高考数学备考常用公式大全
高中高考数学公式大全

高中高考数学公式大全1.代数公式- 二次方程根公式:若ax^2+bx+c=0 (a≠0),则 x=(-b±√(b^2-4ac))/(2a)。
-二次三项全解公式:若知二次三项完全分解为(x-a)(x-b)(x-c)=0,则x=a,b,c。
- 余弦和公式:cos(A±B)=cosAcosB∓sinAsinB。
- 余弦差公式:cos(A-B)=cosAcosB+sinAsinB。
- 正弦和公式:sin(A±B) = sinAcosB±cosAsinB。
- 正弦差公式:sin(A-B) = sinAcosB-cosAsinB。
- 二项式定理:(a+b)^n = C(n,0)a^n b^0+C(n,1)a^(n-1)b+C(n,2)a^n^(n-2)b^2+…+C(n,n)na^0 b^n。
2.几何公式-长方形面积公式:面积=长×宽。
-正方形面积公式:面积=边长×边长。
-圆面积公式:面积=πr^2-平行四边形面积公式:面积=底边×高。
-梯形面积公式:面积=(上底+下底)×高÷2-三角形面积公式:面积=底边×高÷2- 三角形余弦定理:c^2 = a^2 + b^2 - 2abcosC。
- 三角形正弦定理:sinA/a = sinB/b = sinC/c。
- 三角形正弦面积公式:面积 = (1/2)abSinC。
-三角形内切圆半径公式:r=面积/半周长。
3.数列和数列项公式-等差数列通项公式:an = a1 + (n-1)d。
-等差数列前n项和公式:Sn = (n/2)(a1 + an)。
-等差数列等差公式:dn = an+1 - an。
-等差数列求和公式:Sn=(2a1+(n-1)d)n/2-等比数列通项公式:an = a1 * q^(n-1)。
-等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
高考数学试卷中要用的公式

一、代数部分:1. 一元一次方程:ax + b = 0,解为 x = -b/a(a ≠ 0)。
2. 一元二次方程:ax^2 + bx + c = 0,解为 x = [-b ± √(b^2 - 4ac)] / 2a。
3. 平方差公式:a^2 - b^2 = (a + b)(a - b)。
4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 - 2ab + b^2 = (a -b)^2。
5. 立方公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2),a^3 - b^3 = (a -b)(a^2 + ab + b^2)。
6. 二项式定理:(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
7. 多项式除法:将多项式P(x)除以单项式x - a,商为Q(x),余数为R(x),满足P(x) = (x - a)Q(x) + R(x)。
8. 指数运算法则:a^m a^n = a^(m+n),(a^m)^n = a^(mn),a^m / a^n = a^(m-n)(a ≠ 0,m,n为正整数)。
9. 对数运算法则:log_a(xy) = log_a(x) + log_a(y),log_a(x/y) = log_a(x) - log_a(y),log_a(x^n) = n log_a(x)。
二、几何部分:1. 三角形面积公式:S = (1/2) 底高。
2. 圆的周长公式:C = 2πr,圆的面积公式:S = πr^2。
3. 矩形面积公式:S = 长宽。
4. 平行四边形面积公式:S = 底高。
5. 梯形面积公式:S = (上底 + 下底) 高 / 2。
6. 圆锥体积公式:V = (1/3) πr^2h。
7. 球体积公式:V = (4/3) πr^3。
2024年数学高考必备详细公式

在2024年的数学高考中,学生需要记忆和熟练运用的数学公式非常多。
以下是一些数学高考必备的详细公式。
1.代数公式:- 二次方程公式:若ax²+bx+c=0,其中a≠0,那么它的解为x=(-b±√(b²-4ac))/(2a)。
-勾股定理:在直角三角形中,a²+b²=c²,其中a、b为直角边,c为斜边。
-平方差公式:(a+b)(a-b)=a²-b²。
- 一次函数的解析式:y=kx+b,其中k为斜率,b为y轴截距。
-等差数列求和公式:Sn=(n/2)(a₁+an),其中Sn为前n项和,a₁为首项,an为末项。
-高斯公式:1+2+3+...+n=n(n+1)/2- 二项式定理:(a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b² + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n,其中C(n,k)表示从n个元素中选择k个元素的组合数。
2.几何公式:-两点间距离公式:设平面上有两点A(x₁,y₁)和B(x₂,y₂),则AB的距离为√((x₂-x₁)²+(y₂-y₁)²)。
-直线的斜率公式:设直线上有两点A(x₁,y₁)和B(x₂,y₂),则该直线的斜率为k=(y₂-y₁)/(x₂-x₁)。
-直线方程:(x-x₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)。
-圆的面积公式:A=πr²,其中A表示圆的面积,r表示半径。
-梯形面积公式:A=(上底+下底)×高/2,其中A表示梯形的面积,上底和下底分别为两个平行边的长度,高为两平行边的距离。
- 三角形的面积公式:设三角形的底边为a,高为h,则三角形的面积A=ah/2-正多边形的内角和公式:内角和=(n-2)×180°,其中n为正多边形的边数。
「高考数学公式定理大全」

「高考数学公式定理大全」1.初等代数- 分式性质:$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$- 因式分解:差平方公式 $a^2 - b^2 = (a+b)(a-b)$,和差平方公式 $a^2+b^2=(a+b)^2-2ab$- 二次根式:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm 2\sqrt{ab}$,$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$- 二次方程:$ax^2+bx+c=0$,求根公式 $x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 一次不等式:若$a>b$,则$ca>cb$($c>0$),若反号方向,不等号方向互换即可2.平面向量- 向量表示:$\vec{AB}=(x_2-x_1,y_2-y_1)$- 向量运算:加法 $\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2)$,数乘$k\cdot \vec{a}=(ka_1,ka_2)$- 向量模长:$,\vec{AB},=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ - 向量共线:若$\vec{a}=k\cdot \vec{b}$,则$\vec{a}$与$\vec{b}$共线- 向量垂直:若$\vec{a}\cdot \vec{b}=0$,则$\vec{a}$和$\vec{b}$垂直,其中$\vec{a}\cdot \vec{b}=a_1b_1+a_2b_2$3.空间几何- 距离公式:点P(x,y,z)到平面Ax+By+Cz+D=0的距离为 $d=\frac{,Ax+By+Cz+D,}{\sqrt{A^2+B^2+C^2}}$- 点到直线的距离:点P(x0,y0,z0)到直线Ax+By+Cz+D=0的距离为$d=\frac{,Ax_0+By_0+Cz_0+D,}{\sqrt{A^2+B^2+C^2}}$- 两直线关系:平行条件为$\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$,垂直条件为$A_1A_2+B_1B_2+C_1C_2=0$4.三角函数- 基本关系:正弦定理 $\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$,余弦定理 $a^2=b^2+c^2-2bc\cos A$ - 解三角形:已知三边a、b、c或三边两角及夹边等情况下,先确定角的类型,然后利用$S=\frac{1}{2}ab\sin C$公式计算面积,最后利用相关定理计算其他需要的长度或角度。
高考数学公式大全

高考数学公式大全一、代数公式:1.二次方程的求根公式:对于二次方程 $ax^2 + bx + c = 0$,其根可以由以下公式求得:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$2.平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 - 2ab + b^2$3.一元二次方程求解公式:对于一元二次方程 $ax^2 + bx + c = 0$,其根可以由以下公式求得:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$4.一次函数方程的解法:对于一次函数方程 $y = kx + b$,其中 $k$ 为斜率,$b$ 为$y$ 轴截距,可以通过解方程 $kx + b = 0$ 求得直线与 $x$ 轴的交点和方程的解。
5.倍角公式:$\sin{2\theta} = 2\sin{\theta}\cos{\theta}$$\cos{2\theta} = \cos^2{\theta} - \sin^2{\theta} =2\cos^2{\theta} - 1 = 1 - 2\sin^2{\theta}$$\tan{2\theta} = \frac{2\tan{\theta}}{1-\tan^2{\theta}}$$\cot{2\theta} = \frac{\cot^2{\theta}-1}{2\cot{\theta}}$ 6.三角函数关系:$\sin^2{\theta} + \cos^2{\theta} = 1$$\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}$$\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}$$\sin{(\pi - \theta)} = \sin{\theta}$$\cos{(\pi - \theta)} = -\cos{\theta}$$\tan{(\pi - \theta)} = -\tan{\theta}$二、几何公式:1.圆的周长和面积:圆的半径为$r$,则其周长$C$和面积$A$分别为:$C = 2\pi r$$A = \pi r^2$2.直角三角形的勾股定理:直角三角形的两直角边分别为$a$和$b$,斜边长度为$c$,则满足勾股定理:$a^2+b^2=c^2$3.三角形的面积公式:设三角形的底为$b$,高为$h$,则其面积$S$可以用以下公式计算:$S = \frac{1}{2}bh$4.向量的模长和方向角公式:设二维向量 $\boldsymbol{a} = (x,y)$,其中 $x$ 为横坐标,$y$ 为纵坐标,其模长 $,\boldsymbol{a},$ 和方向角 $\theta$(与$x$ 轴的夹角)计算公式如下:$,\boldsymbol{a}, = \sqrt{x^2 + y^2}$$\theta = \arctan{\frac{y}{x}}$5.相似三角形的性质:设 $\triangle ABC$ 和 $\triangle A'B'C'$ 是相似三角形,则它们对应边长之间的比例关系为:$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{AC}{A'C'}$6.空间几何平行、垂直关系判定公式:设直线 $l_1$ 和 $l_2$ 在空间中,其方向向量分别为$\boldsymbol{a}$ 和 $\boldsymbol{b}$,则有以下关系:$l_1 \perp l_2 \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0$三、概率统计公式:1.排列公式:$A_n^m = \frac{n!}{(n-m)!}$2.组合公式:$C_n^m = \frac{n!}{m!(n-m)!}$3.二项式定理:$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + \cdots +C_n^n a^0 b^n$4.期望值公式:离散型随机变量$X$的期望值可以由以下公式计算:$E(X) = \sum{x \cdot P(X=x)}$连续型随机变量$X$的期望值可以由以下公式计算:$E(X) = \int{xf(x)dx}$其中,$P(X=x)$为离散型随机变量$X$取值为$x$的概率,$f(x)$为连续型随机变量$X$的概率密度函数。
高考数学必背必记公式

高考数学必背必记公式1、有限集合子集个数:子集个数:2n 个,真子集个数:12n −个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔=3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+−U I5、几个近似值:2 1.414,3 1.732,5 2.236, 3.142, 2.718e π≈≈≈≈≈6、分数指数幂公式:n m n ma a = 7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '−=−11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩第一章 集合第二章 函数12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期Tb a =−; 14、函数对称性:()()f a x f b x +=−的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =; 16、抽象函数指数型:若()()()f x y f x f y +=,则()x f x a =; 17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =; 18、抽象函数一次型:若()f x c '=,则()f x cx b =+; 19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤−==⎨≤−⎩当且仅当时“”成立21、洛必达法则:()()()()limlim x ax a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =−⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)24、等差数列通项公式:1(1)n a a n d =+− 25、等差数列通项公式:11()(1)22n n n a a n n S na d +−==+ 26、等比数列通项公式:11n n a a q −=27、等比数列通项公式:11(1)11n n n a a qa q S q q+−==−−第三章 数列28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn −++=,则有1111n n T n n =−=++ 33、裂项相消法2:若1111(2)22n n n n −++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+−−++ 34、裂项相消法3:若111111n nnn a a d a a ++=−⎛⎫⎪⎝⎭,则有11111()nn T d a a +=− 35、裂项相消法4:若1111(21)(21)22121n n n n −+−−+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =−+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b q a b T q q q −=+−−−−37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:22r x y =+38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
高考数学必背公式整理

高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。
高考数学必背公式整理

高考数学必背公式整理高考数学必背公式整理高考数学中,公式的掌握是非常重要的,因为它们不仅可以帮助我们快速解题,还可以帮助我们理解和应用数学知识。
下面是一份高考数学必背公式整理,包括代数、几何和概率三个方面的公式。
一、代数公式1. 二项式展开公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b) = a^2 - b^22. 平方差公式:a^2 - b^2 = (a+b)(a-b)3. 一次二次因式分解:ax^2 + bx + c = a(x-x1)(x-x2),其中x1、x2为二次方程的根4. 关于指数和对数的常用公式:log(a*b) = loga + logblog(a/b) = loga - logblog(a^n) = nlogaa^x * a^y = a^(x+y)a^x / a^y = a^(x-y)a^-x = 1/a^xloga a^x = x二、几何公式1. 三角函数相关公式:sin^2θ + cos^2θ = 11 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ2. 三角函数和角度的关系:sin(-θ) = -sinθcos(-θ) = cosθtan(-θ) = -tanθsin(π/2-θ) = cosθcos(π/2-θ) = sinθtan(π/2-θ) = cotθ3. 直角三角形中的三角函数:sinθ = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边4. 圆相关公式:圆的周长:C = 2πr圆的面积:A = πr^2圆的弧长:L = 2πr * (θ/360°)扇形面积:A = 1/2 r^2 θ三、概率公式1. 基本概率公式:P(A) = n(A)/n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示样本空间的元素个数2. 条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B已经发生的情况下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率3. 乘法公式:P(A∩B) = P(A) * P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A已经发生的情况下事件B发生的概率4. 加法公式:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A和事件B至少有一个发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率以上是一些高考数学必背公式的整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学备考:常用公式大全
141. 面积射影定理
'
cos S S θ=.
(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).
142. 斜棱柱的直截面
已知斜棱柱的侧棱长是l ,侧面积和体积分别是
S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是
1c 和1S ,则 ①
1S c l =斜棱柱侧.
②1V S l =斜棱柱.
143.作截面的依据
三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.
144.棱锥的平行截面的性质
如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
145.欧拉定理(欧拉公式)
2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).
(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F
与棱数E 的关系:
12E nF =
;
(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:
12E mV =.
146.球的半径是R ,则 其体积3
43V R π=,
其表面积2
4S R π=.
147.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体: 棱长为a
的正四面体的内切球的半径为,
外接球的半径为.
148.柱体、锥体的体积
13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).
13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).
149.分类计数原理(加法原理)
12n N m m m =+++.
150.分步计数原理(乘法原理)
12n N m m m =⨯⨯⨯.。