讲一讲2.把下列命题改写成“若p ,则q ”的形式,并指出条件与结论.(链接教材P 3-例2、例3)(1)等边三角形的三个内角相等; (2)当a >1时,函数y =a x 是增函数; (3)菱形的对角线互相垂直.[尝试解答] (1)若一个三角形是等边三角形,则它的三个内角相等.其中条件p :一个三角形是等边三角形,结论q :它的三个内角相等.(2)若a >1,则函数y =a x 是增函数.其中条件p :a >1,结论q :函数y =a x 是增函数. (3)若四边形是菱形,则它的对角线互相垂直.其中条件p :四边形是菱形,结论q :四边形的对角线互相垂直.(1)对命题改写时,一定要找准命题的条件和结论,有些命题的形式比较简洁,条件和结论不明显,写命题的条件和结论时需要适当加以补充,例如命题“对顶角相等”的条件应写成“若两个角是对顶角”,结论为“这两个角相等”.(2)在对命题改写时,要注意所叙述的条件和结论的完整性,有些命题中,还要注意大前提的写法.例如,命题“在△ABC 中,若a >b ,则A >B ”中,大前提“在△ABC 中”是必不可少的.练一练3.将下列命题改写为“若p ,则q ”的形式. (1)当a >b 时,有ac 2>bc 2; (2)实数的平方是非负实数;(3)能被6整除的数既能被3整除也能被2整除; (4)已知x ,y 为正整数,当y =x +1时,必有y =4,x =3. 解:(1)若a >b ,则ac 2>bc 2.(2)若一个数是实数,则它的平方是非负实数.(3)若一个数能被6整除,则它既能被3整除也能被2整除. (4)已知x ,y 为正整数,若y =x +1,则y =4,x =3.讲一讲3.判断下列各命题的真假,并说明理由.(1)若a 2>b 2,则a >b ;(2)在△ABC 中,当A >60°时,必有sin A >32; (3)两个向量相等,它们一定是共线向量; (4)直线y =x 与圆(x -1)2+(y +1)2=1相切.[尝试解答] (1)假命题.例如,当a =-3,b =1时,a 2>b 2,但a >b 不成立. (2)假命题.例如,当A =150°时,A >60°,但sin A =12,不满足sin A >32.(3)真命题.当两个向量相等时,它们的模相等,方向相同,符合共线向量的定义,它们一定是共线向量.(4)假命题.圆心(1,-1)到直线y =x 的距离为d =2>1,所以直线与圆相离.(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成“若p ,则q ”的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成“若p ,则q ”的形式之后,判断这种命题真假的办法:若由“p ”经过逻辑推理,得出“q ”,则可判定“若p ,则q ”是真;判定“若p ,则q ”是假,只需举一反例即可.练一练4.下列命题中是真命题的是( ) A .若3∈A ,3∈B ,则A ∩B ={3} B .若x 2+x -2=0,则x =1C .若函数f (x )=x 2-x ,则f (x )有最小值-14D .若log 2x <1,则x <2 答案:C5.判断下列命题的真假,并说明理由. (1)正方形既是矩形又是菱形; (2)当x =4时,2x +1<0;(3)若x =3或x =7,则(x -3)(x -7)=0;(4)一个等比数列的公比大于1时,该数列一定为递增数列. 解:(1)是真命题,由正方形的定义知,正方形既是矩形又是菱形. (2)是假命题,x =4不满足2x +1<0.(3)是真命题,由x =3或x =7能得到(x -3)(x -7)=0.(4)是假命题,因为当等比数列的首项a 1<0,公比q >1时,该数列为递减数列.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是命题的真假判断,难点是命题的构成形式和命题的真假判断.2.本节课要重点掌握的规律方法(1)将命题改写成“若p,则q”的形式,找准命题的条件和结论,见讲2.(2)判断命题的真假性,见讲3.3.本节课的易错点是将含有大前提的命题写成“若p,则q”的形式时,大前提应保持不变,且不写在条件p中.课时达标训练(一)[即时达标对点练]题组1命题的概念1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 0°=0C.求x2-2x+1>0的解集D.作△ABC∽△EFG解析:选B A选项是疑问句,C、D选项中的语句是祈使句,都不是命题.2.以下语句中:①{0}∈N;②x2+y2=0;③x2>x;④{x|x2+1=0}.其中命题的个数是()A.0B.1C.2D.3解析:选B①是命题,且是假命题;②、③不能判断真假,不是命题;④不是陈述句,不是命题.题组2命题的构成形式3.把命题“末位数字是4的整数一定能被2整除”改写成“若p,则q”的形式为_______________________________________.答案:若一个整数的末位数字是4,则它一定能被2整除4.命题“若a>0,则二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界)”的条件p:________,结论q:________.它是________命题(填“真”或“假”).解析:a>0时,设a=1,把(0,0)代入x+y-1≥0得-1≥0不成立,∴x+y-1≥0表示直线的右上方区域,∴命题为真命题.答案:a>0二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界)真5.把下列命题改写成“若p,则q”的形式,并判断真假,且指出p和q分别指什么.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”.它是真命题.p:两个实数乘积为1,q:两个实数互为倒数.(2)“若一个函数为奇函数;则它的图象关于原点对称”.它是真命题.p:一个函数为奇函数;q:函数的图象关于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.p:两个平面与同一条直线平行;q:两个平面平行.题组3判断命题的真假6.下列命题是真命题的是()A.所有质数都是奇数B.若a>b,则a>bC.对任意的x∈N,都有x3>x2成立D.方程x2+x+1=0有实根解析:选B选项A错,因为2是偶数也是质数;选项B正确;选项C错,因为当x =0时x3>x2不成立;选项D错,因为Δ=12-4=-3<0,所以方程x2+x+1=0无实根.7.下列命题中真命题有()①mx2+2x-1=0是一元二次方程;②抛物线y=ax2+2x-1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.A.1个B.2个C.3个D.4个解析:选A①中,当m=0时,是一元一次方程;②中当Δ=4+4a<0时,抛物线与x轴无交点;③是正确的;④中空集不是本身的真子集.8.下列命题中真命题的个数为()①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.A.1 B.2 C.3 D.4解析:选A ①错;②中若x =3,y =0,则xy =0,但|x |+|y |≠0,故②错;③正确;④中矩形的对角线不一定互相垂直.9.下列命题:①y =x 2+3为偶函数;②0不是自然数;③{x ∈N |0<x <12}是无限集;④如果a ·b =0,那么a =0,或b =0.其中是真命题的是________(写出所有真命题的序号).解析:①为真命题;②③④为假命题. 答案:①[能力提升综合练]1.设a 、b 、c 是任意非零平面向量,且相互不共线,则:①(a ·b )c =(c ·a )b ;②|a|-|b|<|a -b|; ③(b ·c )a -(c ·a )b 不与c 垂直;④(3a +2b )·(3a -2b )=9|a|2-4|b|2,是真命题的有( )A .①②B .②③C .③④D .②④解析:选D ①错,数量积不满足结合律;②对,由向量减法的三角形法则可知有|a|-|b|<|a -b|;③[(b ·c )·a -(c·a )·b ]·c =(b·c )(a·c )-(c·a )(b·c )=0.∴③错;④对.2.已知a ,b 为两条不同的直线,α,β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中,假命题是( )A .若a ∥b ,则α∥βB .若α⊥β,则a ⊥bC .若a ,b 相交,则α,β相交D .若α,β相交,则a ,b 相交解析:选D 由已知a ⊥α,b ⊥β,若α,β相交,a ,b 有可能异面.3.给出命题“方程x 2+ax +1=0没有实数根”,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-4解析:选C 方程无实根时,应满足Δ=a 2-4<0.故a =0时适合条件. 4.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号为( ) A .①②③ B .①② C .①③ D .②③解析:选C 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5.下列语句中是命题的有________(写出序号),其中是真命题的有________(写出序号). ①垂直于同一条直线的两条直线必平行吗? ②一个数不是正数就是负数; ③大角所对的边大于小角所对的边; ④△ABC 中,若∠A =∠B ,则sin A =sin B ; ⑤求证方程x 2+x +1=0无实根.解析:①是疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题; ②是假命题,0既不是正数也不是负数; ③是假命题,没有限制在同一个三角形内; ④是真命题;⑤是祈使句,不是命题. 答案:②③④ ④6.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:∵ax 2-2ax -3>0不成立, ∴ax 2-2ax -3≤0恒成立. 当a =0时,-3≤0恒成立;当a ≠0时,则有⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 解得-3≤a <0.综上,-3≤a ≤0. 答案:[-3,0]7.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)奇数不能被2整除;(2)当(a -1)2+(b -1)2=0时,a =b =1; (3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行. 解:(1)若一个数是奇数,则它不能被2整除,是真命题. (2)若(a -1)2+(b -1)2=0,则a =b =1,是真命题.(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.8.已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,B 为q ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”.由命题为真命题可知1+a 5≥1,解得a ≥4;若视B 为p ,A 为q ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”.由命题为真命题可知1+a 5≤1,解得a ≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x >1,则x >25”. 第2课时 四种命题及四种命题间的相互关系[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 4~P 8的内容,回答下列问题.观察教材P 4“思考”中的4个命题:(1)这4个命题的条件和结论各是什么?提示:命题(1)的条件:f (x )是正弦函数,结论:f (x )是周期函数;命题(2)的条件:f (x )是周期函数,结论:f (x )是正弦函数;命题(3)的条件:f (x )不是正弦函数,结论:f (x )不是周期函数;命题(4)的条件:f (x )不是周期函数,结论:f (x )不是正弦函数.(2)命题(1)的条件和结论与命题(2)、(3)、(4)的条件和结论之间有什么关系?提示:命题(1)的条件和结论分别是命题(2)的结论和条件;命题(1)的条件和结论分别是命题(3)的条件的否定和结论的否定;命题(1)的条件和结论分别是命题(4)的结论的否定和条件的否定.(3)根据上述四种命题的概念,你能说出其中任意两个命题之间的相互关系吗?提示:命题(2)(3)互为逆否命题;命题(2)(4)互为否命题;命题(3)(4)互为逆命题.2.归纳总结,核心必记(1)四种命题的概念①互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这样的两个命题叫做互逆命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.②互否命题:一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.③互为逆否命题:一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.(2)四种命题结构(3)四种命题间的相互关系(4)四种命题的真假性一般地,四种命题的真假性,有且仅有下面四种情况:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.[问题思考](1)命题“若a≠0,则ab≠0”的逆命题、否命题和逆否命题各是什么?提示:逆命题:若ab≠0,则a≠0;否命题:若a=0,则ab=0;逆否命题:若ab=0,则a=0.(2)在四种命题中,原命题是固定的吗?提示:不是.原命题是指定的,是相对于其他三种命题而言的,可以把任何一个命题看作原命题,进而研究它的其他命题形式.(3)如果一个命题的逆命题为真命题,这个命题的否命题一定为真命题吗?提示:一定为真命题,因为一个命题的逆命题和否命题互为逆否命题,所以它们的真假性相同.(4)在四种命题中,真命题的个数可能会有几种情况?提示:因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.[课前反思](1)四种命题的概念是:;(2)四种命题的条件和结论之间有什么关系?;(3)四种命题的真假性有什么关系?.讲一讲1.写出下列命题的逆命题、否命题与逆否命题:(1)若x>-2,则x+3>0;(2)两条对角线相等的四边形是矩形.[尝试解答](1)逆命题:若x+3>0,则x>-2;否命题:若x≤-2,则x+3≤0;逆否命题:若x+3≤0,则x≤-2.(2)原命题可写为:若一个四边形的两条对角线相等,则这个四边形是矩形.逆命题:若一个四边形是矩形,则其两条对角线相等;否命题:若一个四边形的两条对角线不相等,则这个四边形不是矩形;逆否命题:若一个四边形不是矩形,则其两条对角线不相等.写出一个命题的其他三种命题的步骤(1)分析命题的条件和结论;(2)将命题写成“若p,则q”的形式;(3)根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.[注意]如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.练一练1.分别写出下列命题的逆命题、否命题、逆否命题:(1)正数的平方根不等于0;(2)若x2+y2=0(x,y∈R),则x,y全为0.解:(1)逆命题:若一个数的平方根不等于0,则这个数是正数;否命题:若一个数不是正数,则这个数的平方根等于0;逆否命题:若一个数的平方根等于0,则这个数不是正数.(2)逆命题:若x,y全为0,则x2+y2=0(x,y∈R);否命题:若x2+y2≠0(x,y∈R),则x,y不全为0;逆否命题:若x,y不全为0,则x2+y2≠0(x,y∈R).[思考1]若原命题为真,则它的逆命题、否命题的真假性是怎样的?名师指津:由于原命题的真假性与它的逆命题、否命题的真假性之间没有关系,所以无法判断它的逆命题、否命题的真假性.[思考2]若原命题为真,它的逆否命题的真假性如何?名师指津:原命题和它的逆否命题具有相同的真假性.讲一讲2.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)在△ABC中,若a>b,则A>B;(2)相等的两个角的正弦值相等;(3)若x2-2x-3=0,则x=3;(4)若x∈A,则x∈A∩B.[尝试解答](1)逆命题:在△ABC中,若A>B,则a>b.真命题;否命题:在△ABC中,若a≤b,则A≤B,真命题;逆否命题:在△ABC中,若A≤B,则a≤b.真命题.(2)逆命题:若两个角的正弦值相等,则这两个角相等.假命题;否命题:若两个角不相等,则这两个角的正弦值也不相等.假命题;逆否命题:若两个角的正弦值不相等,则这两个角不相等.真命题.(3)逆命题:若x=3,则x2-2x-3=0.真命题;否命题:若x2-2x-3≠0,则x≠3.真命题;逆否命题:若x≠3,则x2-2x-3≠0.假命题.(4)逆命题:若x∈A∩B,则x∈A.真命题;否命题:若x∉A,则x∉A∩B.真命题;逆否命题:若x∉A∩B,则x∉A.假命题.判断一个命题的真假,可以有两种方法:一是分清原命题的条件和结论,直接对原命题的真假进行判断;二是不直接写出命题,而是根据命题之间的关系进行判断,即原命题和逆否命题同真同假,逆命题和否命题同真同假,尤其是当命题本身不易判断真假时,通常都通过判断其逆否命题的真假来实现.练一练2.有下列四个命题:(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.其中真命题的个数是()A.0B.1C.2D.3解析:选B(1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x+y=0”,为真命题;(2)原命题与其逆否命题具有相同的真假性,而原命题为假命题(如x=0,y=-1),故其逆否命题为假命题;(3)该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.3.在命题“若a>-3,则a>-6”的逆命题、否命题、逆否命题中假命题个数是________.解析:容易判断,命题“若a>-3,则a>-6”为真命题,而逆否命题与原命题同真假,从而它的逆否命题也是真命题;它的否命题为“若a≤-3,则a≤-6”,是假命题,而否命题与逆命题同真假,则它的逆命题也是假命题.答案:2[思考]我们学习了四种命题的关系,那么在直接证明某一个命题为真命题有困难时,该怎么办?名师指津:可以通过证明它的逆否命题为真命题来解决.讲一讲3.(1)判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.(2)(链接教材P8-例4)证明:已知函数f(x)是(-∞,+∞)上的增函数,a、b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.[尝试解答] (1)法一:原命题的逆否命题:“已知a ,x 为实数,若a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.” 真假判断如下:因为抛物线y =x 2+(2a +1)x +a 2+2开口向上,判别式Δ=(2a +1)2-4(a 2+2)=4a -7,若a <1,则4a -7<0.即抛物线y =x 2+(2a +1)x +a 2+2与x 轴无交点.所以关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.故原命题的逆否命题为真.法二:先判断原命题的真假.因为a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,所以Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,所以a ≥1.所以原命题成立.又因为原命题与其逆否命题等价,所以逆否命题为真.(2)原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).”∵当a +b <0时,a <-b ,b <-a ,又∵f (x )在(-∞,+∞)上是增函数,∴f (a )<f (-b ),f (b )<f (-a ).∴f (a )+f (b )<f (-a )+f (-b ),即逆否命题为真命题.∴原命题为真命题.由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.练一练4.证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12³22=2, 所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是四种命题的概念以及四种命题间的关系,难点是等价命题的应用.2.本节课要重点掌握的规律方法(1)写出原命题的逆命题、否命题和逆否命题,并会判断真假,见讲1和讲2.(2)用原命题和逆否命题的等价性解决相关问题,见讲3.3.每一个命题都由条件和结论组成,要分清条件和结论.4.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.课时达标训练(二)[即时达标对点练]题组1四种命题的概念1.命题“若a∉A,则b∈B”的否命题是()A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉A解析:选B命题“若p,则q”的否命题是“若綈p,则綈q”,“∈”与“∉”互为否定形式.2.命题“若x>1,则x>0”的逆命题是__________,逆否命题是__________.答案:若x>0,则x>1若x≤0,则x≤13.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________(填序号).答案:②和③①和③①和②题组2四种命题的真假判断4.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x=1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:选A对A,即判断:“若x>|y|,则x>y”的真假,显然是真命题.5.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是()A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题解析:选C因为原命题是真命题,所以逆否命题也是真命题.6.命题“若x≠1,则x2-1≠0”的真假性为________.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x2-1=0,则x=1”,因为x2-1=0,x=±1,所以该命题是假命题,因此原命题是假命题.答案:假命题题组3等价命题的应用7.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解:∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.8.证明:若a2-4b2-2a+1≠0,则a≠2b+1.证明:“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为:“若a=2b+1,则a2-4b2-2a+1=0”,当a=2b+1时,a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+4b+1-4b2-4b -2+1=0,故该命题的逆否命题为真命题,从而原命题也是真命题.[能力提升综合练]1.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:选A设p为“若A,则B”,那么q为“若,则”,r为“若,则”.故q与r为互逆命题.2.下列四个命题:①“若xy=0,则x=0,且y=0”的逆否命题;②“正方形是矩形”的否命题;③“若ac2>bc2,则a>b”的逆命题;④若m>2,则不等式x2-2x+m>0.其中真命题的个数为()A.0 B.1 C.2 D.3解析:选B命题①的逆否命题是“若x≠0,或y≠0,则xy≠0”,为假命题;命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题;命题③的逆命题是“若a>b,则ac2>bc2”,为假命题;命题④为真命题,当m>2时,方程x2-2x+m=0的判别式Δ<0,对应二次函数图象开口向上且与x轴无交点,所以函数值恒大于0.3.有下列四个命题:①“若x+y=0,则x、y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为()A.①②B.②③C.①③D.③④解析:选C命题①:“若x,y互为相反数,则x+y=0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题;命题③:“若x2+2x+q=0有实根,则q≤1”是真命题;命题④是假命题.4.已知原命题“两个无理数的积仍是无理数”,则:①逆命题是“乘积为无理数的两数都是无理数”;②否命题是“两个不都是无理数的积也不是无理数”;③逆否命题是“乘积不是无理数的两个数都不是无理数”.其中所有正确叙述的序号是________.解析:原命题的逆命题、否命题叙述正确.逆否命题应为“乘积不是无理数的两个数不都是无理数”.答案:①②5.已知:A表示点,a,b,c表示直线,α,β表示平面,给出下列命题:①a⊥α,b⊄α,若b∥α,则b⊥a;②a⊥α,若a⊥β,则α∥β;③a⊂α,b∩α=A,c为b在α上的射影,若a⊥c,则a⊥b;④a⊥α,若b∥α,c∥a,则a⊥b,c⊥b.其中逆命题为真的是________.解析:④的逆命题:“a⊥α,若a⊥b,c⊥b,则b∥α,c∥a”,而b,c可以在α内,故不正确.答案:①②③6.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.。

2018年新人教A版高中数学选修1-1全册同步检测含答案解析

2018年新人教A版高中数学选修1-1全册同步检测含答案解析

2018年新人教A版高中数学选修1-1全册同步检测目录第1章1.1-1.1.1命题第1章1.1-1.1.3四种命题间的相互关系第1章1.2充分条件与必要条件第1章1.3简单的逻辑联结词第1章1.4全称量词与存在量词第1章章末复习课第1章章末评估验收(一)第2章2.1-2.1.1椭圆及其标准方程第2章2.1-2.1.2第1课时椭圆的简单几何性质第2章2.1-2.1.2第2课时直线与椭圆的位置关系第2章2.2-2.2.1双曲线及其标准方程第2章2.2-2.2.2双曲线的简单几何性质第2章2.3-2.3.1抛物线及其标准方程第2章2.3-2.3.2抛物线的简单几何性质第2章章末复习课第2章章末评估验收(二)第3章3.1-3.1.2导数的概念第3章3.1-3.1.3导数的几何意义第3章3.2导数的计算第3章3.3-3.3.1函数的单调性与导数第3章3.3-3.3.2函数的极值与导数第3章3.3-3.3.3函数的最大(小)值与导数第3章3.4生活中的优化问题举例第3章章末复习课章末评估验收(三)模块综合评价(一)模块综合评价(二)第一章常用逻辑用语1.1 命题及其关系1.1.1 命题A级基础巩固一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,在这4句诗中,可作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:“红豆生南国”是陈述句,意思是“红豆生长在南方”,故本句是命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题.答案:A2.下列命题为真命题的是()A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2解析:很明显A正确;B中,由x2=1,得x=±1,所以B是假命题;C中,当x=y<0时,结论不成立,所以C是假命题;D中,当x=-1,y=1时,结论不成立,所以D是假命题.答案:A3.给出下列命题:①若直线l⊥平面α,直线m⊥平面α,则l⊥m;②若a、b都是正实数,则a+b≥2ab;③若x2>x,则x>1;④函数y=x3是指数函数.其中假命题为()A.①③B.①②③C.①③④D.①④解析:①显然错误,所以①是假命题;由基本不等式,知②是真命题;③中,由x2>x,得x<0或x>1,所以③是假命题;④中函数y=x3是幂函数,不是指数函数,④是假命题.答案:C4.命题“垂直于同一条直线的两个平面平行”的条件是()A.两个平面B.一条直线C.垂直D.两个平面垂直于同一条直线解析:把命题改为“若p则q”的形式为若两个平面垂直于同一条直线,则这两个平面平行,则条件为“两个平面垂直于同一条直线”.答案:D5.下列语句中命题的个数为()①若a,G,b成等比数列,则G2=ab.②4-x2≥0.③梯形是中心对称图形.④π>2吗?⑤2016年是我人生中最难忘的一年!A.2B.3C.4D.5解析:依据命题的概念知④和⑤不是陈述句,故④⑤不是命题;再从“能否判断真假”的角度分析:②不是命题.只有①③为命题,故选A.答案:A二、填空题6.下列语句:①2是无限循环小数;②x 2-3x +2=0;③当x =4时,2x >0;④把门关上!其中不是命题的是________.解析:①是命题;②不是命题,因为语句中含有变量x ,在没给变量x 赋值的情况下,无法判断语句的真假;③是命题;④是祈使句,不是命题.答案:②④7.已知命题“f (x )=cos 2ωx -sin 2ωx 的最小正周期是π”是真命题,则实数ω的值为________.解析:f (x )=cos 2ωx -sin 2ωx =cos 2ωx ,所以⎪⎪⎪⎪⎪⎪2π2ω=π,解得ω=±1.答案:±1 8.下列命题:①若xy =1,则x ,y 互为倒数; ②二次函数的图象与x 轴有公共点; ③平行四边形是梯形; ④若ac 2>bc 2,则a >b .其中真命题是________(写出所有真命题的编号).解析:对于②,二次函数图象与x 轴不一定有公共点;对于③,平行四边形不是梯形.答案:①④ 三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)末位数字是0的整数能被5整除; (2)偶函数的图象关于y 轴对称; (3)菱形的对角线互相垂直.解:(1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称,为真命题.(3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.10.已知:A:5x-1>a,B:x>1,请选择适当的实数a,使得利用A、B构造的命题“若p,则q”为真命题.解:若视A为p,则命题“若p,则q”为“若x>1+a5,则x>1”.由命题为真命题可知1+a5≥1,解得a≥4;若视B为p,则命题“若p,则q”为“若x>1,则x>1+a5”.由命题为真命题可知1+a5≤1,解得a≤4.故a取任一实数均可利用A,B构造出一个真命题,比如这里取a=1,则有真命题“若x>1,则x>25”.B级能力提升1.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是()A.4B.2C.1D.-3解析:C中,当a=1时,Δ=12-4×1×1=-3<0,方程无实根,其余3项中,a 的值使方程均有实根.答案:C2.①若a·b=a·c,则b=c;②若a=(1,k),b=(-2,6),a//b,则k=-3;③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).解析:取a=0,满足a·b=a·c,但不一定有b=c,故①不正确;当a=(1,k),b=(-2,6),a//b时,6+2k=0,所以k=-3,则②正确;非零向量a和b满足|a|=|b|=|a-b|时,|a|,|b|,|a-b|构成等边三角形,所以a与a +b的夹角为30°,因此③错误.答案:②3.把下列命题改写成“若p,则q”的形式,并判断真假.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.第一章常用逻辑用语1.1 命题及其关系1.1.2 四种命题1.1.3 四种命题间的相互关系A级基础巩固一、选择题1.命题“对角线相等的四边形是矩形”是命题“矩形的对角线相等”的()A.逆命题B.否命题C.逆否命题D.无关命题解析:将命题“对角线相等的四边形是矩形”写成“若p,则q”的形式为:“若一个四边形的对角线相等,则这个四边形是矩形”.而将命题“矩形的对角线相等”写成“若p,则q”的形式为:“若一个四边形是矩形,则四边形的对角线相等”.则前一个命题为后一个命题的逆命题.答案:A2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a+b+c≥3,则a2+b2+c2=3解析:否定条件,得a+b+c≠3,否定结论,得a2+b2+c2<3.所以否命题是“若a +b+c≠3,则a2+b2+c2<3”.答案:A3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:原命题与它的逆否命题是等价命题,原命题的逆否命题是:不能被3整除的整数,一定不能被6整除.答案:B4.下列说法:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真.其中正确的是()A.①②B.②③C.③④D.②③④解析:互为逆否命题的两个命题同真假,互为否命题和逆命题的两个命题,它们的真假性没有关系.答案:B5.有下列四种命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若x>y,则x2>y2”的逆否命题;③“若x≤3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.3解析:(1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x +y =0”,为真命题;(2)原命题与其逆否命题具有相同的真假性.而原命题为假命题(如x =0,y =-1),故其逆否命题为假命题;(3)该命题的否命题为“若x >3,则x 2-x -6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.答案:B 二、填空题6.命题“若x 2<4,则-2<x <2”的逆否命题为_______________,是______________(填“真”或“假”)命题.解析:命题“若x 2<4,则-2<x <2”的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,因为原命题是真命题,所以其逆否命题也是真命题.答案:若x ≥2或x ≤-2,则x 2≥4 真7.命题“当AB =AC 时,△ABC 是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有________个.解析:原命题“当AB =AC 时,△ABC 是等腰三角形”是真命题,且互为逆否命题等价,故其逆否命题为真命题.其逆命题“若△ABC 是等腰三角形,则AB =AC ”是假命题,则否命题是假命题.则4个命题中有2个是真命题.答案:28.设有两个命题:①不等式mx 2+1>0的解集是R ;②函数f (x )=log m x 是减函数.如果这两个命题中有且只有一个是真命题,则实数m 的取值范围是________.解析:①当m =0时,mx 2+1=1>0恒成立,解集为R.当m ≠0时,若mx 2+1>0的解集为R ,必有m >0. 综上知,不等式mx 2+1>0的解集为R ,必有m ≥0.②当0<m <1时,f (x )=log m x 是减函数,当两个命题中有且只有一个真命题时⎩⎪⎨⎪⎧m ≥0,m ≤0或m ≥1或⎩⎪⎨⎪⎧m <0,0<m <1,所以 m =0或m ≥1. 答案:m =0或m ≥1三、解答题9.写出命题“在△ABC 中,若a >b ,则A >B ”的逆命题、否命题和逆否命题,并判断它们的真假.解:(1)逆命题:在△ABC 中,若A >B ,则a >b 为真命题.否命题:在△ABC 中,若a ≤b ,则A ≤B 为真命题.逆否命题:在△ABC 中,若A ≤B ,则a ≤b 为真命题.10.判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集是R ,则a <74”的逆否命题的真假.解:先判断原命题的真假如下:因为a ,x 为实数,关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集为R ,且抛物线y =x 2+(2a +1)x +a 2+2的开口向上,所以Δ=(2a +1)2-4(a 2+2)=4a -7<0.所以a <74.所以原命题是真命题.因为互为逆否命题的两个命题同真同假,所以原命题的逆否命题为真命题.B 级 能力提升1.若命题p 的逆命题是q ,命题q 的否命题是m ,则m 是p 的( ) A .原命题 B .逆命题 C .否命题D .逆否命题解析:设命题p 为“若k ,则l ”,则命题q 为“若l ,则k ”,从而命题m 为“若非l ,则非k ”,即命题m 是命题p 的逆否命题.答案:D2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,为真命题的是________.解析:由于原命题为真命题,则其逆否命题也为真命题.其否命题:若函数y =f (x )不是幂函数,则y =f (x )的图象过第四象限,为假命题,从而原命题的逆命题也是假命题.答案:逆否命题3.已知p :x 2+mx +1=0有两个不等的负根,q :4x 2+4(m -2)x +1=0无实数根.若p ,q 一真一假,求m 的取值范围.解:当p 为真时,即方程x 2+mx +1=0有两个不等的负根,设两个负根为x 1,x 2,则有⎩⎪⎨⎪⎧m 2-4>0,x 1+x 2=-m <0,解得m >2.当q 为真时,即方程4x 2+4(m -2)x +1=0无实数根,则有16(m -2)2-4×4×1<0,解得1<m <3.若p 真,q 假,则⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,得m ∈[3,+∞);若p 假,q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,得m ∈(1,2].综上所述,m 的取值范围是(1,2]∪[3,+∞).第一章 常用逻辑用语 1.2 充分条件与必要条件A 级 基础巩固一、选择题1.“α=π6”是“cos 2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由cos 2α=12,可得α=k π±π6(k ∈Z),故选A.答案:A2.(2016·天津卷)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件解析:当x =1,y =-2时,x >y ,但x >|y |不成立; 若x >|y |,因为|y |≥y ,所以x >y . 所以x >y 是x >|y |的必要而不充分条件. 答案:C3.x 2<4的必要不充分条件是( ) A .0<x ≤2 B .-2<x <0 C .-2≤x ≤2D .1<x <3解析:x2<4即-2<x<2,因为-2<x<2能推出-2≤x≤2,而-2≤x≤2不能推出-2<x<2,所以x2<4的必要不充分条件是-2≤x≤2.答案:C4.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.答案:A5.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=2 B.m=-2C.m=-1 D.m=1解析:当m=-2时,f(x)=x2-2x+1,其图象关于直线x=1对称,反之也成立,所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案:B二、填空题6.设a,b是实数,则“a+b>0”是“ab>0”的_____________条件.解析:若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分也不必要条件.答案:既不充分也不必要条件7.关于x 的不等式|2x -3|>a 的解集为R 的充要条件是________. 解析:由题意知|2x -3|>a 恒成立. 因为|2x -3|≥0,所以 a <0. 答案:a <08.对任意实数a ,b ,c ,给出下列命题: ①“a =b ”是“ac =bc ”的充要条件;②“b -2是无理数”是“b 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的序号是________. 解析:①中由“a =b ”可得ac =bc ,但由“ac =bc ”得不到“a =b ”,所以不是充要条件; ②是真命题;③中a >b 时,a 2>b 2不一定成立,所以③是假命题; ④中由“a <5”得不到“a <3”, 但由“a <3”可以得出“a <5”,所以“a <5”是“a <3”的必要条件,是真命题. 答案:②④ 三、解答题9.已知p :-4<x -a <4,q :(x -2)(x -3)<0,且q 是p 的充分而不必要条件,试求a 的取值范围.解:设q ,p 表示的范围为集合A ,B ,则A =(2,3),B =(a -4,a +4).由于q 是p 的充分而不必要要件,则有AB ,即⎩⎪⎨⎪⎧a -4≤2,a +4>3或⎩⎪⎨⎪⎧a -4<2,a +4≥3,解得-1≤a ≤6.10.求证:关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.证明:必要性:因为方程ax 2+bx +c =0有一个根为1, 所以x =1满足方程ax 2+bx +c =0,即a +b +c =0. 充分性:因为a +b +c =0,所以c =-a -b , 代入方程ax 2+bx +c =0中可得ax 2+bx -a -b =0, 即(x -1)(ax +a +b )=0.故方程ax 2+bx +c =0有一个根为1.所以关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.B 级 能力提升1.m =12是直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:当m =12时,两直线为52x +32y +1=0和-32x +52y -3=0,两直线斜率之积为-1,两直线垂直;而当两直线垂直时,(m +2)(m -2)+3m (m +2)=0,即2(m +2)(2m -1)=0,所以 m =-2或m = 12.所以 为充分不必要条件.答案:B2.已知p :不等式x 2+2x +m >0的解集为R ;q :指数函数f (x )=⎝ ⎛⎭⎪⎫m +14x为增函数,则p 是q 成立的________条件.解析:p :不等式x 2+2x +m >0的解集为R ,即Δ=4-4m <0,m >1;q :指数函数f (x )=⎝ ⎛⎭⎪⎫m +14x 为增函数,即m +14>1,m >34,则p 是q 成立的充分不必要条件.答案:充分不必要3.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若綈p 是綈q 的充分不必要条件.求实数m 的取值范围.解:p :-2≤x ≤10.q :x 2-2x +1-m 2≤0(m >0)⇔[x -(1-m )][x -(1+m )]≤0(m >0)⇔1-m ≤x ≤1+m (m >0).因为綈p 是綈q 的充分不必要条件,所以q 是p 的充分不必要条件,即{}x |1-m ≤x ≤1+m {}x |-2≤x ≤10,故有⎩⎪⎨⎪⎧1-m ≥-2,1+m <-10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{}m |0<m ≤3. 本题还可用以下方法求解.因为p :-2≤x ≤10,所以綈p :x <-2或x >10.q :x 2-2x +1-m 2≤0(m >0)⇔[x -(1-m )][x -(1+m )]≤0(m >0)⇔1-m ≤x ≤1+m (m >0),綈q :x <1-m 或x >1+m (m >0).因为綈p 是綈q 的充分不必要条件,所以{}x |x <-2或x >10{}x |x <1-m 或x >1+m ,故有⎩⎪⎨⎪⎧1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{}m |0<m ≤3.第一章常用逻辑用语1.3 简单的逻辑联结词A级基础巩固一、选择题1.命题“2是3的约数或2是4的约数”中,使用的逻辑联结词的情况是() A.没有使用逻辑联结词B.使用了逻辑联结词“且”C.使用了逻辑联结词“或”D.使用了逻辑联结词“非”答案:C2.若命题“p且q”为假,且綈p为假,则()A.p或q为假B.q假C.q真D.p假解析:綈p为假,则p为真,而p∧q为假,得q为假.答案:B3.下列命题中,既是“p或q”形式的命题,又是真命题的是()A.方程x2-x+2=0的两根是-2,1B.方程x2+x+1=0没有实根C.2n-1(n∈Z)是奇数D.a2+b2≥0(a,b∈R)解析:选项A中,-2,1都不是方程的根;选项B不是“p或q”的形式;选项C 也不是“p或q”的形式;选项D中,a2+b2≥0⇔a2+b2>0或a2+b2=0,且是真命题,故选D.答案:D4.已知p:x∈A∩B,则綈p是()A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B解析:p:x∈A∩B,即x∈A且x∈B,故綈p是x∉A或x∉B.答案:B5.给出命题p:函数y=x2-x-1有两个不同的零点;q:若1x<1,则x>1.那么在下列四个命题中,真命题是()A.(綈p)∨q B.p∧qC.(綈p)∧(綈q) D.(綈p)∨(綈q)解析:对于p,函数对应的方程x2-x-1=0的判别式Δ=(-1)2-4×(-1)=5>0,所以函数有两个不同的零点,故p为真.对于q,当x<0时,不等式1x<1恒成立;当x>0时,不等式的解集为{x|x>1}.故不等式1x<1的解集为{x|x<0或x>1}.故q为假.结合各选项知,只有(綈p)∨(綈q)为真.故选D.答案:D二、填空题6.命题“若a<b,则2a<2b”的否命题是________________,命题的否定是______________.解析:命题“若p,则q”的否命题是“若綈p,则綈q”,命题的否定是“若p,则綈q”.答案:若a≥b,则2a≥2b若a<b,则2a≥2b7.已知命题p :对任意x ∈R ,总有|x |≥0.q :x =1是方程x +2=0的根,则p ∧(綈q )为________命题(填“真”或“假”).解析:命题p 为真命题,命题q 为假命题,所以命题綈q 为真命题,所以p ∧綈q 为真命题.答案:真8.已知p :x 2-x ≥6,q :x ∈Z.若“p ∧q ”“綈q ”都是假命题,则x 的值组成的集合为________.解析:因为“p ∧q ”为假,“綈q ”为假,所以q 为真,p 为假.故⎩⎪⎨⎪⎧x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z.因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2} 三、解答题9.写出下列命题的p ∨q ,p ∧q ,綈p 的形式,并判断其真假: (1)p :2是有理数;q :2是实数.(2)p :5不是15的约数;q :5是15的倍数.(3)p :空集是任何集合的子集;q :空集是任何集合的真子集. 解:(1)p ∨q :2是有理数或2是实数,真命题;p ∧q :2是有理数且2是实数,假命题;綈p :2不是有理数,真命题. (2)p ∨q :5不是15的约数或5是15的倍数,假命题; p ∧q :5不是15的约数且5是15的倍数,假命题; 綈p :5是15的约数,真命题.(3)p ∨q :空集是任何集合的子集或空集是任何集合的真子集,真命题; p ∧q :空集是任何集合的子集且空集是任何集合的真子集,假命题;綈p :空集不是任何集合的子集,假命题.10.已知命题p :方程x 2+2x +a =0有实数根;命题q :函数f (x )=(a 2-a )x 在R 上是增函数.若p ∧q 为真命题,求实数a 的取值范围.解:当p 是真命题时,Δ=4-4a ≥0,解得a ≤1.当q 是真命题时,a 2-a >0,解得a <0或a >1.由题意,得p ,q 都是真命题,所以⎩⎪⎨⎪⎧a ≤1,a <0或a >1,解得a <0,所以实数a 的取值范围是(-∞,0).B 级 能力提升1.给定命题p :若x 2≥0,则x ≥0;命题q :已知非零向量a ,b ,则“a ⊥b ”是“| a -b |=| a +b |”的充要条件,则下列各命题中,假命题是( )A .p ∨qB .(綈p )∨qC .(綈p )∧qD .(綈p )∧(綈q )解析:命题p 为假命题,命题q 为真命题,所以綈p 是真命题,綈q 为假命题,所以(綈p )∧(綈q )为假命题.答案:D2.给出下列结论:(1)当p 是真命题时,“p 且q ”一定是真命题; (2)当p 是假命题时,“p 且q ”一定是假命题; (3)当“p 且q ”是假命题时,p 一定是假命题; (4)当“p 且q ”是真命题时,p 一定是真命题. 其中正确结论的序号是________.解析:(1)错误,当q 是假命题时,“p 且q ”是假命题,当q 也是真命题时,“p 且q ”是真命题;(2)正确;(3)错误,p 也可能是真命题;(4)正确.答案:(2)(4)3.已知a >0,设p :函数y =a x 在R 上单调递减;q :不等式x +|x -2a |>1的解集为R ,如果“p ∨q ”为真,“p ∧q ”为假,求实数a 的取值范围.解:对于命题p :函数y =a x 在R 上单调递减,即0<a <1.对于命题q :不等式x +|x -2a |>1的解集为R ,即函数y =x +|x -2a |在R 上恒大于1,又y =⎩⎪⎨⎪⎧2x -2a ,x ≥2a ,2a ,x <2a ,所以 y min =2a >1,即a >12.由p ∨q 为真,p ∧q 为假,根据复合命题真值表知p 、q 一真一假.如果p 真q 假,则0<a ≤12;如果p 假q 真,则a ≥1.综上所述,a 的取值范围为⎝ ⎛⎦⎥⎤0,12∪[1,+∞).第一章 常用逻辑用语 1.4 全称量词与存在量词A 级 基础巩固一、选择题1.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.答案:B2.命题“∀x ∈R ,x 2≠x ”的否定是( ) A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x ∉R ,x 2≠xD .∃x ∈R ,x 2=x解析:全称命题的否定是特称命题,所以命题“∀x ∈R ,x 2≠x ”的否定是“∃x ∈R ,x 2=x ”.答案:D3.下列特称命题中假命题的个数是( ) ①有一条直线与两个平行平面垂直; ②有一条直线与两个相交平面平行; ③存在两条相交直线与同一个平面垂直.A .0B .1C .2D .3 解析:①②都是真命题,③是假命题. 答案:B4.设函数f (x )=x 2+mx (m ∈R),则下列命题中的真命题是( ) A .任意m ∈R ,使y =f (x )都是奇函数 B .存在m ∈R ,使y =f (x )是奇函数 C .任意m ∈R ,使x =f (x )都是偶函数 D .存在m ∈R ,使y =f (x )是偶函数解析:当m =0时,f (x )=x 2为偶函数,故选D. 答案:D5.若⎝ ⎛⎭⎪⎫13x 2-2ax <33x +a 2恒成立,则实数a 的取值范围是( )A .0<a <1B .a >34C .0<a <34D .a <34解析:由题意,得-x 2+2ax <3x +a 2,即x 2+(3-2a )x +a 2>0恒成立,所以Δ=(3-2a )2-4a 2<0,解得a >34.答案:B 二、填空题6.命题“∃x 0,y 0∈Z ,3x 0-2y 0=10”的否定是______________. 解析:特称命题的否定是全称命题,则否定为∀x ,y ∈Z ,3x -2y ≠10. 答案:∀x ,y ∈Z ,3x -2y ≠107.下列命题中,是全称命题的是________;是特称命题的是________. ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③④8.下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x0∈Q,x20=2;③∃x0∈R,x20+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为________.解析:x2-3x+2>0,Δ=(-3)2-4×2>0,所以当x>2或x<1时,x2-3x+2>0才成立,所以①为假命题.当且仅当x=±2时,x2=2,所以不存在x∈Q,使得x2=2,所以②为假命题.对∀x∈R,x2+1≠0,所以③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,所以④为假命题.所以①②③④均为假命题.答案:0三、解答题9.判断下列各命题的真假,并写出命题的否定.(1)有一个实数a,使不等式x2-(a+1)x+a>0恒成立;(2)对任意实数x,不等式|x+2|≤0恒成立;(3)在实数范围内,有些一元二次方程无解.解:(1)方程x2-(a+1)x+a=0的判别式Δ=(a+1)2-4a=(a-1)2≥0,则不存在实数a,使不等式x2-(a+1)x+a>0恒成立,所以原命题为假命题.它的否定:对任意实数a,不等式x2-(a+1)x+a>0不恒成立.(2)当x=1时,|x+2|>0,所以原命题是假命题.它的否定:存在实数x,使不等式|x+2|>0成立.(3)由一元二次方程解的情况,知该命题为真命题. 它的否定:在实数范围内,所有的一元二次方程都有解.10.对于任意实数x ,不等式sin x +cos x >m 恒成立,求实数m 的取值范围. 解:令y =sin x +cos x ,则y =sin x +cos x =2⎝ ⎛⎭⎪⎫22sin x +22cos x =2sin ⎝ ⎛⎭⎪⎫x +π4.因为-1≤sin ⎝⎛⎭⎪⎫x +π4≤1,所以2sin ⎝ ⎛⎭⎪⎫x +π4≥- 2. 因为∀x ∈R ,sin x +cos x >m 恒成立, 所以只要m <-2即可.故实数m 的取值范围是(-∞,-2).B 级 能力提升1.若命题p :∀x ∈R ,log 2x >0,命题q :∃x 0∈R ,2x 0<0,则下列命题为真命题的是( )A .p ∨qB .p ∧qC .(綈p )∧qD .p ∨(綈q )解析:命题p :∀x ∈R ,log 2x >0为假命题,命题q :∃x 0∈R ,2x 0<0为假命题,所以p ∨(綈q )为真命题,故选D.答案:D2.已知命题“∃x 0∈R ,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:由题意可得“对∀x ∈R ,2x 2+(a -1)x +12>0恒成立”是真命题,令Δ=(a-1)2-4<0,得-1<a <3.答案:(-1,3)3.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+a +2=0”,若命题“p或q”是真命题,求实数a的取值范围.解:p⇔a≤(x2)min=1.q⇔Δ=4a2-4(a+2)≥0⇔a≤-1或a≥2.因为“p或q”为真命题,所以p、q中至少有一个真命题.所以a≤1或a≤-1或a≥2,所以a≤1或a≥2.所以“p或q”是真命题时,实数a的取值范围是(-∞,1]∪[2,+∞).章末复习课[整合·网络构建][警示·易错提醒]1.命题及其关系的关注点(1)命题的四种形式的转换方法是首先确定原命题的条件和结论,然后对条件与结论进行交换、否定,就可以得到各种形式的命题.(2)命题真假的判断,可根据真(假)命题的定义直接推理判断,还可以根据互为逆否命题具有相同的真假性来判断.2.充分条件与必要条件的注意点(1)在判定充分条件、必要条件时,要注意既要看由p能否推出q,又要看由q能否推出p,不能顾此失彼.(2)证明充要条件要分两个方面,防止将充分条件和必要条件的证明弄混.3.简单的逻辑联结词的两个关注点(1)正确理解“或”的意义,日常用语中的“或”有两类用法:其一是“不可兼”的“或”;其二是“可兼”的“或”,我们这里仅研究“可兼”的“或”.(2)有的命题中省略了“且”“或”,要正确区分.4.否命题与命题的否定的注意点否命题与命题的否定的区别.对于命题“若p,则q”,其否命题形式为“若綈p,则綈q”,其否定为“若p,则綈q”,即否命题是将条件、结论同时否定,而命题的否定是只否定结论.有时一个命题的叙述方式是简略式,此时应先分清条件p,结论q,改写成“若p,则q”的形式再判断.专题1命题及其关系对于命题正误的判断是高考的热点之一,应重点关注,命题正误的判断涉及各章节的内容,覆盖面宽,也是高考的易失分点.命题正误的判断方法是:真命题要有依据或者给以论证;假命题只需举出一个反例即可.[例1](1)(2015·广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)已知原命题“菱形的对角线互相垂直”,则对它的逆命题、否命题、逆否命题的真假判断正确的是()A .逆命题、否命题、逆否命题都为真B .逆命题为真,否命题、逆否命题为假C .逆命题为假,否命题、逆否命题为真D .逆命题、否命题为假,逆否命题为真解析:(1)法一:如图1,l 1和l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确,选D.图1 图2法二:因为l 分别与l 1,l 2共面,故l 与l 1,l 2要么都不相交,要么至少与l 1,l 2中的一条相交.若l 与l 1,l 2都不相交,则l ∥l 1,l ∥l 2,从而l 1∥l 2,与l 1,l 2是异面直线矛盾,故l 至少与l 1,l 2中的一条相交,选D.(2)因为原命题“菱形的对角线互相垂直”是真命题,所以它的逆否命题为真;其逆命题“对角线互相垂直的四边形是菱形”显然是假命题,所以原命题的否命题也是假命题.答案:(1)D (2)D 归纳升华1.判断一个命题是真命题还是假命题,关键是看能否由命题的条件推出命题的结论,若能推出,则是真命题,否则为假命题.2.还可根据命题的四种形式之间的真假关系进行判断,即当一个命题的真假不易判断时,可以先把它转换成与它等价的命题(逆否命题),再进行判断.[变式训练] 给出下面三个命题:①函数y =tan x 在第一象限内是增函数;②奇函数的图象一定过原点;③命题“若0<log a b <1,则a >b >1”的逆命题.其中是真命题的是________(填序号).解析:①是假命题,反例:x =2π+π6和π4,tan ⎝⎛⎭⎪⎫2π+π6=33,tan π4=1,2π+π6>π4,但tan ⎝⎛⎭⎪⎫2π+π6<tan π4;②是假命题,反例:y =1x 是奇函数,但它的图象不过原点;③是“若a >b >1,则0<log a b <1”,由对数函数的图象及其单调性可知是真命题.答案:③专题2 充分条件与必要条件的判定充分条件与必要条件的判定是高考考查的热点内容,在高考试题中主要以选择题的形式出现.解决此类问题的关键是充分利用充分条件、必要条件与充要条件的定义,同时,丰富的数学基础知识是做好此类题目的前提.[例2] (1)若向量a =(x ,3)(x ∈R),则“|a|=5”是“x =4”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)已知条件p :x +y ≠-2,条件q :x ≠-1或y ≠-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:(1)|a|=x 2+32=5得x =4或x =-4.反之当x =4时,|a|=42+32=5,故“|a|=5”是“x =4”的必要不充分条件.(2)由逆否命题:若綈q ,则綈p ,则x =-1=y ⇒x +y =-2正确,但x +y =-2 x =y =-1,即綈q 是綈p 的充分不必要条件.答案:(1)B (2)A 归纳升华判断充分条件和必要条件的方法1.定义法:根据充分条件和必要条件的定义直接判断.如本例中(1).2.集合法:运用集合思想判断充分条件和必要条件也是一种很有效的方法,主要是。

2018版高中数学人教版A版选修1-1学案:1.1.1 命 题

2018版高中数学人教版A版选修1-1学案:1.1.1 命 题

1.1.1 命 题[学习目标] 1.了解命题的概念.2.会判断命题的真假,能够把命题化为“若p,则q”的形式.知识点一 命题的定义(1)用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)判断为真的语句叫做真命题.(3)判断为假的语句叫做假命题.思考 (1)“x>5”是命题吗?(2)陈述句一定是命题吗?答案 (1)“x>5”不是命题,因为它不能判断真假.(2)陈述句不一定是命题,因为不知真假.只有可以判断真假的陈述句才叫做命题.知识点二 命题的结构从构成来看,所有的命题都由条件和结论两部分构成.在数学中,命题常写成“若p,则q”的形式.通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论.题型一 命题的判断例1 (1)下列语句为命题的是( )A.x-1=0B.2+3=8C.你会说英语吗?D.这是一棵大树(2)下列语句为命题的有________.①一个数不是正数就是负数;②梯形是不是平面图形呢?③22015是一个很大的数;④4是集合{2,3,4}的元素;⑤作△ABC≌△A′B′C′.答案 (1)B (2)①④解析 (1)A中x不确定,x-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.(2)①是陈述句,且能判断真假;②不是陈述句;③不能断定真假;④是陈述句且能判断真假;⑤不是陈述句.反思与感悟 并不是所有的语句都是命题,只有能判断真假的陈述句才是命题.命题首先是“陈述句”,其他语句如疑问句、祈使句、感叹句等一般都不是命题;其次是“能判断真假”,不能判断真假的陈述句不是命题,如“x≥2”、“小高的个子很高”等都不能判断真假,故都不是命题.因此,判断一个语句是否为命题,关键有两点:①是否为陈述句;②能否判断真假.跟踪训练1 判断下列语句是不是命题.3(1)求证是无理数;(2)x2+2x+1≥0;(3)你是高二学生吗?(4)并非所有的人都喜欢苹果;(5)一个正整数不是质数就是合数;(6)若x∈R,则x2+4x+7>0;(7)x+3>0.解 (1)(3)(7)不是命题,(2)(4)(5)(6)是命题.题型二 命题真假的判断例2 判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;(2)若x∈N,则x3>x2成立;(3)若m>1,则方程x2-2x+m=0无实数根;(4)存在一个三角形没有外接圆.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x=0时,x3>x2不成立.(3)真命题.∵m>1⇒Δ=4-4m<0,∴方程x2-2x+m=0无实数根.(4)假命题.因为不共线的三点确定一个圆,即任何三角形都有外接圆.反思与感悟 要判断一个命题是真命题,一般需要经过严格的推理论证,在判断时,要有理有据,有时应综合各种情况作出正确的判断.而判断一个命题是假命题,只需举出一个反例即可.跟踪训练2 下列命题:①若xy=1,则x、y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.答案 ①④解析 ①④是真命题,②四条边相等的四边形是菱形,但不一定是正方形,③平行四边形不是梯形.题型三 命题的构成形式例3 (1)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p,则q”的形式,则p是_____________,q是_____________________.答案 一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧(2)把下列命题改写成“若p,则q”的形式,并判断命题的真假.①已知x,y为正整数,当y=x+1时,y=3,x=2;②当abc=0时,a=0且b=0且c=0.解 ①已知x,y为正整数,若y=x+1,则y=3,x=2,假命题.②若abc=0,则a=0且b=0且c=0,假命题.反思与感悟 把一个命题改写成“若p,则q”的形式,首先要确定命题的条件和结论,若条件和结论比较隐含,要补充完整,有时一个条件有多个结论,有时一个结论需多个条件,还要注意有的命题改写形式也不惟一.跟踪训练3 指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若四边形是平行四边形,则它的对角线互相平分;(2)若a>0,b>0,则a+b>0;(3)面积相等的三角形是全等三角形.解 (1)条件p:四边形是平行四边形,结论q:四边形的对角线互相平分.真命题.(2)条件p :a >0,b >0,结论q :a +b >0.真命题.(3)条件p :两个三角形面积相等,结论q :它们是全等三角形.假命题.1.下列语句不是命题的个数为( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.3答案 C解析 ①④可以判断真假,是命题;②③不能判断真假,所以不是命题.2.下列命题为真命题的是( )A.互余的两个角不相等B.相等的两个角是同位角C.若a 2=b 2,则|a |=|b |D.三角形的一个外角等于和它不相邻的一个内角答案 C解析 由平面几何知识可知A 、B 、D 三项都是错误的.3.下列命题是真命题的是( )A.若a 2=4,则a =2B.若a =b ,则=a bC.若=,则a =bD.若a <b ,则a 2<b 21a 1b 答案 C解析 判断是假命题,只需举反例,用排除法,得到正确选项.由a 2=4得a =±2,排除A ;取a =b =-1,排除B ;-2<1,但(-2)2>12,排除D.故选C.4.给出下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一条直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①②B.②③C.③④D.②④答案 D解析 当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①错;由平面与平面垂直的判定定理可知②正确;空间中垂直于同一条直线的两条直线可以平行、相交也可以异面,故③错;若两个平面垂直,在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.5.下列命题:①若xy=0,则|x|+|y|=0;②若a>b,则ac2>bc2; ③矩形的对角线互相垂直.其中假命题的个数是________.答案 3解析 ①当x,y中一个为零,另一个不为零时,|x|+|y|≠0;②当c=0时不成立;③菱形的对角线互相垂直.矩形的对角线不一定垂直.1.根据命题的定义,可以判断真假的陈述句是命题.命题的条件与结论之间属于因果关系,真命题需要给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式.含有大前提的命题写成“若p,则q”的形式时,大前提应保持不变,且不写在条件p中.。

人教A版高中数学选修1-1学案设计全册配套

人教A版高中数学选修1-1学案设计全册配套

第一章常用逻辑用语世界文学名著《唐·吉诃德》中有这样一个故事:唐·吉诃德的仆人桑乔·潘萨跑到一个小岛上,成了这个岛的国王.他颁布了一条奇怪的法律:每一个到达这个岛的人都必须回答一个问题:“你到这里来做什么?”如果回答对了,就允许他在岛上游玩,而如果答错了,就要把他绞死.对于每一个到岛上来的人,或者是尽兴地玩,或者是被吊上绞架.有多少人敢冒死到这岛上去玩呢?一天,有一个胆大包天的人来了,他照例被问了这个问题,而这个人的回答是:“我到这里来是要被绞死的.”请问桑乔·潘萨是让他在岛上玩,还是把他绞死呢?如果应该让他在岛上游玩,那就与他说“要被绞死”的话不相符合,这就是说,他说“要被绞死”是错话.既然他说错了,就应该被处绞刑.但如果桑乔·潘萨要把他绞死呢?这时他说的“要被绞死”就与事实相符,从而就是对的,既然他答对了,就不该被绞死,而应该让他在岛上玩.小岛的国王发现,他的法律无法执行,因为不管怎么执行,都使法律受到破坏.他思索再三,最后让卫兵把他放了,并且宣布这条法律作废.1.1命题及其关系1.1.1命题自主预习·探新知情景引入著名的“理发师悖论”是伯特纳德·罗素提出的:一个理发师的招牌上写着:“城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸.”日常生活中也经常出现类似的逻辑错误,因此逻辑用语的学习是很有必要的.我们接下来就从命题开始学习.新知导学1.一般地,我们把用语言、符号或式子表达的,可以__判断真假__的陈述句叫做命题.2.判断为真的语句叫__真命题__,判断为假的语句叫__假命题__.3.数学中的定义、公理、公式、定理都是命题,但命题不一定都是定理,因为命题有__真假__之分,而定理是__真__命题.4.命题常写成“__若p ,则q __”的形式,其中命题中的p 叫做命题的__条件__,q 叫做命题的__结论__.预习自测1.下列语句不是命题的是( A )A .今天的天真蓝呀!B .100101是整数C .方程9x 2-1=0的解是x =13D .2019年10月1日是中华人民共和国成立70周年的日子[解析] 根据命题的定义知,选项A 不是命题.2.语句“若a >b ,则a +c >b +c ”是( B )A .不是命题B .真命题C .假命题D .不能判断真假[解析] a >b ⇒a +c >b +c 成立,故选B .3.由命题“能被6整除的整数,一定能被3整除”改写的等价命题是( B )A .若一个数不能被6整除,则这个数不一定能被3整除B .若一个数能被6整除,则这个数一定能能被3整除C .若一个数能被6整除,则这个数不一定能被3整除D .若一个数不能被6整除,则这个数一定能被3整除[解析]由命题“能被6整除的整数,一定能被3整除”改写为“若p,则q”的形式为:若一个数能被6整除,则这个数一定能被3整除,故选B.4.命题“第二象限角的余弦值小于0”的条件是(C)A.余弦值B.第二象限C.一个角是第二象限角D.没有条件[解析]命题可改写为:若一个角是第二象限角,则它的余弦值小于0,故选C.5.下列语句中是命题的有__①④__.(填序号)①一个数不是正数就是负数;②0是自然数吗?③22 020是一个很大的数;④若两个平面平行,则这两个平面无公共点.[解析]②是疑问句,不是命题;③是陈述句,但“很大”无法说明到底多大,不能判断真假,不是命题.互动探究·攻重难互动探究解疑命题方向❶命题概念的理解典例1 判断下列语句是否是命题,并说明理由.(1)求证:3是无理数;(2)x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.[思路分析]由题目可获取以下主要信息:①给定一个语句,②判定其是否为命题并说明理由.解答本题要严格验证该语句是否符合命题的概念.[解析](1)是祈使句,不是命题.(2)x2+4x+4=(x+2)2≥0,对于x∈R,可以判断为真,它是命题.(3)是疑问句,不涉及真假,不是命题.(4)是命题,可以判断为真.人群中有的人喜欢苹果,也存在着不喜欢苹果的人.『规律方法』判定一个语句是否为命题,主要把握以下两点:1.必须是陈述语句.祈使句、疑问句、感叹句都不是命题.2.其结论可以判定真或假.含义模糊不清,不能辨其真假的语句,不是命题.另外,并非所有的陈述语句都是命题,凡是在陈述语句中含有比喻、形容等词的词义模糊不清的,都不是命题.┃┃跟踪练习1__■判断下列语句是不是命题,并说明理由.(1)函数f(x)=3x(x∈R)是指数函数;(2)x2-3x+2=0;(3)函数y=cos x是周期函数吗?(4)集合{a,b,c}有3个子集.[解析](1)是命题,满足指数函数的定义.(2)不是命题,不能判断真假.(3)不是命题,是疑问句.(4)是命题.符合命题的定义.命题方向❷命题真假的判断典例2 判断下列命题的真假:(1)形如a+2b的数是无理数;(2)负项等差数列的公差小于零;(3)关于x的方程ax+1=x+2有惟一解.[思路分析]运用数学中的定义、定理、公理、公式等知识进行判断.[解析](1)假命题.如当a=1,b=2时,a+2b是有理数.(2)假命题.如数列-10,-8,-6,-4,-2,它的公差是2.(3)假命题.关于x的方程ax+1=x+2即(a-1)x=1,当a=1时,方程无解;当a≠1时,方程有惟一解,所以是假命题.『规律方法』 1.命题真假的判定方法真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.可以根据已学过的定义、定理、公理,已知的正确结论和命题的条件进行正确的逻辑推理进行判断.要说明一个命题是假命题,只需举一个反例即可.2.一个命题的真假与命题所在环境有关.对其进行判断时,要注意命题的前提条件,如“若a⊥c,b⊥c,则a∥b”在平面几何中是真命题,而在立体几何中却是假命题.3.从集合的观点看,我们建立集合A、B与命题中的p、q之间的一种联系:设集合A ={x|p(x)成立},B={x|q(x)成立},就是说,A是能使条件p成立的全体对象x所构成的集合,B是能使条件q成立的全体对象x所构成的集合,此时,命题“若p,则q”为真,当且仅当A ⊆B 时满足.┃┃跟踪练习2__■给出下列命题:①函数y =sin x 的最小正周期是π;②函数y =2x 3是指数函数;③一次函数y =x +1的图象与x 轴的交点坐标为(-1,0);④f (x )=x 2在R 上是偶函数,也是增函数.其中假命题的个数为( C )A .1B .2C .3D .4[解析] 函数y =sin x 的最小正周期T =2π1=2π,所以①是假命题;易知②是假命题;令x +1=0,得x =-1,所以一次函数y =x +1的图象与x 轴的交点坐标为(-1,0),所以③是真命题;f (x )=x 2在R 上是偶函数,但不是增函数,所以④是假命题.故假命题的个数为3,故选C .命题方向❸命题结构分析典例3 指出下列命题的条件与结论.(1)负数的平方是正数;(2)正方形的四条边相等.[思路分析] 由题目可获取以下主要信息:①给出了命题的一般简略形式.②找出命题的条件和结论.解答本题的关键是正确改变命题的表述形式.[解析] (1)可表述为“若一个数是负数,则这个数的平方是正数”条件为:“一个数是负数”;结论为:“这个数的平方是正数”.(2)可表述为:“若一个四边形是正方形,则这个四边形的四条边相等”.条件为:“一个四边形是正方形”;结论为:“这个四边形的四条边相等”.『规律方法』 1.数学中的命题大多是:“若p ,则q ”的形式,其中p 叫做命题的条件,q 叫做命题的结论.而数学中的有些命题从形式上看,不是“若p ,则q ”的形式,但是将它的表述作适当改变,也可以写成“若p ,则q ”的形式,因此,在研究命题时,不要受其形式的影响.2.“若p ,则q ”形式的命题中,p 和q 本身也可为一个简单命题.3.并非所有的命题都可写成“若p ,则q ”型,如“13是有理数”,“5>3”.┃┃跟踪练习3__■ 把下列命题表示为“若p ,则q ”的形式,并判断真假.(1)相似三角形的面积相等;(2)平行于同一个平面的两平面平行;(3)正弦函数是周期函数.[解析] (1)若两个三角形相似,则它们的面积相等.假命题.(2)若两个平面平行于同一个平面,则这两个平面平行.真命题.(3)若一个函数为正弦函数,则它是周期函数.真命题.学科核心素养命题的真假与其他知识的综合应用命题的概念中有两个要点:①陈述句;②可以判断真假.利用这两点可借助于函数的奇偶性、单调性、对称关系来解决一些开放性问题.典例4 把下面不完整的命题补充完整,并使之成为真命题.若函数f (x )=3+log 2x (x >0)的图象与g (x )的图象关于__x 轴__对称,则函数g (x )=__-3-log 2x (x >0)__.(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形)[思路分析] 本题答案不惟一.空中可以依次填入x 轴,-3-log 2x (x >0).[解析] 若函数f (x )与g (x )的图象关于x 轴对称,则可将函数y =f (x )=3+log 2x (x >0)中的(x ,y )用(x ,-y )代换,得-y =3+log x (x >0),所以g (x )=-3-log 2x (x >0).『规律总结』 解答此类题目,首先要审清题意,弄明白求什么,然后根据所学知识选择合适的答案.┃┃跟踪练习4__■已知p :5x -1>a ,q :x >1,请选择适当的实数a ,若命题“若p ,则q ”为真命题,则a 的取值范围为__[4,+∞)__.[解析] 命题“若p ,则q ”为“若x >1+a 5,则x >1”,由命题为真命题,可知1+a 5≥1,解得a ≥4,故a 的取值范围为[4,+∞).易混易错警示命题条件不明致误典例5 将命题“已知c >0,当a >b 时,ac >bc .”改写为“若p ,则q ”的形式.[错解] 若c >0,a >b ,则ac >bc .[错解分析]错误的根本原因是将“c>0”作为已知条件,实际上“已知c>0”是大前提,条件应是“a>b”,不能把它们全认为是条件.[正解]已知c>0,若a>b,则ac>bc.1.1.2四种命题1.1.3四种命题间的相互关系自主预习·探新知情景引入汉语是世界上美丽的语言.对于同样的几个字、几个词,不同的排列方式,往往产生不同的效果.在我们的校园里有着这样的宣传语:为了一切的孩子、为了孩子的一切、一切为了孩子,每一种表述有着不一样的意义.同样地,数学也是美丽的语言,这其中是否也有着同样的文字,但不同的排列含义是否不一样呢?新知导学1.一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做__互逆命题__,其中一个命题叫做__原命题__,另一个叫做原命题的__逆命题__.2.一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做__互否命题__,其中一个命题叫做__原命题__,另一个叫做原命题的__否命题__.3.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做__互为逆否命题__,其中一个命题叫做__原命题__,另一个叫做原命题的__逆否命题__.4.四种命题的相互关系5.(1)原命题为真,它的逆命题__不一定__为真.(2)原命题为真,它的否命题__不一定__为真.(3)原命题为真,它的逆否命题__一定__为真.即互为逆否的命题是等价命题,它们同__真__同__假__,同一个命题的逆命题和否命题是一对互为__逆否__的命题,它们同__真__同__假__.预习自测1.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是(D)A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b[解析]原命题的条件是“a=-b”,结论是“|a|=|b|”,根据原命题与逆命题的关系知,选D.2.当命题“若p,则q”为真时,下列命题中一定是真命题的是(C)A.若q,则p B.若¬p,则¬qC.若¬q,则¬p D.若¬p,则q[解析]∵“若p,则q”为真,∴其逆否命题“若¬q,则¬p”一定为真.3.若命题p的逆命题是q,命题p的否命题是r,则命题q是命题r的(C)A.逆命题B.否命题C.逆否命题D.以上都不对[解析]同一个命题的逆命题和否命题互为逆否命题,故选C.4.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四种命题中,真命题的个数为(D)A.0B.1C.2D.4[解析]原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,lg a>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lg a≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1”是真命题.5.(2020·山西太原高二期末)命题“若x2<1,则-1<x<1”的逆否命题是__若x≤-1或x≥1,则x2≥1__.[解析]x2<1的否定为x2≥1,-1<x<的否定为x≥1或x≤-1,故命题“若x2<1,则-1<x<1”的逆否命题是“若x≤-1或x≥1,则x2≥1”.互动探究·攻重难互动探究解疑命题方向❶命题的四种形式之间的转换典例1 写出下列命题的逆命题、否命题与逆否命题.(1)负数的平方是正数;(2)正方形的四条边相等.[思路分析]此题的题设和结论不很明显,因此首先将命题改写成“若p,则q”的形式,然后再写出它的逆命题、否命题与逆否命题.[解析](1)改写成“若一个数是负数,则它的平方是正数”.逆命题:若一个数的平方是正数,则它是负数.否命题:若一个数不是负数,则它的平方不是正数.逆否命题:若一个数的平方不是正数,则它不是负数.(2)原命题可以写成:若一个四边形是正方形,则它的四条边相等.逆命题:若一个四边形的四条边相等,则它是正方形.否命题:若一个四边形不是正方形,则它的四条边不相等.逆否命题:若一个四边形的四条边不相等,则它不是正方形.『规律方法』关于原命题的逆命题、否命题和逆否命题的写法:首先:把原命题整理成“若p,则q”的形式.其次:(1)“换位”(即交换命题的条件与结论)得到“若q,则p”,即为逆命题;(2)“换质”(即将原命题的条件与结论分别否定后作为条件和结论)得到“若非p,则非q”即为否命题;(3)既“换位”又“换质”(即把原命题的结论否定后作为新命题的条件,条件否定后作为新命题的结论)得到“若非q,则非p”即为逆否命题.关键是分清原命题的条件和结论,然后按定义来写.┃┃跟踪练习1__■写出下列命题的逆命题、否命题、逆否命题.(1)若x2+y2=0,则x、y全为0;(2)若a+b是偶数,则a、b都是偶数.[解析](1)逆命题:若x、y全为0,则x2+y2=0;否命题:若x2+y2≠0,则x、y不全为0;逆否命题:若x、y不全为0,则x2+y2≠0.(2)逆命题:若a、b都是偶数,则a+b是偶数;否命题:若a+b不是偶数,则a、b不都是偶数;逆否命题:若a、b不都是偶数,则a+b不是偶数.命题方向❷四种命题的关系及真假判断典例2 写出下列命题的逆命题、否命题、逆否命题,并判断真假.(1)若A∩B=A,则A⊆B;(2)垂直于同一条直线的两直线平行;(3)若ab=0,则a=0或b=0.[思路分析]找准原命题的条件和结论,依照定义写出另外三种命题.[解析](1)逆命题:若A⊆B,则A∩B=A.真命题;否命题:若A∩B≠A,则A B.真命题;逆否命题:若A B,则A∩B≠A.真命题.(2)逆命题:若两条直线平行,则它们垂直于同一条直线.真命题;否命题:若两条直线不垂直于同一条直线,则它们不平行.真命题;逆否命题:若两条直线互相不平行,则它们不垂直于同一条直线.假命题.(3)逆命题:若a=0或b=0,则ab=0.真命题;否命题:若ab≠0,则a≠0且b≠0.真命题;逆否命题:若a≠0,且b≠0,则ab≠0.真命题.『规律方法』 1.由原命题写出其他三种命题,关键是要分清原命题的条件与结论,尤其是写否命题和逆否命题时,要注意对原命题中条件和结论的否定,这种否定要从条件和结论的真假性上进行否定,而不是仅仅加上一个“不”字,为此可根据“互为逆否关系的命题同真假”进行检验.2.当一个命题是否定性命题且不易判断真假时,可通过判断其逆否命题的真假以达到目的.┃┃跟踪练习2__■设原命题:若a+b≥2,则a、b中至少有一个不小于1,则原命题与其逆命题的真假情况是(A)A.原命题为真,逆命题为假B.原命题为假,逆命题为真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题[解析] 因为原命题“若a +b ≥2,则a 、b 中至少有一个不小于1”的逆否命题为“若a 、b 都小于1,则a +b <2”,显然为真,所以原命题为真;原命题“若a +b ≥2,则a 、b 中至少有一个不小于1”的逆命题为“若a 、b 中至少有一个不小于1,则a +b ≥2”,是假命题,反例为a =1.2,b =0.3,故选A .命题方向❸正难则反,等价转化思想我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.典例 3 证明:已知函数f (x )是(-∞,+∞)上的增函数,a 、b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.[思路分析] 已知函数f (x )的单调性,可将自变量的大小与函数值的大小关系相互转化,本题中条件较复杂,而结论比较简单,故转化为证明其逆否命题.[解析] 原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a 、b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).”证明如下:若a +b <0,则a <-b ,b <-a , 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ). ∴f (a )+f (b )<f (-a )+f (-b ), 即逆否命题为真命题. ∴原命题为真命题. ┃┃跟踪练习3__■判断命题“已知a 、x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集是R ,则a <74”的逆否命题的真假.[解析] 先判断原命题的真假如下:∵a 、x 为实数,关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集为R ,且抛物线y =x 2+(2a +1)x +a 2+2的开口向上,所以Δ=(2a +1)2-4(a 2+2)=4a -7<0,∴a <74.所以原命题是真命题.又∵互为逆否命题的两个命题同真同假,∴原命题的逆否命题为真命题.学科核心素养 命题的间接证明当一个命题的真假不容易证明时,常借助它的逆否命题的真假来证明;利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.典例4 关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题的真假性,下列结论成立的是(D)A.都真B.都假C.否命题真D.逆否命题真[解析]原命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”为真命题;逆命题“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”为假命题,因为抛物线的开口也可能向上(a>0);根据命题间的等价关系可知其否命题为假,逆否命题为真.故选D.『规律方法』由于原命题与其逆否命题是等价的,因此当我们证明或判断原命题感到困难时,可考虑证明它的逆否命题成立,这样也能达到证明原命题成立的目的.这种证法叫做逆否证法.┃┃跟踪练习4__■求证:当a2+b2=c2时,a,b,c不可能都是奇数.[解析]证明:构造命题p:若a2+b2=c2,则a,b,c不可能都是奇数.该命题的逆否命题是:若a,b,c都是奇数,则a2+b2≠c2.下面证明逆否命题是真命题.由于a,b,c都是奇数,则a2,b2,c2都是奇数,于是a2+b2必为偶数,而c2为奇数,所以有a2+b2≠c2,故逆否命题为真命题,从而原命题也是真命题.易混易错警示分清命题的条件与结论典例5 写出命题“已知a、b、c、d是实数,如果a=b,c=d,则a+c=b+d”的逆命题、否命题,并判断它们的真假.[错解]逆命题:如果a+c=b+d,则a、b、c、d是实数,且a=b,c=d.假命题.否命题:如果a、b、c、d不是实数,a≠b,c≠d,则a+c≠b+d.假命题.[错解分析]上述解法没有弄清命题的条件,将大前提“a、b、c、d是实数”充当了条件.[正解]逆命题:已知a、b、c、d是实数,如果a+c=b+d,则a=b,c=d.假命题.否命题:已知a、b、c、d是实数,如果a≠b,或c≠d,则a+c≠b+d.假命题.1.2 充分条件与必要条件习题课自主预习·探新知情景引入某居民的卧室里安有一盏灯,在卧室门口和床头各有一个开关,任意一个开关都能够独立控制这盏灯,这就是电器上常用的“双刀”开关.A开关闭合时B灯一定亮吗?B灯亮时A开关一定闭合吗?新知导学1.x<13是x<5的__必要不充分__条件.2.x>2是x2-3x+2>0的__充分不必要__条件.3.设与命题p对应的集合为A={x|p(x)},与命题q对应的集合为B={x|q(x)},若A⊆B,则p是q的__充分__条件,q是p的__必要__条件.若A=B,则p是q的__充要__条件.若A B,则p是q的__充分不必要__条件.q是p的__必要不充分__条件.若A B,则p不是q的__充分__条件,q不是p的__必要__条件.4.p是q的充要条件是说,有了p成立,就__一定有__q成立.p不成立时,__一定有__q不成立.预习自测1.(2020·湖南湘潭市高二期末)“x>2”是“x>1”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]结合题意可知x>2可以推出x>1,但x>1并不能保证x>2,故为充分不必要条件,故选A.2.“x<0”是“ln(x+1)<0”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x <0”是“ln(x+1)<0”的必要不充分条件.3.设p:x<3,q:-1<x<3,则p是q成立的(C)A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[解析]若-1<x<3成立,则x<3成立;反之,若x<3成立,则-1<x<3未必成立,如x=-2,所以p是q的必要不充分条件.4.“lg x>lg y”是“x>y”的__充分不必要__条件.[解析]由lg x>lg y⇒x>y>0⇒x>y,充分条件成立.又由x>y成立,当y=0时,lg x>lg y不成立,必要条件不成立.5.(2020·山东昌平高二检测)已知条件p:A={x|x2-(a+1)x+a≤0},条件q:B={x|x2-3x+2≤0},当a为何值时,(1)p是q的充分不必要条件;(2)p是q的必要不充分条件;(3)p是q的充要条件.[解析]A={x|x2-(a+1)x+a≤0}={x|(x-1)(x-a)≤0},B={x|x2-3x+2≤0}={x|1≤x≤2},(1)因为p是q的充分不必要条件,所以A B,而当a=1时,A={1},显然成立,当a>1,A=[1,a],需1<a<2,综上可知1≤a<2时,p是q的充分不必要条件.(2)因为p是q的必要不充分条件,所以B A,故A=[1,a],且a>2,所以a>2时,p是q的必要不充分条件.(3)因为p是q的充要条件,所以A=B,故a=2.互动探究·攻重难互动探究解疑命题方向❶利用图示法进行充分、必要条件判断典例1 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件.那么:(1)s是q的__充要__条件?(2)r是q的__充要__条件?(3)p是q的__必要__条件?[解析]根据题意得关系图,如图所示.(1)由图知:∵q⇒s,s⇒r⇒q,∴s是q的充要条件.(2)∵r⇒q,q⇒s⇒r,∴r是q的充要条件.(3)∵q⇒s⇒r⇒p,∴p是q的必要条件.『规律方法』对于多个有联系的命题(或两个命题的关系是间接的),常常作出它们的有关关系图表,根据定义,用“⇒”“⇐”“⇔”建立它们之间的“关系链”,直观求解,称作图示法.┃┃跟踪练习1__■已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s 的必要条件,现有下列命题:①s是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④r是s的充分条件而不是必要条件.则正确命题的序号是(B)A.①④B.①②C.②③④D.②④[解析]由题意知,故①②正确;③④错误.命题方向❷利用集合法进行充分、必要条件的判断典例2 设p 、q 是两个命题,p :log 12(|x |-3)>0,q :x 2-56x +16>0,则p 是q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[思路分析] p 、q 都是不等式的解集,解不等式可得其解集,利用集合之间的子集关系即可判断出p 是q 的什么条件.[解析] 由log 12(|x |-3)>0得,0<|x |-3<1,∴3<|x |<4,∴3<x <4或-4<x <-3, 由x 2-56x +16>0得x <13或x >12,显然(3,4)∪(-4,-3)(-∞,13)∪(12,+∞),∴p 是q 的充分不必要条件.故选A .『规律方法』 如果条件p 与结论q 是否成立都与数集有关(例如方程、不等式的解集、参数的取值范围等),常利用集合法来分析条件的充分性与必要性,将充要条件的讨论转化为集合间的包含关系讨论,可借助数轴等工具进行.┃┃跟踪练习2__■设命题甲为0<x <5,命题乙为|x -2|<3,那么甲是乙的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [解析] 由|x -2|<3得-1<x <5, 令A ={x |0<x <5},B ={x |-1<x <5}, ∴A B ,∴甲是乙的充分不必要条件. 命题方向❸利用充要性求参数范围典例3 已知p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x-6≤0或x 2+2x -8>0,且p 是q 的充分条件,求a 的取值范围.[思路分析] 先分别求出命题p 、q 中x 的取值范围,再探求符合条件的a 的取值范围.[解析] p :由x 2-4ax +3a 2<0,其中a <0得,3a <x <a ; q :由x 2-x -6≤0或x 2+2x -8>0,得x <-4或 x ≥-2.∵p 是q 的充分条件,∴a ≤-4或⎩⎪⎨⎪⎧3a ≥-2a <0,∴a ≤-4或-23≤a <0.综上可知a 的取值范围是a ≤-4或-23≤a <0.『规律方法』 利用条件的充要性求解参数问题,关键是将条件属性转化为适当的解题思路,如数集类问题,一般是将条件属性转化为集合包含关系,借助数轴列出不等式(组),从而求解.┃┃跟踪练习3__■已知p :-1≤x -13≤3,q :x 2-2x +1-m 2≤0(m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.[解析] 由p :-1≤x -13≤3得-2≤x ≤10,由q :x 2-2x +1-m 2≤0(m >0)得-m ≤x -1≤m , ∴1-m ≤x ≤1+m .∵p 是q 的必要不充分条件,∴⎩⎪⎨⎪⎧1+m ≤101-m ≥-2,∴m ≤3, 又∵m >0,∴0<m ≤3.学科核心素养 数学中的等价转化1.证明充要条件一般应分两个步骤,即分别证明“充分性”和“必要性”这两个方面.解题时要避免将充分性当作必要性来证明的错误,这就需要分清条件与结论,若“条件”⇒“结论”,即是证明充分性,若“结论”⇒“条件”,即是证明必要性.2.等价法:就是从条件开始,逐步推出结论,或者是从结论开始,逐步推出条件,但是每一步都是可逆的,即反过来也能推出,仅作说明即可,必要性(或者充分性)可以不再重复证明.典例4 已知数列{a n }的前n 项和S n =aq n +b (a ≠0,q 是不等于0和1的常数),。

新编人教A高中数学选修1-1全册教案导学案含答案

新编人教A高中数学选修1-1全册教案导学案含答案

人教版高中数学选修1-1全册教案基因详解目录1.1.1命题及其关系1.1.2双曲线的几何性质1.1.3双曲线及其标准方程1.2.1充分条件与必要条件1.2.2充要条件1.3.1且1.3.2或1.3.3非2.1.1椭圆及其标准方程2.1.2椭圆的简单几何性质2.3.1抛物线及其标准方程2.3.2抛物线的简单几何性质3.1.1变化率问题3.1.2导数的概念教案3.1.3导数的几何意义3.2.1几个常用函数导数3.2.2基本初等函数的导数公式及导数的运算法则3.3.1函数的单调性与导数3.3.2函数的极值与导数3.3.3函数的最值与导数3.4生活中的优化问题举例1. 1.1命题及其关系一、课前小练:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)312>;(3)312>吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、新课内容:1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,哪些是命题.②真命题:判断为真的语句叫做真命题(true p roposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,哪些为真命题?哪些为假命题?③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5)215x<;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:三、练习:教材P41、2、3四、作业:1、教材P8第1题2、作业本1-10五、课后反思命题教案课题 1.1.1命题及其关系(一) 课型新授课教学目标1)知识方法目标了解命题的概念,2)能力目标会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点难点1)重点:命题的改写2)难点:命题概念的理解,命题的条件与结论区分教法与学法教法:教学过程备注1.课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)312>;(3)312>吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.2.问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5)215x<;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.②试将例1中的命题(6)改写成“若p,则q”的形式.③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 命题学习目标:1.了解命题的概念.(难点)2.理解命题的构成形式,能将命题改写为“若p ,则q ”的形式.(重点)3.能判断一些简单命题的真假.(难点,易错点)[自 主 预 习·探 新 知]1.命题的定义与分类(1)命题的定义:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)命题定义中的两个要点:“可以判断真假”和“陈述句”.我们学习过的定理、推论都是命题.(3)分类命题⎩⎨⎧真命题:判断为真的语句假命题:判断为假的语句思考1:(1)“x -1=0”是命题吗?(2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗? [提示] (1)“x -1=0”不是命题,因为它不能判断真假.(2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判断真假的才是命题.2.命题的结构(1)命题的一般形式为“若p ,则q ”.其中p 叫做命题的条件,q 叫做命题的结论.(2)确定命题的条件和结论时,常把命题改写成“若p ,则q ”的形式. 思考2:命题“实数的平方是非负数”的条件与结论分别是什么? [提示] 条件是“一个数是实数”,结论是:“它的平方是非负数”.[基础自测]1.思考辨析(1)一个命题不是真命题就是假命题. ( ) (2)一个命题可以是感叹句. ( ) (3)x >5是命题.( )[解析] 根据命题的定义知(1)正确,(2)、(3)错误. [答案] (1)√ (2)× (3)× 2.下列语句是命题的是( ) ①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤2018央视狗年春晚真精彩啊!A.①②③B.①③④C.①②⑤ D.②③⑤A[①、②、③是陈述句,且能判断真假,因此是命题,④不能判断真假,⑤是感叹句,故④、⑤不是命题.]3.下列命题中,真命题共有( )【导学号:97792000】①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.A.1个B.2个C.3个D.4个A[①、②、④是假命题,③是真命题.][合作探究·攻重难]A.x2-1=0 B.2+3=8C.你会说英语吗?D.这是一棵大树(2)下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22 018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.[解析](1)A中x不确定,x2-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.(2)①中x有范围,可以判断真假,因此是命题;②是疑问句,不是命题;③是陈述句,但“大”的标准不确定,无法判断真假,因此不是命题;④是陈述句且能判断真假,因此是命题;⑤是祈使句,不是命题.[答案](1)B (2)①④题对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若不能,就不是命题1.判断下列语句是不是命题,并说明理由.(1)函数f(x)=3x(x∈R)是指数函数;(2)x2-3x+2=0;(3)若x∈R,则x2+4x+7>0.(4)垂直于同一条直线的两条直线一定平行吗?(5)一个数不是奇数就是偶数;(6)2030年6月1日上海会下雨.[解](1)是命题,满足指数函数的定义,为真命题.(2)不是命题,不能判断真假.(3)是命题.当x∈R时,x2+4x+7=(x+2)2+3>0能判断真假.(4)疑问句,不是命题.(5)是命题,能判断真假.(6)不是命题,不能判断真假.(1)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p则q”的形式,则p是________,q是________.【导学号:97792001】(2)把下列命题改写成“若p,则q”的形式,并判断命题的真假.①函数y=lg x是单调函数;②已知x,y为正整数,当y=x+1时,y=3,x=2;③当abc=0时,a=0且b=0且c=0.[思路探究] 解决此类题目的关键是找到命题的条件和结论,然后用适当的形式改写成“若p,则q的形式”.[解析](1)命题的条件是“弦的垂直平分线”,结论是“经过圆心并且平分弦所对的弧”.因此p是“一条直线是弦的垂直平分线”,q是“这条直线经过圆心并且平分弦所对的弧”.[答案]一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧.(2)①若函数是对数函数y=lg x,则这个函数是单调函数.②已知x,y为正整数,若y=x+1,则y=3,x=2.③若abc =0,则a =0且b =0且c =0.2.把下列命题改写成“若p ,则q ”的形式. (1)当1a >1b时,a <b ;(2)垂直于同一条直线的两个平面互相平行; (3)同弧所对的圆周角不相等. [解] (1)若1a >1b,则a <b ;(2)若两个平面垂直于同一条直线,则这两个平面平行; (3)若两个角为同弧所对的圆周角,则它们不相等.1.如何判断一个命题是真命题?提示:根据命题的条件,利用定义、定理、性质论证命题的正确性. 2.如何判断一个命题是假命题? 提示:举出一个反例即可.给定下列命题: ①若a >b ,则2a >2b ;②命题“若a ,b 是无理数,则a +b 是无理数”是真命题; ③直线x =π2是函数y =sin x 的一条对称轴;④在△ABC 中,若AB →·BC →>0,则△ABC 是钝角三角形. 其中为真命题的是________.[思路探究] 命题――――――――→严格的逻辑推理真命题―――――→恰当的反例假命题 [解析] 对于①,根据函数f (x )=2x 的单调性知①为真命题.对于②,若a =1+3,b =1-3,则a +b =2不是无理数,因此②是假命题. 对于③,函数y =sin x 的对称轴方程为x =π2+k π,k ∈Z ,故③为真命题.对于④,因为AB →·BC →=|AB →||BC →|cos(π-B )=-|AB →||BC →|cos B >0,故得cos B <0,从而得B 为钝角,所以④为真命题.[答案] ①③④1.下列语句不是命题的个数为( )①2<1;②x <1;③若x <1,则x <2;④函数f (x )=x 2是R 上的偶函数. A .0 B .1 C .2 D .3B [语句①、③、④都能判断真假,是命题,语句②不能判断真假,不是命题.] 2.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是( ) A .这个四边形的对角线互相平分 B .这个四边形的对角线互相垂直C .这个四边形的对角线既互相平分,也互相垂直D .这个四边形是平行四边形C [把命题改写成“若p ,则q ”的形式后可知C 正确.故选C.] 3.下列命题是真命题的为( )【导学号:97792002】A .若a >b ,则1a <1bB .若b 2=ac ,则a ,b ,c 成等比数列C .若|x |<y ,则x 2<y 2D .若a =b ,则a =bC [对于A ,若a =1,b =-2,则1a >1b,故A 是假命题.对于B ,当a =b =0时,满足b 2=ac ,但a ,b ,c 不是等比数列,故B 是假命题. 对于C ,因为y >|x |≥0,则x 2<y 2是真命题.对于D ,当a =b =-2时,a 与b 没有意义,故D 是假命题.]4.命题“关于x 的方程ax 2+2x +1=0有两个不等实数解”为真命题,则实数a 的取值范围为________.(-∞,0)∪(0,1) [由题意知⎩⎨⎧a ≠0Δ=4-4a >0,解得a <1,且a ≠0.]5.把下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)末位数字是0的整数能被5整除; (2)偶函数的图象关于y 轴对称; (3)菱形的对角线互相垂直.【导学号:97792003】[解] (1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题. (2)若一个函数是偶函数,则这个函数的图象关于y 轴对称,为真命题. (3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自 主 预 习·探 新 知]1.四种命题的概念及表示形式”;否命题为“若p 则,则p(1)四种命题之间的关系(2)四种命题间的真假关系 ①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系. 思考:(1)“a =b =c =0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是( )【导学号:97792009】A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成比例关系,故选D.](2)命题“若ab≠0,则a,b都不为零”的逆否命题是________.若a,b至少有一个为零,则ab=0 [“ab≠0”的否定是“ab=0”,“a,b都不为零”的否定是“a,b中至少有一个为零”,因此逆否命题为“若a,b至少有一个为零,则ab=0”.]命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A.0个B.1个C.2个D.4个(2)判断命题“若a≥0,则x2+x-a=0有实根”的逆否命题的真假.[思路探究] (1)只需判断原命题和逆命题的真假即可.(2)思路一写出原命题的逆否命题→判断其真假思路二原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析](1)当c=0时,ac2>bc2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac2>bc2,则a>b”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x2+x-a=0无实根,则a<0.∵x2+x-a=0无实根,∴Δ=1+4a<0,解得a<-14<0,∴原命题的逆否命题为真命题.法二:∵a≥0,∴4a≥0,∴对于方程x2+x-a=0,根的判别式Δ=1+4a>0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x -6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{aΔ=4a2+12a≤0,即{a-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.1.2 充分条件与必要条件1.2.1 充分条件与必要条件1.2.2 充要条件学习目标:1.结合具体实例,理解充分条件、必要条件、充要条件的意义.(重点、难点)2.会求(判断)某些问题成立的充分条件、必要条件、充要条件.(重点)3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.(难点)[自主预习·探新知]1.充分条件与必要条件p的充分条件(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p ;④q是p 的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示](1)相同,都是p⇒q(2)等价2.充要条件(1)一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q的充分必要条件,简称充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.(2)若p⇒q,但q p,则称p是q的充分不必要条件.(3)若q⇒p,但p q,则称p是q的必要不充分条件.(4)若p q,且q p,则称p是q的既不充分也不必要条件.思考2:(1)若p是q的充要条件,则命题p和q是两个相互等价的命题,这种说法对吗?(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?[提示](1)正确.若p是q的充要条件,则p⇔q,即p等价于q.(2)①p是q的充要条件说明p是条件,q是结论.②p的充要条件是q说明q是条件,p是结论.[基础自测]1.思考辨析(1)q是p的必要条件时,p是q的充分条件.( )(2)q不是p的必要条件时,“pD⇒/q”成立.( )(3)若q是p的必要条件,则q成立,p也成立.( )[答案](1)√(2)√(3)×2.“x >2”是“x 2-3x +2>0”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件A [由x 2-3x +2>0得x >2或x <1,故选A.]3.下列各题中,p 是q 的充要条件的是________(填序号). (1)p :b =0,q :函数f (x )=ax 2+bx +c 是偶函数; (2)p :x >0,y >0,q :xy >0; (3)p :a >b ,q :a +c >b +c .【导学号:97792015】(1)(3) [在(1)(3)中,p ⇔q ,所以(1)(3)中p 是q 的充要条件,在(2)中,q ⇒p ,所以(2)中p 不是q 的充要条件.][合 作 探 究·攻 重 难]条件”“充分必要条件”“既不充分也不必要条件”中选出一种作答).(1)在△ABC 中,p :∠A >∠B ,q :BC >AC ;(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6; (3)p :(a -2)(a -3)=0,q :a =3; (4)p :a <b ,q :a b<1.[思路探究] 判断p ⇒q 与q ⇒p 是否成立,当p 、q 是否定形式,可判断q 是p 的什么条件.[解] (1)在△ABC 中,显然有∠A >∠B ⇔BC >AC ,所以p 是q 的充分必要条件. (2)因为x =2且y =6⇒x +y =8,即q ⇒p ,但p ⇒q ,所以p 是q 的充分不必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要不充分条件.(4)由于a <b ,当b <0时,a b>1;当b >0时,a b <1,故若a <b ,不一定有a b<1; 当a >0,b >0,a b <1时,可以推出a <b ; 当a <0,b <0,a b<1时,可以推出a >b . 因此p 是q 的既不充分也不必要条件.等价法:将命题转化为另一个等价的又便于判断真假的命题.逆否法:这是等价法的一种特殊情况. 是q 的必要条件,q 是p 的充分条件; ,且qp ,则p 是q 的必要不充分条件;⇔q 互为充要条件;pq ,且q跟踪训练1.(1)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( )【导学号:97792016】A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件D [令a =1,b =-1,满足a >b ,但不满足a 2>b 2,即“a >b ”不能推出“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b ,即“a 2>b 2”不能推出“a >b ”,所以“a >b ”是“a 2>b 2”的既不充分也不必要条件.](2)对于二次函数f (x )=ax 2+bx +c (a ≠0),下列结论正确的是( ) ①Δ=b 2-4ac ≥0是函数f (x )有零点的充要条件;②Δ=b 2-4ac =0是函数f (x )有零点的充分条件; ③Δ=b 2-4ac >0是函数f (x )有零点的必要条件; ④Δ=b 2-4ac <0是函数f (x )没有零点的充要条件. A .①④ B .①②③ C .①②③④D .①②④D [①Δ=b 2-4ac ≥0⇔方程ax 2+bx +c =0(a ≠0)有实根⇔f (x )=ax 2+bx +c (a ≠0)有零点,故①正确.②若Δ=b 2-4ac =0,则方程ax 2+bx +c =0(a ≠0)有实根,因此函数f (x )=ax 2+bx +c (a ≠0)有零点,故②正确.③函数f (x )=ax 2+bx +c (a ≠0)有零点时,方程ax 2+bx +c =0(a ≠0)有实根,未必有Δ=b 2-4ac >0,也可能有Δ=0,故③错误.④Δ=b 2-4ac <0⇔方程ax 2+bx +c =0(a ≠0)无实根⇔函数f (x )=ax 2+bx +c (a ≠0)无零点,故④正确.]A .0<x <4B .0<x <2C .x >0D .x <4(2)已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[思路探究] (1)先解不等式x 2-4x <0得到充要条件,则充分不必要条件应是不等式x 2-4x <0的解集的子集.(2)充要条件的证明可用其定义,即条件⇒结论且结论⇒条件.如果每一步的推出都是等价的(⇔),也可以把两个方面的证明合并在一起,用“⇔”写出证明.[解析] (1)由x 2-4x <0得0<x <4,则充分不必要条件是集合{x |0<x <4}的子集,故选B.[答案] B(2)法一:充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y. 必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0.所以1x <1y的充要条件是xy >0.法二:1x <1y ⇔1x -1y <0⇔y -x xy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.2.(1)不等式x (x -2)<0成立的一个必要不充分条件是( )【导学号:97792017】A .x ∈(0,2)B .x ∈[-1,+∞)C .x ∈(0,1)D .x ∈(1,3)B [由x (x -2)<0得0<x <2,因为-1,+∞),所以“x ∈[-1,+∞)”是“不等式x (x -2)<0成立”的一个必要不充分条件.](2)求证:关于x 的方程ax 2+bx +c =0有一个根是1的充要条件是a +b +c =0. [证明] 假设p :方程ax 2+bx +c =0有一个根是1,q :a +b +c =0.①证明p ⇒q ,即证明必要性. ∵x =1是方程ax 2+bx +c =0的根,∴a ·12+b ·1+c =0,即a +b +c =0. ②证明q ⇒p ,即证明充分性. 由a +b +c =0,得c =-a -b . ∵ax 2+bx +c =0, ∴ax 2+bx -a -b =0, 即a (x 2-1)+b (x -1)=0. 故(x -1)(ax +a +b )=0. ∴x =1是方程的一个根.故方程ax 2+bx +c =0有一个根是1的充要条件是a +b +c =0.1.记集合A ={x |p (x )},B ={x |q (x )},若p 是q 的充分不必要条件,则集合A 、B 的关系是什么?若p 是q 的必要不充分条件呢?提示:若p 是q 的充分不必要条件,则AB ,若p 是q 的必要不充分条件,B A .2.记集合M ={x |p (x )},N ={x |q (x )},若M ⊆N ,则p 是q 的什么条件?若N ⊆M ,M =N 呢?提示:若M ⊆N ,则p 是q 的充分条件,若N ⊆M ,则p 是q 的必要条件,若M =N ,则p 是q 的充要条件.已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0),且p 是q 的充分不必要条件,则实数m 的取值范围为________.[思路探究][解析] 由x 2-8x -20≤0,得-2≤x ≤10,由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0).因为p 是q 的充分不必要条件,所以p ⇒q 且qp .即{x |-2≤x ≤10}是{x |1-m ≤x ≤1+m ,m >0}的真子集,所以⎩⎨⎧m >0,1-m <-2,1+m ≥10或⎩⎨⎧1-m ≤-2,m >0,1+m >10,解得m ≥9.所以实数m 的取值范围为{m |m ≥9}. [答案] {m |m ≥9}(或[9,+∞))p q>0}1.“|x|=|y|”是“x=y”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件B[若x=1,y=-1,则|x|=|y|,但x≠y;若x=y,则|x|=|y|,故选B.] 2.“x2-4x-5=0”是“x=5”的( )A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件B [由x 2-4x -5=0得x =5或x =-1,则当x =5时,x 2-4x -5=0成立,但x 2-4x -5=0时,x =5不一定成立,故选B.]3.下列条件中,是x 2<4的必要不充分条件是( ) A .-2≤x ≤2 B .-2<x <0 C .0<x ≤2D .1<x <3A [由x 2<4得-2<x <2,必要不充分条件的x 的范围真包含{x |-2<x <2},故选A.] 4.若“x <m ”是“(x -1)(x -2)>0”的充分不必要条件,则m 的取值范围是________.【导学号:97792018】(-∞,1] [由(x -1)(x -2)>0可得x >2或x <1, 由已知条件,知{x |x <m x |x >2或x <1},∴m ≤1.]5.求证:关于x 的方程x 2+mx +1=0有两个负实数根的充要条件是m ≥2. [证明] (1)充分性:因为m ≥2,所以Δ=m 2-4≥0,所以方程x 2+mx +1=0有实根,设两根为x 1,x 2,由根与系数的关系知,x 1·x 2=1>0,所以x 1,x 2同号. 又x 1+x 2=-m ≤-2<0,所以x 1,x 2同为负数. 即x 2+mx +1=0有两个负实根的充分条件是m ≥2.(2)必要性:因为x 2+mx +1=0有两个负实根,设其为x 1,x 2,且x 1x 2=1,所以⎩⎨⎧Δ=m 2-4≥0,x 1+x 2=-m <0,即⎩⎨⎧m ≥2或m ≤-2,m >0,所以m ≥2,即x 2+mx +1=0有两个负实根的必要条件是m ≥2.综上可知,m ≥2是x 2+mx +1=0有两个负实J 根的充分必要条件.1.3 简单的逻辑联结词1.3.1 且(and) 1.3.2 或(or) 1.3.3 非(not)学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p 且q ”“p 或q ”“非p ”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)[自 主 预 习·探 新 知]1.“且”(1)定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.(2)真假判断当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.2.“或”(1)定义一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q.读作“p或q”.(2)真假判断当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.思考1:(1)p∨q是真命题,则p∧q是真命题吗?(2)若p∨q与p∧q一个是真命题,一个是假命题,那么谁是真命题?[提示](1)不一定,p∨q是真命题,p与q可能一真一假,此时p∧q是假命题.(2)p∨q是真命题,p∧q是假命题.3.“非”(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作p,读作“非p”或“p的否定”.(2)真假判断若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.思考2:命题的否定与否命题的区别是什么?[提示](1)命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定.(2)命题的否定(非p)的真假与原命题(p)的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.4.复合命题:用逻辑联结词“且”;“或”;“非”把命题p和命题q联结来的命题称为复合命题.复合命题的真假判断p1.思考辨析(1)若p∧q为真,则p,q中有一个为真即可.( )(2)若命题p为假,则p∧q一定为假.( )(3)“p∨q为假命题”是“p为假命题”的充要条件.( )(4)“梯形的对角线相等且互相平分”是“p∨q”形式的命题.( ) [答案](1)×(2)√(3)×(4)×2.“xy≠0”是指( )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0A[xy≠0⇔x≠0且y≠0,故选A.]3.已知p,q是两个命题,若“(p)∨q”是假命题,则( )【导学号:97792023】A.p,q都是假命题B.p,q都是真命题C.p是假命题,q是真命题D.p是真命题,q是假命题D[若(p)∨q为假命题,则p,q都是假命题,即p真q假,故选D.][合作探究·攻重难](1)方程x2-3=0没有有理根;(2)有两个内角是45°的三角形是等腰直角三角形;(3)±1是方程x3+x2-x-1=0的根.[解](1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.(3)这个命题是“p或q”形式的命题,其中p:1是方程x3+x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.1.分别写出由下列命题构成的“p∨q”、“p∧q”、“p”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.【导学号:97792024】[解](1)p∧q:梯形有一组对边平行且有一组对边相等.p∨q:梯形有一组对边平行或有一组对边相等.p:梯形没有一组对边平行.(2)p∧q:-1与-3是方程x2+4x+3=0的解.p∨q:-1或-3是方程x2+4x+3=0的解.p:-1不是方程x2+4x+3=0的解.已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+x 的最小值为4.给出下列命题:①p∧q;②p∨q;③p∧(q);④(p)∨(q).则其中真命题的个数为( )A.1 B.2 C.3 D.4[思路探究] 判断p ,q 的真假→判断p ,q 的真假 →判断所给命题的真假[解析] 由于Δ=(-2a )2-4×1×(-1)=4a 2+4>0,所以方程x 2-2ax -1=0有两个实数根,所以命题p 是真命题;当x <0时,f (x )=x +4x<0,所以命题q 为假命题,所以p ∨q ,p ∧(q ),(p )∨(q )是真命题,故选C.[答案] C”还是“p 2.(1)已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(q );④(p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④C [由不等式的性质可知,命题p 为真命题,命题q 为假命题,故①p ∧q 为假命题,②p ∨q 为真命题,③q 为真命题,则p ∧(q )为真命题,④p 为假命题,则(p )∨q 为假命题.](2)分别指出由下列命题构成的“p ∨q ”“p ∧q ”“ p ”形式的命题的真假.【导学号:97792025】①p :1∈{2,3},q :2∈{2,3}; ②p :2是奇数,q :2是合数; ③p :4≥4,q :23不是偶数;④p :不等式x 2-3x -10<0的解集是{x |-2<x <5},q :不等式x 2-3x -10<0的解集是{x |x >5或x <-2}.[解] ①∵p 是假命题,q 是真命题,。

相关文档
最新文档