钢筋混凝土梁的应力应变计算
常用混凝土受压应力—应变曲线的比较及应用

常用混凝土受压应力—应变曲线的比较及应用σσεεp 图1-2 Sargin曲线式中:εc1为相应于压应力峰值σ0的压应变εc1=-0.0022,εc1为从原点到压应力峰值点的割线模量, 1c E =0σ/0.0022,0E 为混凝土初始弹性模量;εu为混凝土极限压应变, 其大小与1c E 、0E 及εc1有关。
1.3清华过镇海曲线清华大学的过镇海教授在1982年结合自己多年的研究成果提出了自己的混凝土受压应力-应变曲线表达式,如图1-3所示。
第I 阶段中,OA 仍为二次抛物线,与德国人R üsch 提出的抛物线模式相同如下:])(2[2000εεεεσσ-⨯= )(0εε≤ (1-1) 第II 阶段中,下降段AB 用有理分式表示如下: 0200)1(εεεεαεεσσ+-=)(0u εεε<< (1-5)σσεε0图1-3 过镇海曲线εAB其中,α,0ε见下表:表1-1 材料 强度等级 水泥标号α 0ε/10-3普通混凝土 C20~C30 325 425 0.4 0.8 1.40 1.60 C40 425 2.0 1.80 陶粒混凝土 CL25 425 4.0 2.00 水泥砂浆 M30~M40325,4254.02.501.4 美国Hognestad 曲线美国人E.Hognestad 在1951年提出的应力-应变全曲线方程分为上升段和下降段,上升段与德国人R üsch 所提出模型的上升段相同,但是下降段采用一条斜率为负的直线来模拟,如图1-4所示,上升段表达式如下:])(2[2000εεεεσσ-⨯= )(0εε≤ (1-1)下降段表达式为:)1(000εεεεασσ---=u)(0u εεε<<(1-6)其中:α=0.015;εu =0.038经过化简以后,表达式变为如下: )()012.0014.0(u 00ε<ε<εε-σ=σ(1-7)σσ0ε2图1-4 Hongestad曲线0.85σ0εu对于以上四种常见的混凝土单轴受压应力—应变曲线先将其优缺点进行总结,如下表:表1-2优点 缺点中国规范(1)OA 段表达式比较简单,又能反映应力—应变曲线上升段的特点;AB 段则更为简单。
梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。
在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。
梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。
梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。
在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。
下面将分别对这三种类型的应力计算公式进行详细解释。
1. 弯曲应力计算公式。
梁在受到外部力的作用时,会产生弯曲应力。
弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。
其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。
弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。
2. 剪切应力计算公式。
梁在受到外部力的作用时,会产生剪切应力。
剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。
其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。
剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。
3. 轴向应力计算公式。
梁在受到外部力的作用时,会产生轴向应力。
轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。
钢筋混凝土中的应力-应变关系研究

钢筋混凝土中的应力-应变关系研究一、引言钢筋混凝土是一种广泛使用的建筑材料,其主要成分为水泥、砂、石子和钢筋。
在施工过程中,钢筋混凝土需要承受各种力的作用,因此研究其应力-应变关系对于建筑结构的设计、施工和维护都具有重要的意义。
二、应力-应变的定义应力是指单位面积内的力,通常用σ表示。
应变是指物体在受力作用下产生的变形程度,通常用ε表示。
应力和应变之间的关系称为应力-应变关系。
三、钢筋混凝土中的应力-应变关系钢筋混凝土的应力-应变关系是非线性的,其变化过程可以分为三个阶段:弹性阶段、屈服阶段和延展阶段。
1. 弹性阶段当钢筋混凝土受到轻微的力作用时,其应变随应力的增加呈线性关系,这个阶段称为弹性阶段。
在这个阶段内,钢筋混凝土的弹性模量是常数,通常用E表示。
2. 屈服阶段当钢筋混凝土受到一定的力作用时,其应变随应力的增加不再是线性关系,而是呈现出一定的非线性关系。
在这个阶段内,钢筋混凝土开始产生塑性变形,钢筋的应力和应变也开始出现非线性变化。
当钢筋混凝土达到一定的应力时,其应力开始迅速降低,这个点称为屈服点。
3. 延展阶段当钢筋混凝土受到超过屈服点的力作用时,其应力随应变的增加呈现出平台状,这个阶段称为延展阶段。
在这个阶段内,钢筋混凝土的应力和应变可以保持稳定,但是随着应变的增加,其应力最终会达到极限值,这个点称为断裂点。
四、影响钢筋混凝土应力-应变关系的因素1. 混凝土强度混凝土强度是影响钢筋混凝土应力-应变关系的主要因素之一。
混凝土强度越高,则其应力-应变关系的曲线越陡峭。
2. 钢筋强度钢筋的强度也会影响钢筋混凝土的应力-应变关系。
当钢筋的强度越高时,其应力-应变关系的曲线越平缓。
3. 钢筋直径钢筋直径对钢筋混凝土的应力-应变关系也有一定的影响。
钢筋直径越大,则其应力-应变关系的曲线越平缓。
4. 钢筋的屈服强度钢筋的屈服强度也会影响钢筋混凝土的应力-应变关系。
当钢筋的屈服强度越高时,其应力-应变关系的曲线越陡峭。
钢筋混凝土梁正截面受力过程三个阶段的

47、钢筋混凝土受弯构件正截面承载力计算时, 受压混凝土等效应力图形是如何简化计算的?
• 受弯构件受压区混凝土 的压应力分布图,理论 上可根据平截面假定得 出每一纤维的应变值, 再由混凝土应力~应变 曲线中找到相应的压应 力值,从而可以求出压 区混凝土的应力分布图。 但这个过程相当烦琐, 为了简化计算,《规范》 采用以等效矩形应力图 形来代替压区混凝土理 论应力图形。等效换算 的原则是: • (1)合力大小不变,即
• 随着配筋率不同,钢筋混凝土梁可能出现下面三种不 同的破坏形态: • (1)适筋破坏形态 • 适筋梁从开始加荷直至破坏,截面的受力过程经历了 三个阶段。这种适筋梁的破坏特点是:受拉钢筋首先 达到屈服强度,维持应力不变而发生显著的塑性变形, 直到受压区边缘纤维的应变达到混凝土弯曲受压的极 限压应变时,受压区混凝土被压碎,截面即告破坏, 其破坏类型属延性破坏。试验表明,适筋梁在从受拉 钢筋开始屈服到截面完全破坏的这个过程中,虽然截 面所能承担的弯矩增加甚微,但承受变形的能力却较 强,截面的塑性转动较大,即具有较好的延性,使梁 在破坏时裂缝开展较宽,挠度较大,而具有明显的破 坏预兆(图4-2a)。
• 加荷初期,梁截面承担的弯矩较小,材料近似处于弹 性阶段,在第一阶段末即Ⅰa阶段,由于受拉边缘应 变已经达到了混凝土的极限拉应变,构件截面处于将 要开裂而还没有开裂的极限状态。此时的截面应力分 布图形是计算开裂弯矩 M cr的依据。第Ⅱ阶段是构件 带裂缝工作阶段,在这个阶段由于裂缝不断出现和开 展,相应截面的混凝土不断退出工作,引起截面刚度 明显降低。其应力分布图形是受弯构件正常使用极限 状态验算的依据。当弯矩增大到一定程度时,裂缝截 面中的钢筋将首先达到屈服强度,其后应变在弯矩基 本不增大的情况下持续增长,带动裂缝急剧开展,受 压混凝土高度不断减小,当受压区边缘混凝土纤维达
混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。
钢筋混凝土结构是目前使用最为广泛的一种结构形式。
但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。
近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。
由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。
1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。
典型的曲线如图1所示,图中采用无量纲坐标。
sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。
常用混凝土受压应力_应变曲线的比较和应用

常用混凝土受压应力—应变曲线的比较及应用摘要:为了对受弯截面进行弹塑性分析及其他研究,在对各种混凝土受压应力应变曲线研究的基础上,总结出了四种常用曲线,这些曲线已经被广泛应用。
对四种常用曲线进行简介,并指出了它们的适用范围及优缺点。
在进行受弯截面弹塑性分析时,介绍了运用四种常用曲线对其受力性能进行分析的计算模式,并且运用实际案例进行受弯截面弹塑性分析,方便工程师们参考和借鉴。
关键词:混凝土;受压应力应变曲线;本构关系;受弯截面0 引言混凝土受压应力—应变曲线是其最基本的本构关系,又是多轴本构模型的基础,在钢筋混凝土结构的非线件分析中,例如构件的截面刚度、截面极限应力分布、承载力和延性、超静定结构的内力和全过程分析等过程中,它是不可或缺的物理方程,对计算结果的准确性起决定性作用。
近年来,国内外学者对其进行了大量的研究及改进,已有数十条曲线表达式,其中部分具有代表性的表达式已经被各国规范采纳。
常用的表达式包括我国《混凝土结构设计规范》(GB50010-2010)、CEB-FIP Model Code(1990)、清华过镇海以及美国学者Hognestad 建议的混凝土受压应力应变关系,在已有研究的基础上,本文将对各个表达式在实际运用中的情况进行比较,并且通过实际算例运用这些表达式进行受弯截面弹塑性分析,从而为工程师们在实际应用时提供参考和借鉴。
1 常用混凝土受压应力—应变曲线比较至今已有不少学者提出了多种混凝土受压应力应变曲线,常用的表达式采用两类,一类是采用上升段与下降段采用统一曲线的方程,一类是采用上升段与下降段不一样的方程。
1.1 中国规范我国《混凝土结构设计规范》(GB50010-2010)采用的模式为德国人R üsch1960年提出的二次抛物线加水平直线,如图1-1所示。
上升阶段的应力应变关系式为:)(])(2[02000ε≤εεε-εε⨯σ=σ (1-1)A 点为二次抛物线的顶点,应力为0σ,是压应力的最大值,A 点的压应变为0ε。
钢骨混凝土梁的力学性能及计算原理

钢骨混凝土梁的力学性能及计算原理(浙江东南建筑设计有限公司 310000)摘要:高层建筑越来越多,带转换层的建筑也比较普遍。
转换层的存在使竖向刚度发生突变导致力的传递发生改变,在转换层处受力变得复杂,在考虑地震情况下,更是复杂。
所以对转换层的研究是非常必要的。
关键词:钢骨;梁;计算原理1、钢骨混凝土梁的性能钢骨混凝土(src)构件和普通钢筋混凝土(rc)构件相比,其受力性能的差别主要表现如下:1、src构件的含钢量比rc构件的含钢量大得多,所以src构件比rc构件的刚度明显提高。
这为在风荷载和地震作用下控制结构的水平位移提供了有利的条件。
2、src构件的强度、刚度和延性较好,采用src结构不仅具有足够的抗震能力,而且可以使得梁、柱等构件截面大大减小,因此能减少构件的面积,降低建筑物高度,在改善房间功能、降低造价和能耗及结构抗震方面都极为有利,可获得较好的综合效益。
3、src构件的混凝土有利于提高型钢的整体稳定性,防止发生局部屈曲、弯曲失稳及梁发生侧向失稳的不利现象。
4、src构件的耗能性能好。
从试验中得到src柱滞回曲线饱满,所围的面积较大,这说明其耗能性能好。
2、钢骨混凝土梁计算的基本假定我国冶金部颁布的《钢骨混凝土结构设计规程》isl(ybgo82一97)中规定:型钢混凝土框架梁的正截面受弯承载力应按下列基本假定进行计算;(1)截面应变分布符合平截面假定;(2)不考虑混凝土的抗拉强度;(3)受压边缘混凝土极限压应变气取0.003,相应韵最大压应力取混凝土轴心抗压强度设计值关,受压区应力图形简化为等效的矩形应力图,其高度取按平截面假定所确定的中和轴高度乘以系数0.8,矩形应力图的应力取为混凝土轴心抗压强度设计值;(4)型钢腹板的应力图形为拉、压梯形应力图形。
设计计算时,简化为等效矩形应力图形;(5)钢筋应力取等于钢筋应变与其弹性模量的乘积,但不大于其强度设计值。
受拉钢筋和型钢受拉翼缘的极限拉应变气取0.01。
钢筋的等效应力计算

在荷载效应的标准组合下,钢筋混凝土构件受拉区纵向钢筋的应力或预应力混凝土构件受拉区纵向钢筋的等效应力可按下列公式计算:1钢筋混凝土构件受拉区纵向钢筋的应力1)轴心受拉构件σsk=N k/A s2)偏心受拉构件σsk=N k e'/A s(h0-a's)3)受弯构件σsk=M k/0.87h0A s4)偏心受压构件σsk=N k(e-z)/A s zz=[0.87-0.12(1-r'f)(h0/e)2]h0e=ηs e0+y sγ'f=(b'f-b)h'f/bh0ηs=1+1/4000e0/h0(l0/h)2式中A s--受拉区纵向钢筋截面面积:对轴心受拉构件,取全部纵向钢筋截面面积;对偏心受拉构件,取受拉较大边的纵向钢筋截面面积;对受弯、偏心受压构件,取受拉区纵向钢筋截面面积;e'--轴向拉力作用点至受压区或受拉较小边纵向钢筋合力点的距离;e--轴向压力作用点至纵向受拉钢筋合力点的距离;z--纵向受拉钢筋合力点至截面受压区合力点的距离,且不大于0.87h0;ηs--使用阶段的轴向压力偏心距增大系数,当l0/h≤14时,取ηs=1.0;y s--截面重心至纵向受拉钢筋合力点的距离;γ'f--受压翼缘截面面积与腹板有效截面面积的比值;b'f、h'f--受压区翼缘的宽度、高度;在公式(8.1.3-7)中,当h'f>0.2h0时,取h'f=0.2h0;N k、M k--按荷载效应的标准组合计算的轴向力值、弯矩值。
2预应力混凝土构件受拉区纵向钢筋的等效应力1)轴心受拉构件σsk=N k-N p0/A p+A s2)受弯构件σsk=M k±M2-N p0(z-e p)/(A p+A s)z ,e=e p+M k±M2/N p0式中A p--受拉区纵向预应力钢筋截面面积:对轴心受拉构件,取全部纵向预应力钢筋截面面积;对受弯构件,取受拉区纵向预应力钢筋截面面积;z--受拉区纵向非预应力钢筋和预应力钢筋合力点至截面受压区合力点的距离,按公式(8.1.3-5)计算,其中e按公式(8.1.3-11)计算;e p--混凝土法向预应力等于零时全部纵向预应力和非预应力钢筋的合力N p0的作用点至受拉区纵向预应力和非预应力钢筋合力点的距离;M2--后张法预应力混凝土超静定结构构件中的次弯矩,按本规范第6.1.7条的规定确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢筋砼梁应力应变计算方法的探讨余海森(江西省交通科研院南昌 330038)摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。
关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性0 前言钢筋砼梁属于受弯构件。
按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。
为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。
有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。
通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。
但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。
1 按弹性阶段计算应力的方法钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。
1.1 基本假定《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。
1.1.1 平截面假定认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。
其表达式为:εh/x=εh′/(h0-x)εg=εh′式中:εh′-为与钢筋同一水平处砼受拉平均应变;εh-为砼受压平均应变;εg-为钢筋平均拉应变;x-为受压区高度;h0-为截面有效高度。
1.1.2 弹性体假定假定受压区砼的法向应力图形为三角形。
钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。
σh=εhEh式中:σh-为砼应力;εh-为砼受压平均应变;E h-为砼弹性模量。
1.1.3 受拉区砼完全不能承受拉应力在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。
由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。
σg=εgEg式中:σg-为钢筋应力;εg-为受拉区钢筋平均应变;E g-为钢筋弹性模量。
1.2采用换算截面计算应力根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。
由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。
因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应64力计算。
1.2.1受压区边缘砼应力σha=Mx/I01式中:M-为弯矩;x为受压区高度;I01为换算截面惯性矩。
1.2.2受拉钢筋面积重心处钢筋应力σg=ngM(h0-x)/I01式中:M-为弯矩;x-为受压区高度;I01-为换算截面惯性矩;h0-为截面有效高度。
对于截面换算系数n g,《桥规》规定如下:砼标号15号 n g=15砼标号20、25、30号 n g=102 按弹塑性阶段计算应力的方法钢筋砼梁在使用阶段的工作状态为带裂缝工作阶段,其变形特征为:受压区砼为弹塑性变形,受拉区砼为塑性变形,受拉区钢筋为弹性变形。
2.1平截面假定国内外大量试验证明,对于钢筋砼受弯构件,砼受压区从开始加荷直至破坏各阶段基本都符合平截面假定,亦即截面的应变均为直线分布。
对受拉区来说,在砼带裂缝工作阶段,就裂缝所在截面而言,钢筋和砼之间发生了相对位移,显然不符合材料力学的平截面假定,但是,若受拉区的应变采用跨过几条裂缝的长标距量测时,就其平均拉应变来说,大体上还是符合平截面假定。
2.2材料应力应变物理关系2.2.1对于钢筋的应力应变关系因为正常使用阶段钢筋应力还未达到屈服极限,所以可采用理想的弹性应力应变直线关系,其表达式为:σg=εgEg (εg<εy)式中:σg-为钢筋应力;εg-为受拉区钢筋平均应变;E g-为钢筋弹性模量;εy-为屈服应变。
2.2.2对于砼受压的应力应变关系参照《砼结构设计规范》中砼单轴受压的应力—应变曲线方程形式,因正常使用阶段砼压应力尚未达到受压标准强度限值,故采用该曲线的上升段,表达式为:σh= Rab [A×(ε/ε0)+(3-2×A)(ε/ε0)2+(A-2)(ε/ε0)3](ε<ε0)式中:σh-为砼压应力;R a b-为砼抗压标准强度;ε-为砼压应变;ε0-为对应R a b的砼应变值;A-为参数。
2.2.3对于砼受拉的应力应变关系参照《砼结构设计规范》中砼单轴受拉的应力—应变曲线方程形式,认为砼拉应变超过对应于抗拉标准强度的应变值时砼即不再承担拉力工作,故同样采用该曲线的上升段,表达式为:σhl= Rlb [1.2×(ε/εt)-0.2×(ε/εt)6] (ε<εt)式中:σhl-为砼拉应力;R l b为砼抗拉标准强度;ε-为砼拉应变;εt-为对应R l b的砼应变值。
2.3根据应力应变关系进行计算分析受拉区钢筋拉应力合力为:Tg=σgAg=εgEg Ag受压区砼压应力合力根据以其应力应变方程和受压区高度进行定积分计算,求算其合力为:(如为T形截面则需分段积分,下式中x为受压区高度)C=∫0xσc(ε)bdy=∫0x Rab [A×(ε/ε0)+(3-2×A)(ε/ε0)2+(A-2)(ε/ε0)3]bdy 砼压应力合力C的作用点至中性轴的距离为:yc=(∫0xσc(ε)bydy)/C受拉区砼压应力合力根据以其应力应变方程和受拉区高度进行定积分计算,求算其合力为:Tc=∫0LσL(ε)bdy=∫0L Rlb [1.2×(ε/εt)-0.2×(ε/εt)6] bdy 式中L为受拉区高度砼拉应力合力T c的作用点至中性轴的距离为:yL=(∫0LσL(ε)bydy)/Tc根据力的平衡原理可知:C=Tg+TcM=C×(h0-x+ yc)- Tc ×(h0-x- yL)再根据平截面假定则有以下四式:ε/εc=y/xε/εt=y/L(下转第67页)6464 x/ h0=εc/(εc+εg ) L/( h0-x)=εt/εg根据以上代数式求解联立方程。
因涉及多元多次方程组求解,手算相当烦琐,可编制计算机程序,求算在弯矩M 作用下的砼及钢筋应力应变值。
3 算例比较现举例分别以两种方法进行应力应变计算,对计算结果的异同进行分析比较。
例:钢筋砼简支T 梁,计算跨径L=19.50m 。
25号砼,R a b=17.5MPa ,E h =2.85×104MPa, 主梁截面顶面翼板全宽b i =1500mm ,翼板厚h i =110mm ,腹板宽b=180mm ,梁高h=1300mm ,有效高度h0=1196mm ,主筋面积A g =68.37cm 2,E g = 2×105MPa ,R g b=340MPa 。
主梁在使用阶段的内力为:恒载M L =750kN.m ,汽车荷载M Q =600kN.m 。
3.1按弹性阶段计算的应力应变结果如下:3.2按弹塑性阶段计算的应力应变结果如下:3.3两种计算结果比较如下: 从表中计算结果比较可以看出,两种方法计算的砼及钢筋的应力值都很接近。
钢筋作为一种较理想化的匀质弹性体,其弹性模量为常数,因此当应力接近时钢筋应变值也很接近,但砼则不同,由于弹性体假定时砼弹性模量为常数,而弹塑性假定时砼弹性模量不为常数,且随应力增加而弹性模量减小及应变差值增大。
因此,当以实测应变来推算应力值时,两种计算方法的钢筋应力值较为接近,而砼应力值则会产生较大的偏差。
4 结 语《桥规》仅提出了钢筋砼应力计算的公式,而并没有提出应变的计算公式,且其对截面换算系数n g 也直接定出了规定值,带有一定的经验因素,是一种经验近似计算。
从大量试验资料可知,砼在应力值超过一定程度后,将产生较明显的塑性变形。
因此,较精确的计算方法应该采用与实际情形更接近的弹塑性理论进行计算。
参考文献:[1] JTJ023-85,公路钢筋砼及预应力砼桥涵设计规范[S].[2] 叶见曙,袁国干.结构设计原理[M]. 北京;人民交通出版社.[3] GB50010-2002,砼结构设计规范[S].。