高中数学竞赛讲座 14染色问题与染色方法

合集下载

高中数学竞赛中的染色、覆盖问题

高中数学竞赛中的染色、覆盖问题

染色问题和覆盖问题第一部分。

染色问题例1.已知(2)n n >条直线把平面划分成为若干块,其中的一些区域被染上颜色,使得任何两个染色的区域都没有公共边界,求证:染色区域的数目不超过2.3n n + 解答:不妨假定这些直线有相交直线。

设有k 条边的染色区域的数目为(1,2,...,)k m k n =。

注意到2m 就是有两条边的区域,两个射线形成的角域。

至多有2n 个线段。

因为每一段(线段或射线)至多是一个染色区域的边界,所以 22323...n m m nm n +++≤。

因为一条直线上只有两段的射线部分才可能是有两条边的染色区域,所以2m n ≤。

22322323 (333)n n m m nm m n n m m m +++++++≤+≤。

注意:这里有个很关键的不等式2m n ≤需要说明一下。

设12,,...,n L L L 是平面上直线束,那么每一个直线上至多有两个被染色(如题目中定义的染色)的角域;同时每一个被染色的角域值只占有两个直线。

设12,,...,m ΩΩΩ是m 个被染色的角域。

如果某个直线i L 上被染色的角域少于两个,那么根据数学归纳法假设可以直接证明2m n ≤。

否则的话,每一个直线上面恰好有两个被染色的角域。

这样可以得到一个2-正则的二部图()1212,,,{,,...,},{,,...,}.(,)n m i j i j G X Y E X L L L Y L E L ===ΩΩΩΩ∈⇔Ω是的边界这个二部图一定有1-因子。

从而也有2m n ≤成立。

例2. 平面上给定了)2(≥n n 条直线,其中任何两条不平行,任何三条不共点。

它们将平面划分成为若干个小区域。

试在每一个区域内部填写一个绝对值不大于n 的非负整数,使得任何一条直线的同一侧所有区域中各数之和为零。

解:一个为人们关心的问题是:这个题目是怎样产生的?那个出题人为什么出这个题?它的背景是什么?如果我们将这个问题放在球面上去,让所有的直线对应于一些大圆(从拓扑学的观点看,这是完全允许的),将每一个交点看成一个节点。

染色问题

染色问题

∴ 不同的染色方法共有 4× ( 153+432+78) =2652 种. 【评析】以上例 1 是通过对“面”的染色问题转化为对“点“的染色,此题的难度较大, 若单从正八面体的各面进行分析,会使得问题变得十分模糊,很容易出错,因此,考 虑到正八面体结构的特殊性,我将问题转化为对正方体的八个顶点的分析,这样做的 目的主要是使问题变得更加清晰明了,由此可以发现,点染色是染色问题中一种很常 用也很实用的方法;
【评析】本题属于典型的区域染色问题,通过对正六边形的六块区域进行不同的染色方 法,利用组合数学的知识很容易就能求解,此题的突破点就在利用图形特殊对称性进行 分析,也正是基于此,所以联想到将问题推广为 N 块圆区域情形,通过寻找彼此递推 关系,进而得出 N 块区域的染色种数,土木难度不是很大,但很能反映一个人的洞察 力和分析问题的能力. 通过此题我们可以也发现区域染色的计数问题实际上也就是组 合数学问题,彼此之间有着紧密的联系,包括上述其他的几种染色问题和我们常见的一 些数学方法都有着紧密的联系.
2.染色方法
将问题中的对象适当进行染色,有利于帮助我们更好地观察、分析对象之间的关系,常 用的染色方法有点染色、线段染色、小方格染色、区域染色等染色 方法;以下我将通过一些具体的例题,对上述几类染色方法进行简 单一一介绍. 例 1: (点染色)用红、黄、蓝、绿四种颜色给如下正八面体的面 A、 B、C、D、E、F、G、H 染色(允许只用其中的几种) ,使相邻面(有 公共棱的面)不同色,求不同的染色方法的种数. 解: 如图,作一正方体,其顶点对应正八面体各面,则当且仅当正 八面体中两面相邻时,对应的正方体两顶点相邻. 这样,原问题就 转化为:求用 4 种不同颜色给正方体的八个顶点染色,相邻点不同 色的染色方法种数. ★ A 的染色方法有 4 种 下面对 B、D、E 的染色分情况讨论. (1)B、D、 E 同色,有 3 种染色方法. 则 C、F、H 至多染 3 色,各有 3 种选择,共有 27 种染色方法. 其中,

高中竞赛数学讲义第14讲染色问题

高中竞赛数学讲义第14讲染色问题

第14讲 染色问题本节主要讲述用染色的方法解有关的竞赛题.染色,是一种辅助解题的手段,通过染色,把研究对象分类标记,以便直观形象地解决问题,因此染色就是分类的思想的具体化,例如染成两种颜色,就可以看成是奇偶分析的一种表现形式.染色,也是构造抽屉的一个重要方法,利用染色分类,从而构造出抽屉,用抽屉原理来解题.A 类例题例1⑴ 有一个6×6的棋盘,剪去其左上角和右下角各一个小格(边长为1)后,剩下的图形能不能剪成17个1×2的小矩形?⑵ 剪去国际象棋棋盘左上角2×2的正方形后,能不能用15个由四个格子组成的L 形完全覆盖?分析 把棋盘的格子用染色分成两类,由此说明留下的图形不能满足题目的要求.证明 ⑴如图,把6×6棋盘相间染成黑、白二色,使相邻两格染色不同.则剪去的两格同色.但每个1×2小矩形都由一个白格一个黑格组成,故不可能把剩下的图形剪成17个1×2矩形. ⑵如图,把8×8方格按列染色,第1,3,5,7列染黑,第2、4、6、8列染白.这样染色,其中黑格有偶数个.由于每个L 形盖住三黑一白或三白一黑,故15个L 形一定盖住奇数个黑格,故不可能.说明 用不同的染色方法解决不同的问题.例2 用若干个由四个单位正方形组成的“L ”形纸片无重叠地拼成一个m n 的矩形,则mn 必是8的倍数.分析 易证mn 是4的倍数,再用染色法证mn 是8的倍数.证明:每个L 形有4个方格,故4|mn .于是m 、n 中至少有一个为偶数.设列数n 为偶数,则按奇数列染红,偶数列染蓝.于是红格与蓝格各有12mn 个,而12mn 是偶数.每个L 形或盖住3红1蓝,或盖住1红3蓝,设前者有p 个,后者有q 个.于是红格共盖住3p +q 个即p +q 为偶数,即有偶数个L 形.设有2k 个L 形.于是mn =2k ×4=8k .故证.例例1(!)说明 奇偶分析与染色联合运用解决本题.情景再现1.下面是俄罗斯方块的七个图形:请你用它们拼出(A)图,再用它们拼出(B)图(每块只能用一次,并且不准翻过来用).如果能拼出来,就在图形上画出拼法,并写明七个图形的编号;如果不能拼出来,就说明理由.2.能否用图中各种形状的纸片(不能剪开)拼成一个边长为75的正方形?(图中每个小方格的边长都为1)请说明理由.B 类例题例3 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在无穷条长为1的线段,这些线段的端点为同一颜色.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:存在同色的三点,且其中一点为另两点中点.分析 任意染色而又要求出现具有某种性质的图形,这是染色问题常见的题型,常用抽屉原理或设置两难命题的方法解. 证明 ⑴取边长为1的等边三角形,其三个顶点中必有两个顶点同色.同色两顶点连成线段即为一条满足要求的线段,由于边长为1的等边三角形有无数个,故满足要求的线段有无数条.⑵ 取同色两点A 、B ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使AD =AB ,若C 、D 中有一点为红色,例如点C 为红色,则点B 为AC 中点.则命题成立.否则,C 、D 全蓝,考虑AB 中点M ,它也是CD 中点.故无论M 染红还是蓝,均得证.说明 ⑴中,两种颜色就是两个“抽屉”,三个点就是三个“苹果”,于是根据抽屉原理,必有两个点落入同一抽屉.⑵中,这里实际上构造了一个两难命题:非此即彼,二者必居其一.让同一点既是某两个红点的中点,又是两个蓝点的中点,从而陷入两难选择的境地,于是满足条件的图形必然(5)(6)(7)(4)(2)(3)(1)(B)(A )存在.达到证明的目的.例4 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰三角形.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰直角三角形.分析 ⑴同样可以设置两难命题:由于等腰三角形的顶点在底边的垂直平分线上,故先选两个同色点连成底边,再在连线的垂直平分线上找同色的点,这是解法1的思路.利用圆的半径相等来构造等腰三角形的两腰,这是解法2的思路.利用抽屉原理,任5个点中必有三点同色,只要这5点中任三点都是一个等腰三角形的顶点即可,而正五边形的五个顶点中任三个都是等腰三角形的顶点,这是解法3的思路.⑵连正方形的对角线即得到两个等腰直角三角形,所以从正方形入手解决相题第2问. ⑴ 证明1 任取两个同色点A 、B (设同红),作AB 的垂直平分线MN ,若MN 上(除与AB 交点外)有红色点,则有红色三角形,若无红色点,则MN 上至多一个红点其余均蓝,取关于AB 对称的两点C 、D ,均蓝.则若AB 上有(除交点外)蓝点,则有蓝色三角形,若无蓝点,则在矩形EFGH 内任取一点K (不在边上)若K 为蓝,则可在CD 上取两点与之构成蓝色三角形,若K 为红,则可在AB 上找到两点与之构成红色三角形.证明2 任取一红点O ,以O 为圆心任作一圆,若此圆上有不是同一直径端点的两个红点A 、B ,则出现红色顶点等腰三角形OAB ,若圆上只有一个红点或只有同一直径的两个端点是红点,则圆上有无数蓝点,取两个蓝点(不关于红点为端点的直径对称)C 、D ,于是CD 的垂直平分线与圆的两个交点E 、F 为蓝点,于是存在蓝色顶点的等腰三角形CDE . 证明3 取一个正五边形ABCDE ,根据抽屉原理,它的5个顶点中,必有三个顶点(例如A 、B 、C)同色,则△ABC 即为等腰三角形. ⑵证明 任取两个蓝点A 、B ,以AB 为一边作正方形ABCD ,若C 、D 有一为蓝色,则出现蓝色三角形.若C 、D 均红,则对角线交点E 或红或蓝, 出现红色或蓝色等腰直角三角形.显然按此作法可以得到无数个等腰直角三角形.(由本题也可以证明上一题.)例5 设平面上给出了有限个点(不少于五点)的集合S ,其中若干个点被染成红色,其余点被染成蓝色,且任意三个同色点不共线.求证:存在一个三角形,具有下述性质:⑴ 以S 中的三个同色点为顶点; ⑵ 此三角形至少有一条边上不含另一种颜色的点.分析 要证明存在同色三角形不难,而要满足第⑵个条件,可以用最小数原理.证明 由于S 中至少有五点,这些点染成两种颜色,故必存在三点同色.且据已知,此三点不共线,故可连成三角形.取所有同色三角形,由于S 只有有限个点,从而能连出的同色三角形只有有限个,故其A B C D E K HE N M D C A (2)(1)F E D C O B A O A B O C D E中必有面积最小的.其中面积最小的三角形即为所求.首先,这个三角形满足条件⑴,其次,若其三边上均有另一种颜色的点,则此三点必可连出三角形,此连出三角形面积更小,矛盾.说明 最小数原理,即极端原理.见第十二讲.例6 将平面上的每个点都染上红、蓝二色之一,证明:存在两个相似的三角形,其相似比为1995,且每一个三角形的三个顶点同色.(1995年全国联赛加试题)分析 把相似三角形特殊化,变成证明相似的直角三角形,在矩形的网格中去找相似的直角三角形,这是证法1的思路.证法2则是研究形状更特殊的直角三角形:含一个角为30˚的直角三角形.证明可以找到任意边长的这样的三角形,于是对任意的相似比,本题均可证.证法3则是考虑两个同心圆上三条半径交圆得的三组对应点连出的两个三角形一定相似,于是只要考虑找同心圆上的同色点,而要得到3个同色点,只要任取5个只染了两种颜色的点就行;而要得到5个同色点,则只要取9个只染了两种颜色的点即行. 证明 1 首先证明平面上一定存在三个顶点同色的直角三角形.任取平面上的一条直线l ,则直线l 上必有两点同色.设此两点为P 、Q ,不妨设P 、Q 同着红色.过P 、Q 作直线l 的垂线l 1、l 2,若l 1或l 2上有异于P 、Q 的点着红色,则存在红色直角三角形.若l 1、l 2上除P 、Q 外均无红色点,则在l 1上任取异于P 的两点R 、S ,则R 、S 必着蓝色,过R 作l 1的垂线交l 2于T ,则T 必着蓝色.△RST 即为三顶点同色的直角三角形.下面再证明存在两个相似比为1995的相似的直角三角形.设直角三角形ABC 三顶点同色(∠B 为直角).把△ABC 补成矩形ABCD (如图).把矩形的每边都分成n 等分(n 为正奇数,n >1,本题中取n=1995).连结对边相应分点,把矩形ABCD 分成n 2个小矩形.AB 边上的分点共有n +1个,由于n 为奇数,故必存在其中两个相邻的分点同色,(否则任两个相邻分点异色,则可得A 、B 异色),不妨设相邻分点E 、F 同色.考察E 、F 所在的小矩形的另两个顶点E '、F ',若E '、F '异色,则△EFE '或△DFF '为三个顶点同色的小直角三角形.若E '、F '同色,再考察以此二点为顶点而在其左边的小矩形,….这样依次考察过去,不妨设这一行小矩形的每条竖边的两个顶点都同色.同样,BC 边上也存在两个相邻的顶点同色,设为P 、Q ,则考察PQ 所在的小矩形,同理,若P 、Q 所在小矩形的另一横边两个顶点异色,则存在三顶点同色的小直角三角形.否则,PQ 所在列的小矩形的每条横边两个顶点都同色.现考察EF 所在行与PQ 所在列相交的矩形GHNM ,如上述,M 、H 都与N 同色,△MNH 为顶点同色的直角三角形.由n=1995,故△MNH ∽△ABC ,且相似比为1995,且这两个直角三角形的顶点分别同色. 证明2 首先证明:设a 为任意正实数,存在距离为2a 的同色两点.任取一点O (设为红色点),以O 为圆心,2a 为半径作圆,若圆上有一个红点,则存在距离为2a 的两个红点,若圆上没有红点,则任一圆内接六边形ABCDEF 的六个顶点均为蓝色,但此六边形边长为2a .故存在距离为2a 的两个蓝色点. 下面证明:存在边长为a ,3a ,2a 的直角三角形,其三个顶点同色.如上证,存在距离为2a 的同色两点A 、B (设为红点),l l以AB 为直径作圆,并取圆内接六边形ACDBEF ,若C 、D 、E 、F 中有任一点为红色,则存在满足要求的红色三角形.若C 、D 、E 、F 为蓝色,则存在满足要求的蓝色三角形. 下面再证明本题:由上证知,存在边长为a ,3a ,2a 及1995a ,19953a ,1995⨯2a 的两个同色三角形,满足要求.证明3 以任一点O 为圆心,a 及1995a 为半径作两个同心圆,在小圆上任取9点,其中必有5点同色,设为A 、B 、C 、D 、E ,作射线OA 、OB 、OC 、OD 、OE ,交大圆于A ',B ',C ',D ',E ',则此五点中必存在三点同色,设为A '、B '、C '.则∆ABC 与∆A 'B 'C '为满足要求的三角形.情景再现3.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在一个矩形,它的四个顶点同色.4.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点全为同一种颜色的全等三角形.5.图中是一个6×6的方格棋盘,现将部分1×1小方格涂成红色。

高一联赛班秋季第六讲 染色问题与操作问题

高一联赛班秋季第六讲  染色问题与操作问题

讲6第染色问题与操作问题染色问题6.1知识点睛染色问题类型多样,异彩纷呈,并没有一定的模式,它需要的知识量不多,但需要解题人具有很、可以用来解决代数(例如有理点问题)强的想象能力与推理能力;事实上,染色作为一种手段和工具,. 染色问题可分为:图论、方格表问题等多种形式的问题、小方格染色问题1解决这类问题的方法后.这是最简单的染色问题,是从一种民间游戏中发展起来的方格盘上的染色问题. 来又发展成为解决方格盘铺盖问题的重要技巧.线段染色和点染色2线(或称“边染色线段染色:较常见的一类染色问题是发样子组合数学中图论知识的所谓“”⑴.),主要借助抽屉原则求解段染色”. 对离散的有限个点或平面上的点进行染色⑵点染色:经典精讲【例1】线段AB上有1998个点(包括A,B两点),将点A染成红色,点B染成蓝色,其余各点染成红色或蓝色。

这时,图中共有1997条互不重叠的线段。

问:两个端点颜色相异的小线段的条数是奇数还是偶数?为什么?【例2】在6×6的正方形格中,把部分小方格涂成红色。

然后任意划掉3行和3列,使得剩下的小方格中至少有1个是红色的。

那么,总共至少要涂红多少小方格?【例3】在n×n(n≥3)方格表中,任意选出n-1个方格都涂成黑色,然后将那些至少与两个已涂色的方格相邻的方格也都涂黑. 求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。

【例4】平面直角坐标系中,纵横坐标都是整数的点称为整点称为整点。

设计一种方法,将所有整点涂色,每一个整点染成白色、红色或黑色中的一种颜色,使得⑴每一种颜色的点出现在无穷多条平行于横轴的直线上;⑵对任意白点A、红点B及黑点C,总可以找到一个红点D,使得ABCD为一平行四边形。

证明你设计的的方法符合上述要求。

【例5】设平面上任一点都染上红、蓝、黄三色中的一种,求证:一定存在一条端点同色且长度为1的线段。

【例6】平面上有6点,任何三点都是一个不等边三角形的顶点,求证:这些三角形的边中一定有一条,它在一个三角形中是最长边,而在另一个三角形中是最短边.或的正三.用任意方式给平面上的每一个点染上黑色或白色求证:一定存在一个边长为17【例】3角形,它三个顶点是同色的.6.2 操作问题知识点睛操作问题是发源于博弈论的组合趣题;有不少操作问题是以染色形式呈现;但更多的操作问题涉由于联赛中出现操作问题相对较少,我们只举数例简单及到单人与双人的胜负,对推理能力要求很高..介绍之经典精讲块玻璃片,每块上涂有红、黄、蓝三色之一,进行下列操作:将不同颜色的两块玻璃有1987】【例8片擦净,然后涂上第三种颜色。

专题 染色问题与染色方法

专题 染色问题与染色方法

竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾. 故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

(完整版)染色问题的计数方法

(完整版)染色问题的计数方法

染色问题的计数方法河北张家口市第三中学王潇与染色问题有关的试题新颖有趣,其中包含着丰富的数学思想,染色问题,解题方法技巧性强且灵活多变,故这类问题有利于培养学生的创新思维能力,分析问题与观察问题的能力,有利于开发学生的智力。

一、区域染色问题1.根据乘法原理,对各个区域分步染色,这是处理这类问题的基本的方法。

例1要用四种颜色给四川、青藏、西藏、云南四省(区)的地图染色(图1)每一省(区)一种颜色,只要求相邻的省(区)不同色,则不同染色的方法有多少种?分析先给西藏青海云南四川四川染色有4种方法,再给青海染色有3种方法,接着给西藏染色有2种方法,最后给云南染色有2种方法,根据乘法原理,不同的染色方法共有4×3×2×2=48种2.根据共用了多少种颜色分类讨论,分别计算出各种情形的种数,再用加法原理求出不同年拾方法种数。

例2 (2003年全国高考题)如图2,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?分析 依题意至少要12345图2选用3种颜色。

(1) 当选用三种颜色时,区域2与4必须同色,区域3与5必须同色,有34A 种。

(2) 当用四种颜色时,若区域2与4同色,则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。

由加法原理可知满足题意的着色方法共有34A +244A =24+2×24=72种。

3 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同染色方法数。

例3 用红、黄、蓝、白、黑五种颜色涂在“田”字形的四个小方格内(图3),每格涂一种颜色,相邻的两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?1234图3(1)四格涂不同的颜色,方法数为45A ;(2)有且仅有两格涂相同的颜色,即只有一组对角小方格涂相同颜色,涂法种数为21245C A ; (3)两组对角小方格涂相同颜色,涂法种数为25A 。

高中数学染色的问题教案

高中数学染色的问题教案

高中数学染色的问题教案
主题:数学染色问题
目标:学生理解数学染色问题的基本概念和方法,能够独立解决染色问题。

教学方法:讲解、演示、实践。

教学步骤:
1. 引入问题:首先向学生提出一个简单的染色问题,例如一个有三个顶点的三角形,如何用两种颜色来染色使得相邻的顶点颜色不同。

让学生思考并讨论解决方法。

2. 解释基本概念:介绍染色问题中的基本概念,如图的染色、相邻顶点、最少需要的颜色等,让学生了解这些概念在染色问题中的重要性。

3. 讲解染色方法:通过讲解染色问题的基本解题方法,如贪心算法、回溯法等,让学生掌握解题技巧。

4. 实例演练:给学生提供一些实际的染色问题,让他们动手尝试解决,并通过实例演练来加深对染色问题的理解。

5. 练习题目:布置一些练习题目,让学生在课后练习巩固所学知识,并及时纠正错误。

6. 总结:总结本节课的学习内容,强调染色问题的重要性和应用范围,鼓励学生继续深入研究数学染色问题。

学习评价:通过学生对课堂学习和练习题目的表现来评价学生对数学染色问题的理解和掌握程度,及时了解学生的学习情况并给予帮助。

高中染色问题基本题型及其解法总结

高中染色问题基本题型及其解法总结

高中染色问题基本题型及其解法总结染色问题是一个复杂而有趣的问题,高考中不时出现,包含着丰富的数学思想.解决涂色问题方法技巧性强且灵活多变,常用的方法是两个计数原理法和不相邻区域分类讨论法,常用的数学思想是转化与化归思想;常见的题型有区域涂色、点涂色、线段涂色和面涂色等.需要注意的是要审清题意,注意题目所给的条件颜色是否需要用完.
染色问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,但学生学习此部分内容时颇感吃力.究其原因,表面上是学生方法使用不当,实际上主要是其没有深刻体会到题目所隐含的数学思想,从而导致解题受阻,要么生搬硬套,要么分类错误,要么不知所云.本文在梳理基础知识和解决基本方法后总结后,尝试将染色问题的常见类型及求解方法做一个总结,力求让读者对染色问题有一个比较系统的认知,并通过解题和方法总结,提炼内化数学思想,从而达到举一反三、触类旁通的效果,不到之处,还请各位同行多多指正.
基本知识和基本方法
基本类型和方法总结
反馈练习
高考链接
相关链接
1.培养高中学生数学思想案例——染色问题教学札记
1.培养高中学生数学思想案例——染色问题教学札记
2.高中数学优秀教学设计合集
参考文献
[1]广东省教育研究院教育研究课题《培养学生数学思想的高中数学教学行动研究》,主持人:王常斌,相关研究成果.
[2]顺德区期末考试统考试题.
[3] 莘村中学导学案及练习题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

两人不通话,就不连线.(1)果任两点都有连线并涂有颜色,那么必有一点如A1,以其为一端点的8条线段中至少有两条同色,比如A1A2、A1A3.可见A1,A2,A3之间可用同一语言通话.②如情况①不发生,则至少有两点不连线,比如A1、A2.由题设任三点必有一条连线知,其余七点必与A1或A2有连线.这时七条线中,必有四条是从某一点如A1引出的.而这四条线中又必有二条同色,则问题得证.4.结论不成立,如图所示(图中每条线旁都有一个数字,以表示不同语种).5.类似于第3题证明.6.用点A1、A2、…、A100表示客人,红、蓝的连线分别表示两人相识或不相识,因为由一个顶点引出的蓝色的线段最多有32条,所以其中至少有三点之间连红线.这三个点(设为A1、A2、A3)引出的蓝色线段最多为96条.去掉所有这些蓝色的线段(连同每条线段上的一个端点AI,I≠1,2,3),这样,在图中至少还剩下四个点,除A1、A2、A3外,设第四点为A4,这四个点中A1,A2,A3每一个点与其它的点都以红色的线段相连,于是客人A1、A2、A3、A4彼此两两相识.7.先利用右图证明"若平面上有两个异色的点距离为2,地么必定可以找到符合题意的三角形".再找长为2端点异色的线段.以O(白色)为圆心,4为半径作圆.如圆内皆白点,问题已证.否则圆内有一黑点P,以OP为底作腰长为2的三角形OPR,则R至少与O、P中一点异色,这样的线段找到.。

相关文档
最新文档