物质跨膜运输的方式及其实例
第4章 第3节 物质跨膜运输的方式

第3节物质跨膜运输的方式学习目标 1.说出被动运输与主动运输的异同。
2.举例说明物质跨膜运输方式的类型和特点。
3.简述主动运输对细胞生活的意义。
素养要求 1.生命观念:认同生物膜的功能特性——选择透过性。
2.科学思维:推测影响各种跨膜运输方式的环境因素,并能作出合理解释。
一、物质跨膜运输的方式1.被动运输:物质进出细胞时,顺浓度梯度的扩散。
方式自由扩散协助扩散图示甲乙条件不需要载体蛋白,不消耗能量需要载体蛋白,不消耗能量实例水、O2、CO2等葡萄糖等物质的顺浓度梯度运输运输方向高浓度一侧→低浓度一侧2.主动运输(1)物质运输方向:从低浓度一侧→高浓度一侧。
(2)基本条件①细胞膜上相应载体蛋白的协助。
②消耗细胞内化学反应所释放的能量。
(3)实例:K+进红细胞;Na+出红细胞。
(4)生理意义:保证了活细胞能够按照生命活动的需要,主动选择吸收所需要的营养物质,排出代谢废物和对细胞有害的物质。
(1)水分子和气体分子进出细胞的方式是自由扩散,脂肪酸进出细胞的方式是协助扩散()(2)葡萄糖进入红细胞与进入小肠上皮细胞的方式可能不同()(3)自由扩散和协助扩散都不需要载体蛋白和能量()(4)在一定浓度范围内,协助扩散的速率与膜两侧的浓度差成正比()答案(1)×(2)√(3)×(4)√1.细胞膜上的载体蛋白有何特点?提示具有特异性:不同物质的载体蛋白不同,不同细胞膜上载体蛋白的种类和数量也不同;具有饱和性:当细胞膜上的载体蛋白达到饱和时,细胞吸收该物质的速率不再随物质浓度的增大而增大。
2.从主动运输的条件角度分析,与主动运输有直接关系的细胞器有哪些?提示线粒体(提供能量),核糖体(提供载体蛋白)。
二、影响物质运输速率的因素1.浓度差(1)图甲:可代表浓度差对自由扩散速率的影响。
(2)图乙:可代表浓度差对协助扩散或主动运输速率的影响,Q点后运输速率不再增加的原因是载体蛋白的数量有限。
2.O2浓度(1)图甲代表的物质运输方式为自由扩散或协助扩散。
高三生物一轮复习——物质跨膜运输的实例和方式

高三生物一轮复习——物质跨膜运输的实例和方式课程内容核心素养——提考能1.物质跨膜运输的方式2.观察植物细胞的质壁分离与复原科学思维构建渗透作用和物质跨膜运输的相关模型科学探究“观察植物细胞的质壁分离与复原”的实验社会责任解决农业、食品问题,关注人体健康1.渗透作用2.动、植物细胞的吸水和失水(1)动物细胞的吸水和失水②现象a.外界溶液浓度<细胞质浓度⇒细胞吸水膨胀。
b.外界溶液浓度>细胞质浓度⇒细胞失水皱缩。
c.外界溶液浓度=细胞质浓度⇒水分进出平衡。
(2)植物细胞的吸水和失水(以成熟植物细胞为例)①条件:成熟植物细胞具有中央大液泡。
②原理③现象a.当外界溶液浓度>细胞液浓度时,细胞失水,发生质壁分离现象。
b.当外界溶液浓度<细胞液浓度时,细胞吸水,失水的细胞发生质壁分离复原现象。
3.物质跨膜运输的其他实例(1)植物对无机盐离子的吸收①不同植物对同种无机盐离子的吸收有差异。
②同种植物对不同无机盐离子的吸收也有差异。
(2)人体甲状腺滤泡上皮细胞对碘的吸收是逆(填“逆”或“顺”)浓度梯度进行的。
(3)不同微生物对不同矿物质的吸收表现出较大的差异性。
1.影响渗透作用液面变化因素的模型分析半透膜表面积的大小半透膜两侧的浓度差在浓度B=C>A,其他条件相同的情况下,半透膜的表面积越大,单位时间内进出半透膜的水量越多,液面变化越明显在其他条件相同的情况下,半透膜两侧的浓度差越大,单位时间内进出半透膜的水量越多,液面变化越明显2.成熟植物细胞和外界溶液形成的渗透系统与渗透作用模型的比较项目渗透作用模型植物细胞与外界溶液形成的渗透系统图解基本条件半透膜、浓度差原生质层——选择透过性膜;浓度差——细胞液与外界溶液之间的浓度差原理水分子通过半透膜的扩散作用水分子通过原生质层在细胞液与外界溶液之间发生扩散水扩散总趋势低浓度溶液→高浓度溶液3.科学家将番茄和水稻分别放在含有Ca2+、Mg2+和SiO4-4的培养液中培养,结果如图所示,据图分析:(1)由实验结果可以看出:三种离子中,水稻主要吸收SiO4-4,番茄主要吸收Mg2+、Ca2+。
高中生物必修一 4.1物质跨膜运输的实例

设计实验:
③实验材料:
洋葱鳞片叶外表皮
有中央大液泡,且 细胞液有紫色,便 于观察
发生质壁分离的材料要求:成熟的植物活细胞
①有中央大液泡; ②有细胞壁; ③活细胞。
清水、 质量浓度为0.3g/ml的蔗糖溶液
1.溶液对细胞无毒害 2.溶液浓度不能过高也不能过低。 浓度过高植物会失水过多而死亡, 浓度过低质壁分离太慢,甚至不能发生质壁分离
特点
半透膜
不具选择性、不具活
较小分子能通过,较大 分子不能透过
性,是多孔性薄膜 (如:动物膀胱、玻 璃纸、肠衣、鸡蛋的
卵壳膜等)
选择透 过性膜
要选择吸收的离子、小 分子可通过,而其他离 具有选择性和活性, 子、小分子和大分子不 是生物膜 能通过
选择透过性膜具有选择性的原因:
不同细胞膜上载体蛋白的种类和数量不同,从而使
把体积与质量浓度相同的葡萄糖和蔗糖溶液用半透
膜(允许溶剂和葡萄糖通过,不允许蔗糖通过)隔开(
如图),一段时间后液面情况是
B
A.甲高于乙 B.先甲高于乙,后乙高于甲 C.乙高于甲 D.先甲低于乙,后乙低于甲
将人的红细胞置于不同浓度的蔗糖溶液中,浸泡半小 时之后的结果如下图所示,依照红细胞外形的变化判
1.若用纱布或滤纸代替玻璃纸,液面还会升高吗? 不会,因为水和蔗糖都能通过 2.若内外都是清水或都是同样的蔗糖溶液,液面还 会升高吗?
不会,因为水进出漏斗的速率相等。
条件
具有半透膜 膜两侧的溶液具有浓度差
1 概念
渗透作用
水分子(或其他溶剂分子)透过半透 膜的扩散,称为渗透作用
2 水分渗 水 水 (相对含量多) 水 (相对含量少)
A.若A细胞处于质壁分离生理状态,则图①处的液体浓 度大于细胞液浓度
4-3 物质跨膜运输的方式

氧浓度Biblioteka 【典型例题】(2016课标1卷.2)离子泵是一张具有ATP水解酶活性的载 体蛋白,能利用水解ATP释放的能量跨膜运输离子。下列 叙述正确的是( C ) A. 离子通过离子泵的跨膜运输属于协助扩散 B. 离子通过离子泵的跨膜运输是顺着浓度阶梯进行的 C. 动物一氧化碳中毒会降低离子泵跨膜运输离子的速率 D. 加入蛋白质变性剂会提高离子泵跨膜运输离子的速率 【方法点拨】 1.离子通过离子泵的跨膜运输属于主动运输,主动运输是 逆着浓度阶梯进行的
二、主动运输
物质从低浓度一侧运输到高浓度的一侧,需要载体蛋白 的协助,同时还需要消耗细胞内化学反应所释放的能量,这 种方式叫做主动运输。 意义:能保证活细胞按照生命活动的需要,主动选择吸收所需
的营养物质,排出代谢废物和对细胞有害的物质。
1.比较三种物质运输方式的异同
项 目 自由扩散 顺浓度梯度 协助扩散 顺浓度梯度 主动运输 逆浓度梯度
细胞内→细胞外
需要能量, 白细胞吞噬细菌、 不需要载体 变形虫吞噬食物 颗粒 蛋白,依赖 生物膜的流 胰腺细胞分泌胰 动性 岛素
胞吞:物质以囊泡包裹的形式通过细胞 膜,从细胞外进入细胞内的过程。(如 果进入的是固态物质,称为吞噬;如果 进入的是液态物质,称为胞饮。)
胞吐:物质以囊泡的形式通过细胞 膜,从细胞内排到细胞外的过程。
2.蛋白质变性剂会导致载体蛋白因变性而失去运输物质的 功能,所以会降低离子泵跨膜运输离子的速率
【课堂小结】
非跨膜运输 (膜泡运输)
三、影响跨膜运输的因素
(1)物质浓度(在一定的浓度范围内)
(2)氧气浓度
例1、如图是胡萝卜在不同含氧的情况下从 硝酸钾溶液中吸收K+和NO3-的曲线。影响 A、B两点和B、C两点吸收量不同的因素 分别是( )
2-4物质跨膜运输的实例和方式

图3
A. B. C. D.
两玻璃管中液面高度一致 最终两透析袋中蔗糖溶液浓度相等 左边玻璃管中液面较高 右边玻璃管中液面较高
一、渗透作用原理
[例题3]: 如图所示的渗透装置中,玻璃缸中为清水,A、B为大小相同 透析袋并接上口径相同的小玻璃管,在A、B中分别加入30%、50%的蔗糖 溶液,初始时,左右玻璃管内液面与大烧杯中液面均相同。 问:
一、渗透作用原理
10:29
※特别提醒※ ①决定渗透方向:低浓度→高浓度 (此浓度为物质的量浓度,相同质量浓度条件下,物质的量浓度未必 相同) ②渗透作用发生过程中,半透膜两侧溶液间的水分子是进行双向运动的, 但速率不均衡。 ③水柱不再升高时:水柱产生的压力=浓度差引起的吸水力 (水柱不再升高时,膜两侧的溶液浓度并不相等) ④决定渗透速率:浓度差(浓度差越大,渗透速率越大) 2、渗透压与渗透作用 ①渗透压:溶液中溶质微粒对水 ②渗透压大小:取决于溶液中溶质微粒的数量,溶质微粒越多,对水 的吸引力越大,渗透压越高。的吸引力,即吸水能力。
第二次观察
二、实验:质壁分离和复原(植物渗透失水和吸水实验)
(五)实验分析:
10:29
吸水 质壁分离复原
清水
第二次观察 原生质层与细胞壁: 分离 → 紧贴 液泡体积变化: 小 → 大
第三次观察
液泡颜色深浅变化:深 → 浅
吸水能力变化:强 → 弱
二、实验:质壁分离和复原(植物渗透失水和吸水实验)
(三)实验材料: 紫色洋葱鳞片叶的外表皮。因为液泡呈紫色,易于观察。也可用水绵代替。 0.3g/ml的蔗糖溶液。用蔗糖溶液做质壁分离剂对细胞无毒害作用。
10:29
※特别提醒※ ①实验材料一般选择有大液泡、有颜色、成熟的植物细胞[根尖分生区细 胞(无大液泡)不能用于该实验] 实验材料的选择 ②一般不选择细菌细胞,它能发生质壁分离,但现象不明显。 ③不能选择动物细胞,它无细胞壁,不能发生质壁分离现象。 ④本实验用30%(0.3g/ml)的蔗糖溶液(既明显出现质壁分离,又不会 杀死细胞) ⑤使用浓度过高的蔗糖溶液(质量浓度为0.5 g/mL),质壁分离现象明显, 但不能复原,因为溶液浓度过高,细胞过度失水而死亡。 ⑥使用质量浓度为1 mol•L-1的KNO3溶液,因为K+和NO3-可被细胞吸收, 使细胞液浓度增大,所以细胞先发生质壁分离后又自动复原。(尿素、甘 油、乙二醇等现象同上) 加一定量的KNO3、尿素、NaCl、乙二醇溶液, 可观察到质壁分离和质壁分离复原。
物质跨膜运输的实例和跨膜运输方式一轮复习

的位置 大小
蔗糖 溶液
变小
原生质层 基本 脱离细胞壁 不变
逐渐恢复 原生质层恢 基本
清水 原来大小 复原来位置 不变
植物细胞质壁分离现象
外界溶液浓度 细胞液的浓度,细胞失水
植物细胞质壁分离复原现象
外界溶液浓度 细胞液的浓度,细胞吸水
质壁分离和复原实验的应用
• 说明原生质层是选择透过性膜 • 判断植物细胞的死活 • 测定细胞液的浓度 • 光学显微镜下观察细胞膜
是否需要 载体蛋白 是否消耗细 胞内的能量
代表例子
不需要
不消耗
氧气、水、 二氧化碳等 通过细胞膜
需要
不消耗
葡萄糖通过 红细胞
需要
需要消耗
葡萄糖、氨基酸 通过小肠上皮细 胞膜;离子通过 细胞膜等
四、大分子的跨膜运输
胞吞和胞吐
一些大分子或物质团块的运输,是通过内吞和外 排作用来实现的。
自由扩散 协助扩散
自由扩散
特点:
Hale Waihona Puke a .顺浓度梯度进出细胞 b.不需要膜上载体蛋白参与 c.不需要消耗细胞代谢产生的能量
(3).实例: O2,CO2,乙醇,甘油,胆固醇,尿素
协助扩散
(2).特点: (3).实例:
a.顺浓度梯度进出细胞 b.需要膜上载体蛋白的参与 c.不需要消耗细胞代谢产生的能量 葡萄糖进入红细胞的方式
第4章 细胞的物质输入和输出
第1节 物质跨膜运输的实例
渗透现象演示实验
实 验 现 象
Next
渗透作用
水分子(或其他溶剂分子)透过半透膜的扩散,称 为渗透作用
※条件
半透膜 这层膜两侧的溶液具有浓度差
半透膜与选择透过性膜
第三讲 物质跨膜运输的实例和方式

[答案]
生物
C
首页 上一页 下一页 末页
第三讲
物质跨膜运输的实例和方式
结束
1.物质出入细胞方式的判断方法
(1)根据分子大小与对载体、能量的需要进行判断:
(2)根据运输方向判断:逆浓度梯度的跨膜运输方式 是主动运输。顺浓度梯度的跨膜运输方式为被动运输。
生物
首页
上一页
下一页
末页
第三讲
物质跨膜运输的实例和方式
②______________________________________________。
(2)预测实验现象并作出结论:________________________。
生物
首页
上一页
下一页
末页
第三讲
物质跨膜运输的实例和方式
结束
解析:实验目的是探究蔗糖的水解产物是否能透过半透膜,由 提供的实验材料可推知实验原理: 蔗糖的水解产物如果能透过 半透膜,由于渗透作用,两边的液面差会缩小,用斐林试剂检 验,水浴条件下 a、b 两管内的液体会出现砖红色沉淀;否则, 两边的液面会因为蔗糖的水解使 b 管内溶质分子数增加而使 液面差加大,且检验时 a 管内的液体无砖红色沉淀。实验设计 步骤时注意无关变量的控制,如两侧加入等量的蔗糖酶,水浴 控制酶活性的最适温度等。
末页
第三讲
物质跨膜运输的实例和方式
结束
[思维流程]
生物
首页
上一页
下一页
末页
第三讲
物质跨膜运输的实例和方式
结束
[解析]
主动运输需要耗能,根据细胞内 ATP 的供能情
况可知, 甲侧为外侧, 乙侧为内侧, A 正确; a 代表磷脂分子, b 代表蛋白质, 载体蛋白的运动, 有利于协助扩散和主动运输 的进行,B 正确;从图中可知,葡萄糖进入细胞需载体蛋白 协助,水分子进入细胞的方式为自由扩散,C 错误;葡萄糖、 Na 等物质的运输,均需载体蛋白的协助,因此用蛋白酶处理 细胞膜,会影响其运输,D 正确。
第四章第三节物质跨膜运输的方式

10.下列哪一项与矿质离子的吸收没有联系
A.核糖体 C.细胞膜上的蛋白质 B.线粒体 D.高尔基体
11.下图中的哪一条曲线能说明红细胞膜运输葡 萄糖的速度与血浆中葡萄糖的浓度之间的关系
12.下图为物质出入细胞膜的示意图,请据图回答: (1)图中所示的细胞膜模型称为______。 (2)细胞膜的基本支架是[ ]_____(填图中字母及 名称);D代表____。
运 输 速 率
浓度差
2、 右图表示的是一个
细胞内
动物细胞内外不同离子的 相对浓度。分析图表提供 的信息,结合本章所学知 识,回答问题:
细胞外 离子浓度/mmol· L-1
150
1.哪种离子通过主动运输 100 +和Mg2+是通过主动运输进入细胞的。 1.K 进入细胞? 2.哪种离子通过主动运输 50 排出细胞? 2.Na+和Cl-是通过主动运输排出细胞的。 3.你是如何作出以上判断 的? Na+ K+ Mg+ 3. 因为以上四种离子细胞膜内外的浓度差较大, 细胞只有通过主动运输才能维持这种状况。
A.酒精进入胃粘膜细胞
B.二氧化碳由静脉血进入肺泡 C.原尿中的葡萄糖进入肾小管上皮细胞 D.水分子进入细胞
5.关于细胞膜的组成、结构、功能之间的关系, 逻辑顺序正确的一组是 ⑴膜主要由磷脂和蛋白质分子组成⑵膜具有流动 性⑶膜具有选择透过性⑷膜内蛋白质和磷脂分子
大都是运动的⑸主动运输得以正常进行。
2.主动运输一定是逆浓度梯度吗?
主动运输的本质在于是否需 要载体蛋白和是否需要消耗能量, 而不在于浓度差。是否采用主动运 输取决于细胞生命活动的需要,逆 浓度不是主动运输的本质特征,只 不过大部分时候我们所看到的逆浓 度运输都是主动运输而已。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物质跨膜运输的方式及其实例物质跨膜运输的方式及其实例》摘要:本文介绍了物质跨膜运输的各种方式,对载体的种类和作用,供能的方式以及水分子、葡萄糖分子、Na+ 和K+等物质的跨膜方式进行了分析和介绍,并对高中教学中的相关疑问进行了说明。
关键词:载体;协助扩散;主动动输;能量;浓度梯度物质跨膜运输的方式有三种,被动运输、主动运输、胞吞和胞吐。
被动运输只依据于膜两侧的浓度梯度(如果是带电离子,除浓度梯度外,还存在跨膜电压,这两种净驱动力称为该溶质的电化学梯度)来进行,根据运输过程中是否需要载体,被动运输又可分为自由扩散(不需要载体)和协助扩散(需要载体);主动运输是指在逆浓度梯度(或电化学梯度)下的运输,它既需要载体又需要能量,是物质跨膜运输的主要方式,细胞所需要的一些重要的物质都涉及到这种运输方式;大分子如蛋白质等物质进行跨膜运输的方式是通过胞吞和胞吐的作用,这种运输方式也需要消耗能量。
一、载体的种类及其作用协助扩散、主动运输与载体的种类和作用有很大的关系。
载体的化学本质主要是蛋白质,根据运输的方式和载体的空间结构,可将载体分为三种基本类型:通道蛋白、载体蛋白和离子载体(见图1 )。
图1 三种不同载体的结构模式图1.通道蛋白。
通道蛋白是一类跨膜蛋白,它能形成亲水的通道,与所转运物质的结合较弱,当通道打开时能允许水、小的水溶性分子和特定的离子被动地通过。
通道蛋白分为水通道和离子通道两种类型。
(1)水通道(又称水孔)水分子通过水通道从水势较高的地方向水势较低的地方进行扩散。
水通道是连续开放的通道。
实验证明,水分子既可通过自由扩散的方式从质膜磷脂的双分子层中间的间隙通过,也可从水通道中以协助扩散的方式通过。
(2)离子通道。
因为该通道仅能通过无机离子而得名。
离子通道上有控制物质进出的门,因此又被称为门通道。
离子通道的特点是:? 对离子具有选择性和专一性。
即一种通道只允许一种类型的离子通过。
这与离子通道的大小、形状和内部的带电荷氨基酸的分布有关。
但通道的离子选择性只是相对的而不是绝对的,例如,Na+通道对NH4+具有通透性;?离子通道开放的瞬时性。
只有当某种特定的刺激发生时,通道门被激活,通道的构象发生改变,特定的物质就能通过,当这种刺激发生改变时,通道门又会立即关闭。
根据控制门开关的条件的差异,可以将其分为以下几种类型。
门类型配体门通道电压门通道机械门通道作用机制细胞内外特定的物质作为配体,与受体(相应的通道蛋白)结合,激活通道蛋白上的某种成分,使其构象发生改变细胞内或细胞外特异离子浓度发生变化时,或其他刺激引起膜电位变化时,通道蛋白的构象发生变化细胞将机械刺激的信号转变为电化学信号,最终引起细胞的反应门的结构模式图运输特点协助扩散:?顺浓度梯度(或电化学梯度)进行;?不需耗能;? 选择性和专一性实例神经递质乙酰胆碱(配体)从突触前膜中释放出来,作用于突触后膜上的受体,使Na+ 通道被打开当神经纤维上的电位发生改变时,可使相邻的肌细胞膜中存在的Na+通道和K+通道被打开,引发动作电位,动作电位传至肌质网,Ca2+ 通道打开引起Ca2+ 外流,引发肌肉收缩内耳毛细胞顶部的听毛有对牵拉敏感的感受装置,听毛弯曲时,毛细胞会出现暂短的感受电位反例乌本苷(箭毒)和a银环蛇毒素可与乙酰胆碱受体结合,但不能开启通道门,导致肌肉麻痹河豚毒素能阻滞Na+通道打开,妨碍Na+进入,导致肌肉麻痹除表中的三种类型外,还有对化学和光的刺激能做出反应的环核苷酸通道,等等。
离子通道与水通道的区别在于:一是离子通道具有更强的选择性,这种选择性依赖于通道的直径、形状、带电氨基酸的分布(电荷有吸附或排斥作用);二是离子通道的不连续开放,在开放和关闭之间随机地进行并且快速切换。
2.载体蛋白载体蛋白是跨膜蛋白分子,能够与特定的分子,通常是一些小的有机分子,如葡萄糖、氨基酸、核苷酸或金属离子等结合,通过自身构象的变化,将与它结合的分子转移到膜的另一侧。
每一种膜都含有一套适合于特定功能的不同载体的蛋白,如线粒体内膜中具有输入丙酮酸和ADP 以及输出ATP 的载体,等等。
载体蛋白与通道蛋白之间的根本区别在于它们辨别溶质的方式。
通道蛋白主要根据分子的大小和电荷进行辨别:如果通道蛋白呈开放状态,那么足够小的和带有适当电荷的分子就有可能溜过通道,如同“通过一扇敞开着但又狭窄的活动门”。
而载体蛋白对运输物质的选择性要比通道蛋白强很多,它具有高度的选择性,即一种特定的载体只能运输一种类型的分子,这与载体上特定的位点有关,这种位点只能与特定的分子结合,而且这种结合是暂时的、可分离的。
物质通过载体蛋白时,有的需要能量驱动,以主动运输的方式进行,如各类由ATP 驱动的离子泵;有的则不需要能量,以协助扩散的方式运输物质;有的物质两种方式都能进行,如葡萄糖的运输,这主要取决于浓度梯度,如果是顺浓度梯度,则是协助扩散,如果是逆浓度梯度则是耗能的主动运输,但参与这两种转运方式的载体蛋白的类型是不同的。
图2 为葡萄糖的顺浓度梯度运输(协助扩散),当细胞外液中的葡萄糖浓度高于细胞内部的葡萄糖浓度,就在细胞外、内之间形成一个浓度梯度,此时,葡萄糖就与葡萄糖载体上的特定位点结合,激发载体的构象发生变化,葡萄糖与膜的亲和力也相应地发生变化,由强变弱,葡萄糖就由膜外进入到膜内图2 葡萄糖的顺浓度梯度跨膜运输模式图3.离子载体顾名思义,离子载体主要用于带电离子顺着电化学梯度通过质膜的一类载体。
与离子通道不同,离子载体是疏水性的小分子物质,可溶于磷脂双分子层,且多为微生物合成,大多为细菌产生的抗生素,是物质进出微生物质膜的主要载体。
根据离子载体在质膜中的分布,可将其分成可动离子载体和通道离子载体两种类型:可动离子载体(见图1):如缬氨霉素能在膜的一侧结合K+ ,顺着电化学梯度通过脂双层,在膜的另一侧释放K+ ,且能往返进行;通道离子载体:如短杆菌肽A 是由15 个疏水氨基酸构成的短肽,2 分子的短杆菌肽形成一个跨膜通道,有选择的使单价阳离子如Na+ 、K+ 按电化学梯度通过膜,这种通道并不稳定,能够不断地形成和解体,但其运输效率远高于可动离子载体。
二、主动运输的几种供能方式主动运输最主要的特点是耗能和需要特定的载体。
根据供能的方式可将其分为三种类型:ATP —驱动泵、协同运输和光驱动泵。
1.ATP —驱动泵Na+-K+ 泵(见图3)是一种常见的ATP —驱动泵,是一种在动物细胞的能量系统中起主要作用的载体,也是一种能催化ATP 水解的ATP 酶。
它是一种多聚蛋白体复合物,是一种特殊的载体。
该载体(酶)既可催化ATP 水解和合成,又能促进物质的运转,因此称为Na+-K+ 泵或Na+-K+ATP 酶。
这种泵(酶)每消耗1分子的ATP ,就逆浓度梯度将3 分子的Na+ 泵出细胞外,将2 分子的K+ 泵入细胞内。
Na+-K+ 泵对于维持动物细胞的渗透压平衡起着非常重要的作用。
图4 Na+-K+ATP 酶转运Na+ 和K+ 的模式图这种泵在运转Na+和K+时具有以下特点(见图4): (1 )与Na+结合的位点位于质膜内侧,与K+结合的位点位于质膜外侧;(2)当Na+与其位点结合时就激活了酶体,将ATP水解,此时其中的一个磷酸与载体蛋白结合,这就是载体的磷酸化过程。
当K+ 与其位点结合时也会激活酶体,将与载体蛋白结合的磷酸去掉,这就是载体的去磷酸化过程;(3)载体的磷酸化过程和去磷酸化过程会导致载体蛋白的构象发生变化,同时也会导致离子与载体的亲和力发生改变,Na+ 由膜内的强逐渐转弱,从而泵出膜外,K+ 由膜外的强逐渐转弱,从而泵出膜外。
这种运输是一个连续的过程,在泵进和泵出的过程中,每一步骤都取决于前一个步骤的完成,如果一个步骤受到阻碍,泵就无法发挥其功能。
例如,乌本苷能与Na+-K+ 泵结合,抑制Na+的泵出,受其影响,K+也无法泵入,此时,也可以避免ATP 的无效水解。
除Na+-K+ 泵外,运输Ca2+ 的载体也是一种泵,是一种ATP 酶,在泵的运输过程中,发生磷酸化和去磷酸化的过程。
2.协同运输与ATP —驱动泵不同,葡萄糖和氨基酸的主动运输不直接消耗ATP 水解提供的能量,而是借助于Na+-K+ 泵排出的Na+ 所产生的电化学梯度使物质进入细胞,具体过程见图5:图5 葡萄糖和Na+ 的协同运输模式图由上图可以看出,运载葡萄糖的载体有两个结合位点,这两个位点都位于膜的外侧,它们分别与葡萄糖和Na+ 结合,由于Na+-K+ 泵的作用,使得Na+ 在膜外的浓度高于膜内,这样就形成了浓度梯度(电化学梯度),借助于Na+ 的浓度梯度(电化学梯度)的作用,载体蛋白的构象发生变化,葡萄糖分子由膜外的低浓度环境进入膜内的高浓度环境,因此,这种运输也称为伴随运输。
这种伴随运载发生时需要两个重要的条件,一是浓度梯度,Na+ 是顺浓度梯度,而葡萄糖分子是逆浓度梯度。
理解这种运输不能简单地认为不需要ATP 提供的能量,首先Na+ 的顺浓度梯度(电化学梯度)就具有势能,而这种势能又是Na+-K+ 泵消耗ATP 造成的,因此,这种运输也属于主动运输。
二是不同的物质对载体不同部位的亲和力,简单地说,Na+ 和葡萄糖分子在膜外与载体的结合位点的亲和力强,当载体的构象发生改变后,这种亲和力就会变弱,从而导致两种物质进入胞内。
协同运输按照其运输方向可分为同向运输和异向运输。
人体细胞内的协同运输通常为Na+ ,这也就很好地解释为什么人体每天必须摄入一定量食盐的原因,为什么大量流汗或缺盐会导致人体虚弱无力。
协同运输也可以异向运输,如动物细胞常通过Na+/H+ 反向协同运输的方式来转运H+ ,以调节细胞内的PH值,即Na+进入胞内时伴随着H+的排出。
植物、真菌和细菌很少摄入Na+ ,膜上没有Na+-K+ 泵,但能形成H+-ATP泵(酶),以形成H+的浓度梯度(电化学梯度),此时H+在运输过程中的作用就类似于Na+的作用。
例如,在某些细菌中,乳糖的吸收伴随着H+的进入,每转移一个H+就+吸收一个乳糖分子。
除ATP- 驱动泵和协同运输外,在一些光合细菌膜上存在H+ 泵,这种泵由光激活,产生H+的浓度梯度(电化学梯度),驱动物质进入细胞,这种泵称为光驱动泵。
三、高中生物教学中如何界定物质的运输1. 限制自由扩散的一些因素物质能否通过细胞膜与该物质的脂溶性、分子大小和带电性都有很大的关系。
一般认为,物质的脂溶性越强,越容易通过细胞膜;除脂溶性外,分子越小,越容易通过细胞膜物质的带电性也是限制扩散的一个主要因素。
带电的物质通常同水结合形成一个水合的外壳,这不仅增加了它们的分子体积,同时也大大降低了脂溶性。
因此,不管带电离子有多么小,都不能通过自由扩散的方式进出细胞膜。
一般来说,气体分子、小的不带电的极性分子,如乙醇、脲类物质容易通过细胞膜,大的不带电的极性分子和各种带电的极性分子都难以通过细胞膜。