兰州市2019-2020学年九年级上学期期末数学试题D卷

合集下载

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。

甘肃省兰州市城关区兰州天庆实验中学2023-2024学年九年级上学期期中数学试题

甘肃省兰州市城关区兰州天庆实验中学2023-2024学年九年级上学期期中数学试题

甘肃省兰州市城关区兰州天庆实验中学2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,该几何体的主视图是()A .B .C .D .2.如图,若AB CD ,EF CD ⊥,236∠=︒,则1∠等于()A .26︒B .36︒C .46︒D .54︒3.下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b+=+D .235a b ab+=4.2022年2月4日,北京冬奥会开幕式为世界奉献了一场精彩,简约,唯美,浪漫的中国文化盛宴,其中主火炬台的雪花状创意令人惊叹如图是一个正六边形雪花状饰品,则它的每一个内角是()A .60︒B .105︒C .120︒D .135︒A .12B .138.两个相似三角形的相似比是A .2:3B .4:99.图,为了估算河的宽度,在河对岸选定一个目标点使得A ,B 与C 共线,A ,D 与线AC 垂直.经测量,得到BC 是()A .x BDx BC CE=+B .x BC 10.我国党的二十大报告指出从年到本世纪中叶把我国建成富强民主文明和谐美丽的社会主义现代化强国.A .AFB .12.如图,已知a ,b ,c 分别是如a by x c c =+的一次函数称为上,且Rt △ABC 的面积是A .1B .二、填空题13.分解因式:316m m -=14.如图,在平面直角坐标系中,则顶点C 的坐标是15.一次函数(y kx b k =+≠0kx b +=的解是x =x2-1-012三、解答题17.(2143220202-⎛⎫+-+- ⎪⎝⎭18.先化简,再求值:222x x --(1)请画出ABC 关于x 轴对称的111A B C △点A B ,,(2)请以原点O 为位似中心,在第四象限内画一个△21.如图,已知直线l :y kx b =+与x 轴、y 轴分别交于2OA OB =,x 轴上一点C 的坐标为()6,0,P 是直线(1)求直线l的函数表达式;(2)连接OP和CP,当点P的横坐标为22.【问题情境】数学活动课上,的实践活动.【实践发现】长y(单位:芒果树叶的长宽比荔枝树叶的长宽比【实践探究】分析数据如下:芒果树叶的长宽比荔枝树叶的长宽比【问题解决】a______(1)=(2)A同学说:B同学说:“宽的两倍.以上两位同学的说法中,合理的是(3)现有一片长哪种树?并给出你的理由.23.在疫情防控期间,某中学为保障广大师生生命健康安全,欲从商场购进一批免洗手消毒液和84消毒液.如果购买30瓶免洗手消毒液和60瓶84消毒液,共需花费930元,如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打八折;方案二,购买10瓶免洗手消毒液送5瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?24.如图,菱形ABCD 对角线交于点O ,BE ∥AC ,AE ∥BD ,EO 与AB 交于点F .(1)试判断四边形AEBO 的形状,并说明你的理由;(2)求证:EO DC =.25.如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离 2.5m BD =.乐乐在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离 1.5m AC =,点A 到地面的距离 1.5m AE =,当他从A 处摆动到A '处时,若A B AB '⊥,求A '到BD 的距离.26.如图,在Rt ABC △中,90ACB ∠=︒,CD 是边AB 上的高.28.如图甲,在ABC 中,ACB ∠为锐角,点D 为射线BC 上一动点,为一边且在AD 的右边作正方形ADEF ,解答下列问题:(1)如果AB AC =,90BAC ∠=︒,①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CE 、BD 之间的位置关系为数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB AC ≠,90BAC ∠≠︒,点D 在线段BC 上运动,试探究,当什么条件时,CF BC ⊥(点C 、F 重合除外)?并说明理由.。

2019~2020学年(上)南平市九年级质量检测(数学)_试题及答案高清扫描版

2019~2020学年(上)南平市九年级质量检测(数学)_试题及答案高清扫描版
(1)当 m=-3 时,在所给的平面直角坐标系中画出 C1 , C2 的图象; (2)已知点 C(-2,1),求证:点 A,B,C 三点共线;
(3)设点 P 的纵坐标为 q,求 q 的取值范围.
y
O
x
第 25 题图
九年级数学试题 第 6 页(共 6 页)
南平市 2019-2020 学年第一学期九年级期末质量检测 数学试题参考答案及评分说明
y B
A
O
x
第 20 题图
21.(8 分)商场服装柜在销售中发现:某品牌童装平均每天可售出 20 件,每件盈利 40 元. 为了迎接“春节”,商场决定采取适当的降价措施,增加盈利,减少库存. 经市场调查发 现:如果每件童装降价 2 元,那么平均每天就可多售出 4 件. (1)如果平均每天销售这种童装上的盈利 1 200 元,那么每件童装应降价多少元? (2)当盈利最多时,每件童装应降价多少元?
说明:
(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分 150 分. (2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的 评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,
可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.
(2)解:a = 1, b = 3 , c = −5,………………………………………………………1 分 = b2 − 4ab = 32 − 41 (−5) = 29 …………………………………………………2 分
x = − 3 29 …………………………………………………………………3 分 2
A
B
C
第24 题图
九年级数学试题 第 5 页(共 6 页)

甘肃省兰州市城关区第十一中学2022-2023学年九年级上学期期中数学试题-(含解析)

甘肃省兰州市城关区第十一中学2022-2023学年九年级上学期期中数学试题-(含解析)

甘肃省兰州市城关区第十一中学2022-2023学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示的几何体的左视图是()A.B.C.D.2.已知2x=3y,则下列比例式成立的是()A.32xy=B.43x yy+=C.32x y=D.35x yx+=3.下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形4.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12B.9C.4D.35.用配方法解方程x2-2x=2时,配方后正确的是()A.()213x+=B.()216x+=C.()213x-=D.()216x-=6.如图,在△ABC中,点D、E 分别在边AB、AC 上,且12AD AEAC AB==,∠BAC的平分线分别交DE、BC 于点N,M.则ENBM的值为()A .12B .13C .25D .357.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( ) A .()22001242x += B .()22001242x -=C .()20012242x +=D .()20012242x -=8.在直角三角形中,两直角边的长分别为6和12,则斜边上中线的长为( )A .B .C .D .9.在ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作//,//DE AC DF AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形 D .若AD 平分BAC ∠,则四边形AEDF 是菱形10.对于实数,a b 定义运算“△”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根11.如图,Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒,2cm BC =,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿AB 向B 点运动,设E 点的运动时间为t 秒,连接DE ,当以B 、D 、E 为顶点的三角形与ABC 相似时,t 的值为( )A .2或3.4B .3.5或3.2C .2或3.5D .3.2或3.412.如图,矩形纸片ABCD ,6cm AB =,8cm BC =,E 为边D 上一点,将BCE 沿BE 所在的直线折叠,点C 恰好落在AD 边上的点F 处,过点F 作FM BE ⊥,垂足为点M ,取AF 的中点N ,连接MN ,则MN =( )cm .A .5B .6C .245D .二、填空题13.若关于x 的方程()1123m m xx ++-=是一元二次方程,则m 的值为______.14.中共中央办公厅、国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》(简称“双减”).为全面落实“双减”工作,某校成立了三个义务宣讲团,为学生家长做双减政策解读.现招募宣讲教师,如果张老师和李老师每人随机选报其中的一个宣讲团,则他们恰好选到同一个宣讲团的概率是_______. 15.如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE △BC ,AD AB =13,则AD DE AE AB BC AC++++=______.16.平面直角坐标系中,四边形OABC 是矩形,点(10,0)A ,点(0,3)C ,点D 是OA 的中点,点P 是BC 边上的一个动点,当POD ∆是等腰三角形时,点P 的坐标为 __.17.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知△ABD =△C ,AB =6,AD =4,求线段CD 的长.三、解答题18.计算:112|1)2-⎛⎫+- ⎪⎝⎭.19.用适当方法解下列方程.(1)2(2)3(2)x x +=+ (2)28150x x ++=20.如图,O 为原点,B ,C 两点坐标分别为()31-, ,()21, .(1)以O 为位似中心在y 轴左侧将OBC △放大两倍,分别写出B ,C 两点的对应点B ',C '(2)已知M(x,y)为△OBC内部一点,写出M的对应点M 的坐标.21.如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在太阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长22.某学校为了提高学生学科能力,决定开设以下校本课程:.A文学院,.B小小数学家,.C小小外交家,.D未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).23.已知a 、b 、c 是△ABC 的三边,且满足438324a b c +++==,且a +b +c =12,请你探索△ABC 的形状.24.某服装柜在销售中发现:其专柜某款童装平均每天可售出 20 件,每件盈利 40 元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件童装降价 1 元,那么平均每天就可多售出 2 件.要想平均每天销售这种童装能盈利 1200 元,又能尽量减少库存,那么每件童装应降价多少元?25.已知关于x 的一元二次方程(1)(2)(1)0x x k k k --+-=. (1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根12,x x 是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.26.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE△BF,连接BE、CF.(1)求证:△BDF△△CDE;(2)若AB=AC,试判断四边形BFCE是怎样的四边形,并证明你的结论.27.阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=ba-,x1x2=ca材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.解:△一元二次方程x2-x-1=0的两个实数根分别为m,n,△m+n=1,mn=-1,则m2n+mn2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2=;x1x2=.(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求n mm n+的值.(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求11s t-的值.28.【教材背景】课本上有这样一道题目:如图△,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连接CE ,DF .发现其中CE DF =. 【拓展延伸】如图△,在正方形ABCD 中,O 为对角线BD 上一点,连接AO 并延长,交DC 于点E ,过点B 作BF △AE 于点G ,交AD 于点F ,连接FE ,BE .【问题解决】(1)若DO DE =,求证:ABG OBG ≌; (2)若6BF =,求四边形AFEB 的面积;(3)如图△,连接CG ,若CG BC =,求证:E 是边DC 的中点.参考答案:1.D【分析】根据从左边看到的视图是左视图,即可求解.【详解】解:从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线.故选:D.【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.注意实际存在又没有被其他棱所挡,在所在方向看不到的棱应用虚线表示.2.C【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.3.B【分析】直接利用特殊四边形的性质与判定方法分别分析得出答案.【详解】解:A、平行四边形的对边相等,正确,不合题意;B、对角线相等的四边形不一定就是矩形,故此选项错误,符合题意;C、对角线互相垂直的平行四边形是菱形,正确,不合题意;D、正方形既是轴对称图形,又是中心对称图形,正确,不合题意;故选B.【点睛】此题主要考查了特殊四边形的性质与判定方法,正确掌握相关性质是解题关键.4.A【分析】摸到红球的频率稳定在25%,即3a=25%,即可即解得a的值.【详解】解:△摸到红球的频率稳定在25%,△3a=25%,解得:a =12. 经检验,a =12符合题意, 故选A【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键. 5.C【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果. 【详解】解:x 2-2x =2, x 2-2x +1=2+1,即(x -1)2=3. 故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键. 6.A【分析】首先证明△ADE△△ACB ,即可证得△AED=△B ,然后证明△ANE△△ABM 即可根据相似三角形的性质求解. 【详解】解:△12AD AE AC AB ==,△BAC=△BAC , △△ADE△△ACB , △△AED=△B , 又△△BAM=△CAM , △△ANE△△ABM , 1.2EN AE BM AB ∴== 故选A .【点睛】本题考查了相似三角形的判定与性质,正确理解相似三角形的判定定理是键. 7.A【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件, △可列方程为:()22001242x +=, 故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.8.B【分析】如图所示,AC =6,AB =12,先利用勾股定理求出BC 的长,然后根据直角三角形斜边上的中线等于斜边的一半即求解.【详解】解:△6AC =,12AB =,△BAC =90°,△BC△12AD BC == 故选B .【点睛】本题主要考查了勾股定理和直角三角形斜边上的中线等于斜边的一半,解题的关键在于能够熟练掌握相关知识进行求解.9.D【分析】由矩形的判定和菱形的判定即可得出结论.【详解】解:若AD △BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误; 若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分△BAC ,则四边形AEDF 是菱形;选项D 正确;故选:D .【点睛】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.10.D【分析】本题根据题目所给新定义将方程12x =☆变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意由方程12x =☆得:22x x -=整理得:220x x --=根据根的判别式2141(2)90∆=-⨯⨯-=>可知该方程有两个不相等实数根.故选D .【点睛】本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根.11.C【分析】求出24AB BC ==cm ,分两种情况:△当90EDB ACB ∠=∠=︒时,DE AC EBD ABC ∥,∽,得出122AE BE AB ===cm ,即可得出2t =s ;△当90DEB ACB ∠=∠=︒时,证出DBE ABC ∽,得出30BDE A ∠=∠=︒,因此1122BE BD ==cm ,得出 3.5AE =cm , 3.5t =s ;即可得出结果.【详解】解:9060ACB ABC ∠=︒∠=︒,,30A ∴∠=︒,24AB BC ∴==cm ,分两种情况:△90EDB ACB ∠=∠=︒时,DE AC EBD ABC ∥,∽,,△D 为BC 的中点, △112BD CD BC ===cm , △E 为AB 的中点,122AE BE AB ∴===cm , △2t =s ;△90DEB ACB ∠=∠=︒时,30B B DBE ABC BDE A ∠=∠∴∴∠=∠=︒,∽,,1122BE BD ∴==cm , △ 3.5AE =cm ,△ 3.5t =s ;综上所述:当以B 、D 、E 为顶点的三角形与ABC 相似时,2t =或3.5,故选C .【点睛】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.12.A【分析】连接AC ,MC ,可求得M 为CF 的中点,根据中位线的性质可得12MN AC =,勾股定理求得AC 即可.【详解】解:连接AC ,MC由折叠的性质可得CF EB ⊥,CE EF =又△FM BE ⊥△点M 在线段FC 上,90EMF EMC ∠=∠=︒又△ME ME =△()EMF EMC HL △≌△△FM MC =又△AF 的中点N△MN 为ACF △的中位线 △12MN AC =在Rt ACB 中,10cm AC =△5cm MN =故选A【点睛】此题考查了折叠的性质,矩形的性质以及三角形中位线的性质,熟练掌握相关基本性质是解题的关键.13.1【分析】根据一元二次方程的概念可得,10m +≠,12m +=,求解即可.【详解】解:由题意可得:10m +≠,12m +=由10m +≠得1m ≠-, 由12m +=得,1m =或1m =-△1m =故答案为:1【点睛】此题考查了一元二次方程的概念,解题的关键是掌握一元二次方程的概念,一元二次方程为含有一个未知数并且未知数的最高次数为2的整式方程.14.13【分析】首先画出树状图表示所有可能出现的结果,再确定符合条件的结果,然后根据公式计算即可.【详解】如图所示.一共有9中可能出现的结果,每种结果出现的可能性相同,即(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),可知他们恰好选到同一个宣讲团有3种,所以他们恰好选到同一个宣讲团的概率是3193=. 故答案为:13. 【点睛】本题主要考查了树状图求概率,掌握概率公式是解题的关键.15.13【详解】解:△DE △BC ,△△ADE △△ABC ,13AD AE DE AB AC BC ∴===, △AD AB =AD DE AE AB BC AC ++++=13.故答案为:13. 16.(4,3)或(2.5,3)或(1,3)或(9,3).【分析】分四种情况讨论,△当15PO OD ==时,△当22P O P D =时,作2P E OA ⊥于E ,△当35P D OD ==时,作DF BC ⊥于F , 当45P D OD ==时,作4P G OA ⊥于G ,再利用勾股定理进行计算,从而可得答案. 【详解】解:点(10,0)A ,点(0,3)C ,3OC ∴=,10OA =,点D 是OA 的中点,5OD ∴=,POD ∆是等腰三角形,∴△当15PO OD ==时,由勾股定理可以求得14PC ,()14,3,P△当22P O P D =时,作2P E OA ⊥于E ,则四边形2COEP 是矩形,2 2.5OE ED CP ∴===;()2 2.5,3,P ∴△当35P D OD ==时,作DF BC ⊥于F ,同理可得:3,DF = 由勾股定理,得,22334P FP D DF ,31PC ∴=; ()31,3,P ∴当45P D OD ==时,作4P G OA ⊥于G ,同理可得:43,P G =由勾股定理,得,4DG ==,9OG ∴=.()49,3,P ∴1(4,3)P ∴,2(2.5,3)P ,3(1,3)P,4(9,3)P .故答案为:(4,3)或(2.5,3)或(1,3)或(9,3).【点睛】本题考查的是矩形的判定与性质,等腰三角形的定义与性质,勾股定理的应用,坐标与图形,清晰的分类讨论是解题的关键.17.5【分析】由已知角相等,加上公共角,得到三角形ABD 与三角形ACB 相似,由相似得比例,将AB 与AD 长代入即可求出CD 的长.【详解】解:在△ABD 和△ACB 中,△ABD =△C ,△A =△A ,△△ABD △△ACB , △AB AD AC AB=, △AB =6,AD =4, △23694AB AC AD ===, 则CD =AC ﹣AD =9﹣4=5.【点睛】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.【分析】利用乘法公式以及负指数幂的性质和绝对值的性质分别化简进而得出答案.【详解】解:112|1)2-⎛⎫-+- ⎪⎝⎭22(51)=--2251=-+=故答案为【点睛】本题考查二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.也考查了负整数指数幂.19.(1)12x =-,21x =(2)13x =-,25x =-【分析】(1)观察原方程可知含有公因式()2x +,故采用因式分解法进行求解较为方便.(2)观察原方程的三项系数发现351531518⨯=⎧⎨⨯+⨯=⎩,故可使用十字相乘法将方程因式分解为()()350x x ++=后再求解较为方便.【详解】(1)移项,得:()223(2)0x x +-+=提公因式,得:()()2230x x ++-=∴ 20x += 或230x +-=; 解得:12x =-,21x =.(2)十字相乘法因式分解,得:()()350x x ++=30x ∴+= 或50x +=;解得13x =-,25x =-.【点睛】本题考查因式分解法解一元二次方程,观察原方程的结构特点选择合适的方法是本题的解题关键.20.(1)()'6,2B -,()'4,2C --(2)()'2,2M x y --【详解】(1)如图根据题意作图,反向延长,OB OC 至','B C ,使得'2OB OB =,'2OC OC =,观察可知()'6,2B -,()'4,2C --'(2,2)--M x y(2)根据位似图形的坐标变换可知,以O 为位似中心作异侧位似变换,点(),x y 将变换为(),kx ky --,其中k 为放大倍数;故M 的对应点M '的坐标为:()'2,2M x y --【点睛】本题考查位似的坐标变换,熟练掌握位似的变换性质是本题的解题关键.21.(1)见解析(2)10m【分析】(1)根据平行投影的性质可先连接AC ,再过点D 作DF △AC 交地面与点F ,DF 即为所求;(2)根据平行的性质可知△ABC △△DEF ,利用相似三角形对应边成比例即可求出DE 的长.【详解】(1)解:DE 在阳光下的投影是EF 如图所示;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,△△ABC △△DEF ,AB =5m ,BC =3m ,EF =6m , △AB DE BC EF=, △536DE =, △DE =10(m ),答:DE 的长为10m .【点睛】本题通过投影的知识结合图形相似的性质巧妙地求出点D 离地面的距离,是平行投影性质在实际生活中的应用.22.(1)200(2)见解析(3)1 6【分析】(1)由A是36︒,A的人数为20人,即可求得这次被调查的学生总人数;(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.【详解】(1)解:A是36︒,A∴占3636010%︒÷=,A的人数为20人,∴这次被调查的学生共有:2010%200(÷=人),故答案为:200;(2)解:如图,C有:20020804060(---=人),(3)解:画树状图得:共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为:21 126=.【点睛】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.△ABC是直角三角形,理由见解析【分析】根据438324a b c+++==,可以设438324a b c+++===k,然后根据a+b+c=12,可以求得k的值,进而求得a、b、c的值,再根据勾股定理的逆定理,即可判断△ABC的形状.【详解】解:令438324a b c+++===k,△a+4=3k,b+3=2k,c+8=4k,△a=3k﹣4,b=2k﹣3,c=4k﹣8,又△a+b+c=12,△(3k﹣4)+(2k﹣3)+(4k﹣8)=12,△k=3,△a=5,b=3,c=4,△32+42=52,△△ABC是直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答此类问题的关键是明确题意,求出a、b、c的值.24.20【分析】设每件童装应降价x元,则每件童装实际盈利(40﹣x)元.利用每件童装的盈利×销售件数=盈利即可列出方程求解.【详解】解:设每件童装应降价x元,则每件童装实际盈利(40﹣x)元.由题意可得:(40﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10,x2=20.△为扩大销售量,增加盈利,尽快减少库存,△当x=20时更符合题意,△每件童装应降价20元.【点睛】本题考查了一元二次方程的应用——营销问题,读懂题意,找准等量关系,列出方程是解题的关键.25.(1)见解析;(2)k的值为4.【分析】(1)根据根的判别式判断即可;(2)根据求根公式算出方程的解,再根据矩形的性质讨论即可;【详解】(1)(1)(2)(1)0x x k k k --+-=,整理得:22(21)0x k x k k -+++=△1a =,(21)b k =-+,2c k k =+,△2224(21)41()b ac k k k ∆=-=+-⨯⨯+=1>0 ,△该一元二次方程总有两个不相等的实数根;(2)22(21)0x k x k k -+++=,2112k x +±==, △1x k =,21x k =+,△当x k =为对角线时,222(1)3k k =++,解得:5k =-(不符合题意,舍去),△当1x k =+为对角线时,()22213k k +=+,解得:4k =;综合可得,k 的值为4.【点睛】本题主要考查了一元二次方程根的判别式、求根公式和矩形的性质,准确计算是解题的关键.26.(1)证明见解析;(2)四边形BFCE 是菱形,证明见解析.【分析】(1)由平行线的性质得出△ECD =△FBD ,△DEC =△DFB ,然后再加上由中点得出的BD =DC ,即可利用AAS 证明△BDF △△EDC ;(2)先根据等腰三角形的三线合一证明AD △BC ,然后由(1)中的可得出DE =DF ,DB =DC ,最后利用对角线互相平分且互相垂直的四边形为菱形即可证明四边形BFCE 是菱形.【详解】(1)△CE △BF ,△△ECD =△FBD ,△DEC =△DFB ;又△D 是BC 的中点,△BD =DC ,△△BDF △△EDC (AAS);(2)四边形BFCE 是菱形.证明如下:△AB=AC,△△ABC是等腰三角形;又△BD=DC,△AD△BC,由(1)知:△BDF△△EDC,则DE=DF,DB=DC;△四边形BFCE是菱形.【点睛】本题主要考查全等三角形的判定及性质,菱形的判定,掌握全等三角形的判定及性质和菱形的判定方法是解题的关键.27.(1)32;12-(2)13 2 -【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n+=,12mn=-,然后将n mm n+进行变形求解即可;(3)根据根与系数的关系先求出32s t+=,12st=-,然后求出s-t的值,然后将11s t-进行变形求解即可.【详解】(1)解:△一元二次方程2x2-3x-1=0的两个根为x1,x2,△123322 bx xa -+=-=-=,1212 cx xa⋅==-.故答案为:32;12-.(2)△一元二次方程2x2-3x-1=0的两根分别为m、n,△3322bm na-+=-=-=,12cmna==-,△22 n m m n m n mn+ +=()22m n mnmn+-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- (3)△实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,△s 、t 可以看作方程2x 2-3x -1=0的两个根, △3322b s t a -+=-=-=,12c st a ==-, △()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=△t s -=或t s -=,当t s -=11212t s s t st --===-当t s -=11212t s s t st --===- 综上分析可知,11s t-【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -或t s -= 28.(1)见解析(2)18(3)见解析【分析】(1)证明AB BO =,利用等腰三角形的性质解决问题即可;(2)证明BAF ADE △≌△,推出6==BF AE ,可得结论;(3)过点C 作CT BG ⊥交AB 于点T ,连接GT ,证明AT TB =,再证明AT EC =,可得结论.【详解】(1)证明:△四边形ABCD 是正方形,△AB CD ∥,△BAO AED ∠=∠,△DO DE =,△DOE DEO ∠=∠,△AOB DOE ∠=∠,△BAO AOB ∠=∠,△BA BO =,△BF AE ⊥,△AG OG =,在BAG △和BOG △中,BA BO BG BG AG OG =⎧⎪=⎨⎪=⎩,△ABG OBG ≌(SSS );(2)△BF AE ⊥,△90AGB ∠=︒,△90ABF BAG ∠+∠=︒,90DAE BAG ∠+∠=︒,△ABF DAE ∠=∠,△BA AD =,90BAF ADE ∠=∠=︒,△BAF ADE △≌△(ASA ),△6==BF AE ,△BF AE ⊥, △11661822AFEB S AE BF ==⨯⨯=四边形; (3)证明:过点C 作CT BG ⊥交AB 于点T ,连接GT ,△CG CB =,BT BG ⊥,△CT 垂直平分线段BG ,△TB TG =,△TBG TGB ∠=∠,△90TBG BAG ∠+∠=︒, 90AGT TGB ∠+∠=︒,△TAG TGA ∠=∠,△TA TG =,△AT TB =,△AE BF ⊥,CT BF ⊥,△AE CT ∥,△AT CE ∥,△四边形ATCE 是平行四边形,△AT CE =,△2AB CD AT ==,△2CD CE =,△DE EC =,△E 是边DC 的中点.【点睛】本题属于四边形综合题,考查了正方形的性质、全等三角形的判定与性质,等腰三角形的判定与性质,平行四边形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

甘肃省庆阳市2019-2020学年九年级数学上期末试卷(含答案)

甘肃省庆阳市2019-2020学年九年级数学上期末试卷(含答案)

甘肃省庆阳市2018届九年级(上)期末数学试卷(解析版)一、选择题1.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨2.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.103.已知P(x,y)在第三象限,且|x|=1,|y|=7,则点P关于x轴对称的点的坐标是()A.(﹣1.7)B.(1,﹣7)C.(﹣1,﹣7)D.(1,7)4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.5.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C. D.6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率7.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 8.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位9.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°10.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个B.2个 C.3个 D.4个二、填空题11.圆内接四边形ABCD中,已知∠A=70°,则∠C= .12.若(m﹣2)﹣mx+1=0是一元二次方程,则m的值为.13.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.14.如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.15.将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是.16.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P 截得的弦AB的长为,则a的值是.17.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b 2>4ac ; ②2a+b=0; ③a+b+c >0;④若点B (﹣,y 1),C (﹣,y 2)为函数图象上的两点,则y 1<y 2. 其中正确结论是 .三、解答题(共78分)18.(6分)计算:(3﹣π)0﹣+(﹣1)2011.19.(6分)先化简,再求值:,其中x 满足x 2﹣3x+2=0.20.(7分)已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.21.(7分) 如图,将小旗ACDB 放于平面直角坐标系中,得到各顶点的坐标为A (﹣6,12),B (﹣6,0),C (0,6),D (﹣6,6).以点B 为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′; (2)写出点A′,C′,D′的坐标;(3)求出线段BA 旋转到B′A′时所扫过的扇形的面积.22.(8分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去,否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.23.(8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(8分)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?25.(9分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB 上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)26.(9分)已知:如图,在△ABC中,AB=AC,AD是BC边的中线,AN为△ABC的外角∠CAM的平分线,CE⊥AN于点E,线段DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)线段DF与AB有怎样的关系?证明你的结论.27.(14分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?2019-2020学年甘肃省庆阳市九年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B、射击运动员射击一次,命中十环是随机事件,故B错误;C、在地球上,抛出的篮球会下落是必然事件,故C正确;D、明天会下雨是随机事件,故D错误;故选:C.【点评】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.10【考点】根与系数的关系.【分析】利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值.【解答】解:根据题意得:m+n=3,mn=a,∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,∴a﹣3+1=﹣6,解得:a=﹣4.故选C【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.3.已知P(x,y)在第三象限,且|x|=1,|y|=7,则点P关于x轴对称的点的坐标是()A.(﹣1.7)B.(1,﹣7)C.(﹣1,﹣7)D.(1,7)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用第三象限点的性质得出x,y的值,进而利用关于x轴对称点的性质得出是解题关键.【解答】解:∵P(x,y)在第三象限,且|x|=1,|y|=7,∴P(﹣1,﹣7),∴点P关于x轴对称的点的坐标是:(﹣1,7).故选:A.【点评】此题主要考查了关于x轴对称点的性质以及第三象限点的坐标性质,正确记忆各象限内点的坐标性质是解题关键.4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.5.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【考点】利用频率估计概率.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.7.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.8.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位【考点】二次函数图象与几何变换.【分析】把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.【解答】解:根据题意y=x2+4x+3=(x+2)2﹣1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向下平移1个单位得到.故选B.【点评】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.9.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°【考点】圆周角定理;含30度角的直角三角形;翻折变换(折叠问题).【分析】作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD=OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.【解答】解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,又OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质.10.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个B.2个 C.3个 D.4个【考点】切线的性质;垂径定理.【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【解答】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选C【点评】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.二、填空题11.圆内接四边形ABCD中,已知∠A=70°,则∠C= 110°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质:圆内接四边形对角互补,即可解决问题.【解答】解:如图,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∵∠A=70°,∴∠C=110°,故答案为110°【点评】本题考查圆内接四边形的性质,记住圆内接四边形对角互补是解题的关键.12.若(m﹣2)﹣mx+1=0是一元二次方程,则m的值为﹣2 .【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:根据题意得:,解得:m=﹣2.故答案是:﹣2.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.13.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7 cm.【考点】翻折变换(折叠问题).【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.【点评】本题考查了翻折变换的知识,利用了折叠的性质.14.如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是6.【考点】圆锥的计算.【分析】根据弧长求得圆锥的底面半径和扇形的半径,利用勾股定理求得圆锥的高即可.【解答】解:∵弧长为6π,∴底面半径为6π÷2π=3,∵圆心角为120°,∴=6π,解得:R=9,∴圆锥的高为=6,故答案为:6.【点评】本题考查了圆锥的计算,解题的关键是能够利用圆锥的底面周长等于侧面展开扇形的弧长求得圆锥的底面半径,难度一般.15.将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是y=﹣2(x﹣3)2﹣2,.【考点】二次函数图象与几何变换.【分析】根据抛物线解析式间的关系,可得顶点式解析式,根据绕它的顶点旋转180°,可得顶点相同,开口方向相反,可得答案.【解答】解:y=2x2﹣12x+16,顶点式y=2(x﹣3)2﹣2,抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是y=﹣2(x﹣3)2﹣2,故答案为:y=﹣2(x﹣3)2﹣2.【点评】本题考查了二次函数图象与几何变换,利用了绕定点旋转的规律.16.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P 截得的弦AB的长为,则a的值是.【考点】垂径定理;坐标与图形性质.【分析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P 的圆心是(2,a ), ∴点D 的横坐标为2, ∴OC=2, ∴DC=OC=2, ∴a=PD+DC=2+. 故答案为:2+.【点评】本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x 与x 轴的夹角是45°.17.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b 2>4ac ; ②2a+b=0; ③a+b+c >0;④若点B (﹣,y 1),C (﹣,y 2)为函数图象上的两点,则y 1<y 2. 其中正确结论是 ①④ .【考点】二次函数图象与系数的关系.【分析】①根据抛物线与x 轴交点个数可判断;②根据抛物线对称轴可判断;③根据抛物线与x 轴的另一个交点坐标可判断;④根据B 、C 两点离对称轴的距离的大小,可判断. 【解答】解:由函数图象可知抛物线与x 轴有2个交点,∴b 2﹣4ac >0即b 2>4ac ,故①正确; ∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a ﹣b=0,故②错误;∵抛物线与x 轴的交点A 坐标为(﹣3,0)且对称轴为x=﹣1, ∴抛物线与x 轴的另一交点为(1,0),∴将(1,0)代入解析式可得,a+b+c=0,故③错误;由|﹣+1|>|﹣+1|,可知点B 离对称轴距离较远, ∴y 1<y 2,故④正确;综上,正确的结论是:①④, 故答案为①④.【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax 2+bx+c (a ≠0),a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;抛物线与x 轴的交点个数,决定了b 2﹣4ac 的符号,此外还要注意x=1,﹣3对应函数值的正负来判断其式子的正确与否.三、解答题(共78分)18.计算:(3﹣π)0﹣+(﹣1)2011.【考点】二次根式的混合运算;零指数幂.【分析】先利用零指数幂的意义和二次根式的除法法则运算,然后合并即可.【解答】解:原式=1﹣(﹣)﹣1=1﹣(2﹣)﹣1=1﹣2+﹣1=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.19.先化简,再求值:,其中x满足x2﹣3x+2=0.【考点】解一元二次方程-因式分解法;分式的化简求值.【分析】本题要对分式进行化简,可对分式中的分子分母进行因式分解,将可进行约分的式子约掉.然后根据方程x2﹣3x+2=0解出x的值,代入已化简的分式中.【解答】解:原式=,∵x2﹣3x+2=0,∴(x﹣2)(x﹣1)=0,∴x=1或x=2,当x=1时,(x﹣1)2=0,分式无意义.∴x=2,原式=2.【点评】本题考查了分式的化简和一元二次方程的解法,在解题时学生往往会忽略x的不可取问题.分式中分母不为0,因此x≠±1.20.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.,根据根与系数的关系列出方程组,求出a的值和方程的另一根.(2)设方程的另一根为x1【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x,由根与系数的关系得:1,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据平面直角坐标系找出A′、C′、D′、B′的位置,然后顺次连接即可;(2)根据旋转的性质分别写出点A′,C′,D′的坐标即可;(3)先求出AB的长,再利用扇形面积公式列式计算即可得解.【解答】解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.【点评】本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.22.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去,否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【考点】游戏公平性;列表法与树状图法.【分析】(1)画树状图展示所有12种等可能性结果,再找出其中数字之和小于4的结果数,然后根据概率公式求解;(2)利用概率公式计算出P(和不小于4),则P(和小于4)≠P(和不小于4),于是可判断游戏不公平,改变游戏规则后使数字之和小于4和数字之和不小于4的结果数相等即可.【解答】解:(1)画树状图:共有12种等可能性结果,其中数字之和小于4的有3种情况,所以P(和小于4)==,即小颖参加比赛的概率为;(2)该游戏不公平.理由如下:因为P(和不小于4)=,所以P(和小于4)≠P(和不小于4),所以游戏不公平,可改为:若数字之和为偶数,则小颖去;若数字之和为奇数,则小亮去.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了列表法与树状图法.23.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.【解答】解:(1)S=y(x﹣40)=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.【点评】此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).24.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【考点】二次函数的应用.【分析】(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到=4.5;,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.【解答】解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,=4.5;∴当t=时,y最大(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,。

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分).
1.(3分)下列图形是中心对称图形的是()
A.B.C.D.
2.(3分)一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1B.2C.1和2D.﹣1和2
3.(3分)下列事件中,是随机事件的是()
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
4.(3分)二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()x……﹣3﹣2﹣101……
y……﹣17﹣17﹣15﹣11﹣5……
A.x=﹣3B.x=﹣2.5C.x=﹣2D.x=0
5.(3分)在同平面直角坐标系中,函数y=x﹣1与函数y=1
x的图象大致是()
A.B.
C.D.
6.(3分)某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()
A.10%B.20%C.25%D.40%
第1 页共23 页。

甘肃省兰州市重点中学2023-2024学年九年级上学期期末数学试卷(含答案)

甘肃省兰州市重点中学2023-2024学年九年级上学期期末数学试卷(含答案)

2023-2024学年甘肃省兰州重点中学九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有唯一正确答案)1.(3分)的相反数是( )A .B .﹣6C .6D .2.(3分)将一副三角尺按如图的方式摆放,其中l 1∥l 2,则∠α的度数是( )A .30°B .45°C .60°D .70°3.(3分)下列运算正确的是( )A .(﹣a )2=﹣a 2B .2a 2﹣a 2=2C .a 2•a =a 3D .(a ﹣1)2=a 2﹣14.(3分)如图,在平面直角坐标系xOy 中,矩形OABC 与矩形OA ′B ′C ′位似,位似中心是原点O ,若点B (2,1),B ′(4,2),则矩形OABC 与矩形OA ′B ′C ′的面积比为( )A .1:4B .1:2C .1:9D .1:35.(3分)若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,则k 的取值范围是( )A .k >B .k ≥C .k >且k ≠1D .k ≥且k ≠16.(3分)化简:=( )A .a ﹣3B .a +3C .D .7.(3分)若点A (﹣2,y 1),B (1,y 2),C (2,1)在反比例函数y =的图象上,则( )A .y 1<1<y 2B .y 1<y 2<1C .1<y 2<y 1D .y 2<y 1<18.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为( )A.B.C.D.9.(3分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知k1=k2+2,则△OAB的面积是( )A.1B.2C.4D.0.510.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,小于AC的长为半径画弧,分别交AC,AB 于点E,D.再分别以点E,D为圆心,大于DE的长为半径画弧,两弧在△ABC的内部交于点F,延长AF 交BC于点G,若BG=5,tan B=,则AC=( )A.B.C.8D.611.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是( )①abc<0;②b2﹣4ac>0;③a﹣b+c<0;④当y>0时,﹣1<x<2;⑤2a +b >0;⑥3a +c =0.A .①②③B .①②④⑤C .①③④D .①②⑥12.(3分)如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为( )A .78°B .75°C .60°D .45°二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)把多项式x 2y ﹣4xy +4y 分解因式的结果是 .14.(3分)质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n1001502002503005001000合格产品数m89134179226271451904合格率0.8900.8930.8950.9040.9030.9020.904在这批产品中任取一件,恰好是合格产品的概率约是(结果保留一位小数)  .15.(3分)以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0°)、(4,300°),则点C 的坐标表示为 .16.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,F为DE的中点,若△CEF的周长为32,则OF的长为 .三、解答题(本大题共12个小题,共72分,解答应写出文字说明、证明过程或演算步骤)17.(4分)计算:3﹣1﹣++(3﹣)0.18.(4分)解不等式组:.19.(4分)2x2+4x﹣5=0.20.(4分)如图:已知点A、E、F、B在一条直线上,AE=BF,CF=DE,AC=BD,求证:∠GEF=∠GFE.21.(4分)财政支出的结构关系到国家的发展前景和老百姓的生活质量.近年来,各级政府注重民生问题,加大了对教育社会保障和就业、交通运输方面的投入.某数学兴趣小组为了解近几年甘肃省在教育、社会保障和就业、交通运输方面财政支出的情况,该组成员通过查阅资料,将这三个领域财政支出的数据进行收集、整理描述,下面给出部分信息:信息一:2014﹣2019年甘肃省在教育、社会保障和就业、交通运输支出统计图信息二:2014﹣2019年甘肃省在教育、社会保障和就业、交通运输支出的统计量如表:统计量类别平均数中位数方差教育支出520.7m S21社会保障和就业支出448.3466.5S22交通运输支出292.3282.0S23(以上数据来源于《中国统计年鉴》)根据以上信息解决下列问题:(1)m= ;S21 S22(填>,<号);(2)根据以上信息,判断下列结论正确的是 ;(只填序号)①与2015年相比2016年甘肃省在交通运输方面的财政支出有所增长;②2014﹣2019年,甘肃省在教育、社会保障和就业支出方面逐年增长;③2019年甘肃省在社会保障和就业的支出比交通运输的2倍还多.(3)该数学兴趣小组成员又计算了连续5年教育支出的平均数,发现计算的平均数比信息二中年的平均数大,你认为该小组去掉的年份是 年.22.(6分)如图,矩形ABCD中,点E为边AB上任意一点,连接CE,点F为CE的中点,过点F作MN⊥CE,MN与AB、CD分别相交于点M、N,连接CM、EN.(1)求证:四边形CNEM为菱形;(2)若AB=10,AD=4,当AE=2时,求EM的长.23.(6分)如图,堤坝AB坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明在A处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35';求坝顶B到CE的距离(sin26°35'≈0.45,cos26°35'≈0.89,tan26°35'≈0.50,小明身高忽略不计,结果精确到1m).24.(8分)如图,直线y=mx+n与双曲线相交于A(﹣1,3)、B(3,b)两点,与y轴相交于点C.(1)求直线AB的解析式;(2)直接写出不等式的解集;(3)点D在y轴上,且,在x轴上是否存在一点G,使得GD+GB的值最小?若存在,求点G的坐标,若不存在请说明理由.25.(7分)因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低0.1元,则平均每天可多售3碗.(1)若该小面店每天至少卖出360碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗降价多少元时,店家才能实现每天利润6300元.26.(8分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D,点B的坐标是(1,0).(1)求A,C两点的坐标.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.(3)在直线CD上方的抛物线上是否存在点P,使△PCD的面积最大?若存在,求P点的坐标及△PCD 面积的最大值.27.(8分)在平面直角坐标系xOy中,对于线段MN,直线l和图形W给出如下定义:线段MN关于直线l的对称线段为M′N′(M′,N′分别是M,N的对应点).若MN与M′N′均在图形W内部(包括边界),则称图形W为线段MN关于直线l的“对称封闭图形”.如图,点P(﹣1,0).概念理解:(1)线段PO关于y轴的对称线段P'O',P'点坐标是 ;(2)已知图形W1:以线段PO为边的等边三角形,W2:以O为对角线交点且边长为2的正方形,在W1,W2中,线段PO关于y轴的“对称封闭图形”是 ;应用拓展:(3)以O为对角线交点的正方形ABCD的边长为4,各边与坐标轴平行.若正方形ABCD是线段PO关于直线y=x+b的“对称封闭图形”,求b的取值范围.28.(9分)用四根一样长的木棍搭成菱形ABCD,P是线段DC上的动点(点P不与点D和点C重合),在射线BP上取一点M,连接DM,CM,使∠CDM=∠CBP.操作探究一(1)如图1,调整菱形ABCD,使∠A=90°,当点M在菱形ABCD外时,在射线BP上取一点N,使BN =DM,连接CN,则∠BMC= ,= .操作探究二(2)如图2,调整菱形ABCD,使∠A=120°,当点M在菱形ABCD外时,在射线BP上取一点N,使BN =DM,连接CN,探索MC与MN的数量关系,并说明理由.拓展迁移(3)在菱形ABCD中,∠A=120°,AB=6.若点P在直线CD上,点M在射线BP上,且当∠CDM=∠PBC =45°时,请直接写出MD的长.参考答案一、选择题(本大题共12小题,每小题3分,共36分,每小题只有唯一正确答案)1.D;2.C;3.C;4.A;5.C;6.B;7.A;8.D;9.A;10.D;11.D;12.B;二、填空题(本大题共4小题,每小题3分,共12分)13.y(x﹣2)2;14.0.9;15.(3,240°);16.;三、解答题(本大题共12个小题,共72分,解答应写出文字说明、证明过程或演算步骤)17.﹣.;18.﹣5≤x<3.;19.x1=,x2=.;20. ;21.558.2;>;②;2014;22.(1)证明见解析;(2)5.;23.坝顶B到CE的距离为24米.;24.(1)y=﹣x+2;(2)x>3或﹣1<x<0;(3)存在,点G(,0).;25.(1)每碗小面的售价不超过23元.(2)5元.;26.(1)A(2,1),C(3,0);(2)y=﹣(x﹣4)2+5;(3)△PCD的面积有最大值,P点坐标为(,).;27.(1,0);W2;28.45°;;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州市2019-2020学年九年级上学期期末数学试题D卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列收集软件图标中,既不是轴对称图形也不是中心对称图形的是()
A.B.C.D.
2 . 关于x的一元二次方程(m﹣1)x2﹣x+m2﹣1=0的一个解是0,则m的值为()
A.0B.±1C.1D.-1
3 . 的半径,点与圆心的距离,则点与的位置关系是()
A.点在外B.点在上C.点在内D.不确定
4 . 关于二次函数的图象与性质,下列结论错误的是()
A.抛物线开口方向向下B.当x=3时,函数有最大值−2
C.当x>3时,y随x的增大而减小D.抛物线可由经过平移得到
5 . 如图,已知是⊙的直径,,和是圆的两条切线,,为切点,过圆上一点作⊙的切线,分别交,于点,,连接,.若,则等于()
A.0.5B.1
C.D.
6 . 如图,边长为1的正方体中,一只蚂蚁从A顶点出发沿着正方体的外表面爬到B顶点的最短路程是().
A.3B.C.2D.1
7 . 若关于x的方程的三个根恰好可以成为某直角三角形的三边长,则m的值为()
A.24B.15C.15或24D.无解
8 . 若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()
A.m>1B.m>0C.m>-1D.-1<m<0
9 . 下列事件中是必然事件的是()
A.实心铁球投入水中,会沉入水底B.篮球队员在罚球线上投篮一次,未投中
C.明天太阳从西边升起D.抛出一枚硬币,落地后正面朝上
10 . 若反比例函数y=的图象位于第二、四象限,则k的取值可以是()
A.0B.1C.2D.以上都不是
二、填空题
11 . 如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=
_____.
12 . 如图,在锐角△ABC中,∠A=45°,BC=2cm,能够将△ABC完全覆盖的最小圆形纸片的直径是
_____cm
13 . 二次函数y=ax2+bx+c (a≠0)的图象如图,可知方程ax2+bx+c=0的一个根是x=3,那么方程的另一个
根是_____.
14 . 扇形的弧长为,圆心角为,那么扇形的面积为________.
15 . 某农科所在相同条件下做玉米种子发芽实验,结果如下:
某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.
16 . 在直角坐标系中,点和关于原点成中心对称,则__________.
三、解答题
17 . 反比例函数和一次函数,其中一次函数的图象经过,两点.
(1)求反比例函数的表达式.
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标.
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点
坐标都求出来;若不存在,请说明理由.
18 . 如图,已知抛物线y=-x2+bx+6与x轴交于点A(﹣6,0)和点B,与y轴交于点
A.
(1)求该抛物线的解析式;
(2)写出顶点的坐标,并求AB的长;
(3)若点A,O,C均在⊙D上,请写出点D的坐标,连接BC,并判断直线BC与⊙D的位置关系.
19 . 解下列方程:

20 . 如图①,抛物线y=a(x2+2x-3)(a≠0)与x轴交于点A和点B,与y轴交于点C,且OC=O
A.
(1)直接写出点B的坐标是( ,),并求抛物线的解析式;
(2)设点D是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC上的点E关于直线l的对称点E'恰好在线段BD上,求点E的坐标;
(3)若点F为抛物线第二象限图象上的一个动点,连接BF,CF,当△BCF的面积是△A BC面积的一半时,求此时点F 的坐标.
21 . 如图,用尺规作图法,找出弧所在圆的圆心O(保留作图痕迹,不写作法).
22 . 某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
23 . 如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
(1)线段OC的长为;
(2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.
①当1<a<2时,请直接写出S与a之间的函数表达式;
②在平移过程中,当S=时,请直接写出a的值.
24 . 小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)
25 . 如图,将正方形ABCD绕点A按逆时针方向旋转60°至正方形AB′C′D′,则旋转前后组成的图形是轴对称图形吗?若是轴对称图形,画出它的对称轴,并求出∠DAB′的度数.。

相关文档
最新文档