解三角形三类经典题型教学内容

合集下载

(完整版)解三角形专题题型归纳

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。

九年级数学解直角三角形 如此简单 5种类型全包括 专题讲解

九年级数学解直角三角形 如此简单 5种类型全包括 专题讲解
解:在RT 中∵ AB=2,BC=
∴ = 即
∴∠A=600
∴∠B=300
根据勾股定理得:AC=
解直角三角形经典题型三:
已知直角三角形中两条边的比,和一条边的长度。求三角形的边。
已知在 中∠C=900,AB=2, ,求AC。
解:因为 所以可设BC=K,则AC=2K,有
即 5K2=4
解得:K1= K2=- (舍去)
已知直角三角形中一个角和一条边,解直角三角形
已知在 中∠C=900,∠A=450,BC=12,解直角三角形。
解:在RT 中∵∠A=450
∴∠B=900-450=450
∵BC=12
∴AC=BC=12
∴ = 即AB=
∴AB= =12
解直角三角形经典题型二:
已知直角三角形中两条边,解直角三角形
已知在 中∠C=900,AB=2,BC= ,解直角三角形。
所以:AC=2K=
解直角三角形变式训练一:(高频考题)
已知:如图RT ,∠B=300,∠ADC=600BD=24求AC
解:∵∠B=300,∠ADC=600
∴∠DAB=300即 是等腰三角形
∴AD=BD=24
在RT 中
∵∠ADC=600
∴ 即 =
∴AC= 24=12
解直角三角形变式训练二:(高频考题)
已知:如图RT ,∠B=300,∠ADC=450BD=24求AC
解:∵∠ADC=450
∴RT 是等腰直角三角形
设AC=x ,则CD=x
在RT 中∵∠B=300BD=24
∴ 即

解得:x=
解直角三解形5种经典题型全概括
解直角三角形必备知识点一:
直角三角形的5个要素:三条边,两个角。

《解三角形》常见题型详解

《解三角形》常见题型详解

《解三角形》常见题型总结1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1 在ABC 中,已知A:B:C=1:2:3,求a :b :c.【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。

解:::1:2:3,A .,,,6321::sin :sin :sin sin:sin:sin:1 2.6322A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。

例2在ABC 中,已知C=30°,求a+b 的取值范围。

【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。

解:∵C=30°,sin sin sin sin 30a b c A B C ===︒∴(150°-A ).∴°·2sin75°·cos(75°-A)=2cos(75°-A)① 当75°-A=0°,即A=75°时,a+b取得最大值2② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°,∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2cos75°=2×4综合①②可得a+b 的取值范围为考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。

【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

谈谈三类解三角形问题的解法

谈谈三类解三角形问题的解法

解题宝典解三角形是高中数学中的重要内容,也是高考数学必考的知识.通过对近几年高考试题的分析,可发现解三角形问题主要有:三角形的解的个数问题、三角形的面积问题以及三角形的边长问题,且不同题目的考查形式和考查知识点均有所不同,同学们应注意区分与鉴别.本文结合例题,对这三类解三角形问题的特点和解法进行介绍,希望对同学们有所帮助.一、三角形的解的个数问题解三角形是指已知三角形的某些边、角,求其他边、角.三角形的解有一个、二个或者无数个.在解答三角形的解的个数问题时,先要仔细审题,明确哪些边、角是已知的,哪些是未知的;然后灵活运用正余弦定理、勾股定理、三角函数的定义来解三角形.一般地,若已知的角较多,则运用正弦定理来建立关系式;若已知的边较多,则运用余弦定理进行求解;若三角形为直角三角形,可直接运用勾股定理和三角函数的定义解题.例1.根据下列条件判断三角形的解的情况,正确的个数是().①a=8,b=16,A=30°,该三角形有2个解②b=18,c=20,B=60°,该三角形有1个解③a=15,b=2,A=90°,该三角形无解④a=40,b=30,A=120°,该三角形有1个解A.1B.2C.3D.4解:对于①,由正弦定理asin A=b sin B可得sin B=16×sin30o8=1,而B∈()0,π,所以B只有1个解,故三角形只有1个解,所以①错误;对于②,由正弦定理bsin B=c sin C可得sin C=20sin60°18=539,因为b<c,所以C>B=60°,则C有2个解,故三角形有2个解,所以②错误;对于③,由正弦定理asin A=b sin B可得sin B=2sin90°15=215,因为B∈()0,π,所以A=π2,则B有1个解,故三角形只有1个解,所以③错误;对于④,由正弦定理asin A=b sin B可得sin B=30×sin120°40=338,因为B∈()0,π,所以A=2π3,则B有1个解,故三角形只有1个解,所以④正确;综上可知,本题的正确答案为A项.①②③④中都给出了三角形的两边长和其中一个角的度数,只需根据正弦定理建立关系式,再结合正弦函数的值域和三角形内角的取值范围,判断角的可能取值,即可确定三角形的解的个数.二、三角形的面积问题三角形的面积问题比较常见,通常要根据题目中给出的条件选择合适的面积公式解题.常用的三角形面积公式主要有三种:S=12ah、S=12ab sin C、S=p(p-a)(p-b)(p-c),其中a、b、c为三角形的三条边长,h为三角形的高线长,p=a+b+c2.一般地,若已知或容易求得三角形的一个角,则运用S=12ab sin C求三角形的面积;若已知三角形的高线长,则用S=12ah求三角形的面积;若已知三角形的三边长,往往用S=p()p-a()p-b()p-c求三角形的面积.在解题时,要注意灵活运用正余弦定理、勾股定理、三角函数的定义进行边角互化.例2.已知△ABC的内角A,B,C的对边分别为a,b,c,若sin A+3cos A=0,a=2,b=27.设D为BC边上的一点,且AD⊥AC,求△ABD的面积.解:(1)由sin A+3cos A=0可得:tan A=-3,所以A=2π3.在△ABC中,由余弦定理得28=4+c2-4c cos2π3,即c2+2c-24=0,解得c=4.由AD⊥AC可得∠CAD=π2,37所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ⋅AD ⋅sin π612AC ⋅AD =1.又△ABC 的面积为12×4×2×sin2π3=23,所以△ABD 的面积为3.解答本题,需先根据余弦定理和特殊角的正弦函数值求得边长c ;然后根据直角三角形中的边角关系求得∠BAD 的大小,即可根据三角形的面积公式S =12ah 、S =12ab sin C 求得△ABD 的面积、△ACD 的面积、△ABC 的面积.例3.设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a ()sin A -sin C =b sin B -c sin C ,且b ()sin A +sin C sin B=8,b =4,求△ABC 的面积.解:由余弦定理可得b 22+c 2-2ac cos B ,则cos B =12,即sin B 因为a ()sin A -sin C =b sin B -c sin C ,由正弦定理可得a 2-ac =b 2-c 2,整理得a 2+c 2-ac =b 2,所以b ()a +c b=8,可得a 2+c 2-b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B =()a +c 2-2ac -2ac cos B ,则16=64-3ac ,解得ac =16,所以S △ABC =12ac sin B =1243.首先根据正余弦定理将已知条件转化为三角形的边的关系,得到a 2+c 2-ac =b 2和b ()a +c b=8;然后再次运用余弦定理求出sin B 和ac 的值,并将其代入面积公式S =12ab sin C 中,即可得到△ABC 的面积.三、三角形的边长问题解答三角形的边长问题,需灵活运用正弦定理:a sin A =b sin B =c sin C=2R 、余弦定理:b 2=a 2+c 2-2ac cos B 、勾股定理:a 2+b 2=c 2.在解答三角形的边长问题时,可先根据题意画出图形,以确定三角形的边、角的位置,以及对边、对角;然后根据题意明确哪些边长、角度是已知的,哪些是要求的;再根据正弦定理、余弦定理列式,通过计算,求得边长.例4.如图,在锐角△ABC 中,sin∠BAC =2425,sin∠ABC =45,BC =6,点D 在边BC 上,且BD =2DC ,点E 在边AC 上,且BE ⊥AC ,BE 交AD 于点F .求AC 和AF 的长.解:在锐角△ABC 中,sin∠BAC=2425,sin∠ABC =45,BC =6,由正弦定理可得:AC sin ∠ABC =BCsin ∠BAC,所以AC =BC sin ∠ABCsin ∠BAC=6×452425=5.因为sin ∠BAC =2425,sin ∠ABC =45,所以cos ∠BAC =725,cos ∠ABC =35,所以cos C =-cos (∠BAC +∠ABC )=-cos ∠BAC cos ∠ABC +sin ∠BAC sin ∠ABC =35.因为BE ⊥AC ,所以CE =BC cos C =6×35=185,AE =AC -CE =75.在△ACD 中,AC =5,CD =13BC =2,cos C =35,由余弦定理可得AD =AC 2+DC 2-2AC ⋅DC cos C=25+4-12=17,所以cos ∠DAC =AD 2+AC 2-CD 22AD ⋅AC =17+25-41017=191785.由BE ⊥AC ,得AF cos ∠DAC =AE ,所以AF =75191785=71719.解答本题,要先在锐角△ABC 中,根据正弦定理求得AC 的长以及cos C ;然后在△ACD 中,根据余弦定理求得AD 的长和cos∠DAC ,即可在Rt△AFE 中,根据勾股定理求得AF 的长.解答三角形问题,要注意:(1)要灵活运用正余弦定理、勾股定理进行边角互化;(2)挖掘有关三角形的边、角的隐含条件;(3)选用合适的公式、定理进行求解;(4)学会借助图形来辅助解题.(作者单位:贵州省岑巩县第一中学)解题宝典38。

高中数学重难点归纳:解三角形常考题型有三种类型.doc

高中数学重难点归纳:解三角形常考题型有三种类型.doc

高中数学重难点归纳:解三角形常考题型有
三种类型
题型一:三角变换与解三角形的综合问题方法归纳:
(1)解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向。

第二步:定工具,即根据条件与所求合理选择转化的工具,实施边角之间的互化。

第三边:求结果(2)三角变换与解三角形的综合问题要关注三角形中的隐藏条件,如A+B+C=π,sin(A+B)=sinC,cos(A+B)=-cosC,以及在△ABC中,A>B→sanA>sinB等。

题型二:解三角形与平面向量结合解三角形与平面向量综合问题的一般思路
(1)求三角函数值,一般利用向量的相关运算把向量关系转化为三角函数关系。

利用同角三角函数关系式及三角函数中常用公式求解
(2)求角时通常由向量转化为三角函数问题,先求值再求角。

(3)解决与向量有关的三角函数问题的思想方法是转化与化归的数学思想,即通过向量的相关运算把问题转化为三角函数问题。

题型三:以平面图形为背景的解三角形问题以平面图形为背景的解三角形问题的一般思路
(1)建联系:在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,通过公共条件形成等式,常常将所涉及的已知几何量与所求几何集中在某一个三角形。

(2)用定理:①“已知两角和一边”或“已知两边和其中一边的对角”应采取正弦定理②“已知两边和这两边的夹角”或“已知三角形的三边”应采取余弦定理。

高一数学教案解三角形5篇

高一数学教案解三角形5篇

高一数学教案解三角形5篇等腰三角形,看似简单平常,实则魅力无穷.许多关键问题三角问题与等腰三角形密切相关,形变解题中若能根据题意恰当构造,则可使一些三角问题别开生面地得以解决,更给人一种形象直观、流畅清晰、解法优美之感.今天在这里整理了一些,我们一起来呢吧!高一数学教案解三角形1[教学重、难点] 认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

[教学准备] 学生、老师剪下附页2中的图2。

[教学过程] 一、画一画,说一说1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

2、教师巡查练习境况。

3、学生展示练习,说一说为什么是锐角、直角、钝角?二、分一分 1、小组活动;把附页2中的图2中的三角形需要进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分后?2、汇报:进行分类的标准和方法。

可以按角来分,可以按边来分。

二、按角分类: 1、观察观察具体来说三角形有什么共同的特点,从而归纳出来三个角都是锐角的'三角形是锐角三角形。

2、观察共同第三类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形3、观测观察第三类三角形有什么互助的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

三、按边分类: 1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边,这样三角形的三角形叫等腰三角形,并透露各部分的名称。

2、引导学生发现有的菱形三角形三条边都相等,这样的矩形是等边三角形。

讨论等边三角形是等腰三角形吗?四、填一填:24、25页让学生辨认各种三角形。

五、练一练:第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能重新考虑是一个锐角三角形,必须三个角都是锐角总算是九个锐角三角形。

第2题:在点子图上画作三角形第3题:剪一剪。

六、完成26页实践活动。

[板书设计] 三角形的分类按角分类:按边分类:高一数学教案可解三角形2教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在一般性的三角形中作出中均它们.教学重点:在具体的三角形中作出三角形的低.教学难点:画出钝角三角形的三条高.活动准备:学生预先剪好三种三角形,一副三角板.教学过程:过菱形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:三角形从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高,∴AM⊥BC.做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流.结论:锐角三角形的'三条高在正三角形的内部且交于一点.3、议一议:每人画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出高德帕伦三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于假脉一点吗?它们所在的直线交于一点吗?小组讨论交流.结论:1、直角三角形的等腰三条高交于直角顶点处.2、钝角三角形的三条高所在直线交于一点,此点在四边形的外部.4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.则S△ABC=___________,CF=_________,AC=_____________.5、小结:(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的中间层.作业:P127 1、2、3高一数学教案可解三角形3《三角形中位线》教案一、教学目标:1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算2.掌握添加辅助线解题的技巧.3.提高中学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法探究式自主学习:以学生的自主探究为主,教职员加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准三、教学内容﹑教材重、难点分析:三角形中位线定理的学习是继学习-平行四边形与平行线等分线段定理后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中所位线定理,最后是利用中位线定理解答例一所给的环境问题.在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.四、教学内容媒体的选择和设计通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。

解三角形教案1

解三角形教案1

解三角形(一)教学目标1.知识与技能:(1) 掌握正、余弦定理、重要不等式、基本不等式、函数值域等相关的知识。

(2) 掌握解决三角形问题中最值问题的常规方法:不等式法和函数法。

2.过程与方法:进一步体会函数,不等式,平面几何等知识的交汇融合;通过周长、面积最值得求解培养学生分析、归纳能力及知识迁移的能力。

3.情感、态度与价值观:(1) 学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题。

(2) 培养学生数学素养和逻辑思维能力。

(二)教学重点与难点重点:理解并掌握正弦定理、余弦定理、重要不等式、基本不等式及平面几何知识等的应用。

难点:三角形最值问题中通法通解的形成及贯彻;数形结合思想,函数思想的培养。

(三)教学过程设计一、知识回顾、归纳总结:三角形性质:1.角的关系:A B C π++=,外角等于不相邻两个内角和。

2.边的关系:两边之和大于第三边,两边之差小于第三边。

3.角与边的关系:①大角对大边,等角对等边 ②正弦定理及变形: 变形:③余项定理及变形: 2()sin sin sin a b c R R ABC A B C===∆为外接圆半径2sin 2sin 2sin a R A b R B c R C=== sin sin sin 222a b c A B C R R R=== ::sin :sin :sin a b c A B C =2222cos a b c bc A=+-222cos 2b c a A bc+-=ABC C a b c ∆=++4.周长与面积:重要不等式、均值不等式:重要不等式: 均值不等式: 变形:二、例题讲解、规范解答:注意:分析周长或面积取到最大值的条件。

12ABC S ∆=⨯底高111sin sin sin 222ABC S ab C ac B bc A ∆===时取等)当且仅当b a R b a ab b a =∈≥+,,(222时取等)当且仅当b a b a abb a =>>≥+,0,0(22()2a b ab +≤cos _______ABC A B C a b c a b c B ∆的内角、、所对的边分别为、例1:(2014陕西、;若、、成等比数列求的最小值)2cos(),cos a b A C ABC A B C a b c c C C c ABC c ABC ++∆==∆=∆的内角、、所对的边分别为、、;若(1)求的大小(2)若求面积的最大值(例2:(2016吉林白山一模改编)3)若求周长的最大值12c a b =+变式:(1)求若求的最大值a b c 解:、、称等比数列2b ac ∴=222cos 2a c b B ac +-=222a c ac ac+-=22ac ac ac -≥12=a c ==当且仅当,""成立小结:小结:“知二求最值”知二:角及其所对的边,求三角形周长、面积最值,一般在等腰时候取到最值,如是“类周长面积”不一定是在等腰的时候取到最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形三类经典题型解三角形三类经典类型类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题类型一 判断三角形形状例1:已知△ABC 中,bsinB=csinC,且C B A 222sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 222c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο60,2b=a+c,试判断△ABC 的形状.解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο60得sinA+sinC=3由三角形内角和定理知sinA+sin(A -ο120)=3,整理得 sin(A+ο30)=1∴A+οοο60,9030==A 即,所以三角形为等边三角形.例3:在△ABC 中,已知22tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 BAA B B A 22sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B∴2A=2B 或2A+2B=π ∴A=B 或2π=+B A ,∴三角形的形状为等腰三角形或直角三角形.法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2222222222b a bca cb b ac b c a a =-+⋅-+⋅, 整理得0))((22222=-+-c b a b a ∴ 22222c b a b a =+=或即三角形为等腰三角形或直角三角形例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状;(2)已知sinA=CB CB cos cos sin sin ++,试判断三角形的形状.解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得c b abc b a a ac b c a a +=-+⋅+-+⋅22222222,化简整理得 0))((222=+--c b c b a∴222c b a +=即三角形为直角三角形.例5:在△ABC 中,(1)已知a -b=ccosB -ccosA ,判断△ABC 的形状.(2)若b=asinC,c=acosB,判断△ABC 的形状.解:(1)由已知结合余弦定理可得bc a c b c ac b c a c b a 22222222-+⋅--+⋅=-,整理得0))((222=-+-c b a b a ∴222c b a b a =+=或,∴三角形为等腰三角形或直角三角形(2)由b=asinC 可知 ABC a b sin sin sin ==,由c=acosB 可知ac b c a a c 2222-+⋅=整理得222a c b =+,即三角形一定是直角三角形,∠A=ο90,∴sinC=sinB ∴∠B=∠C ,∴△ABC为等腰直角三角形. 例6:已知△ABC 中,54cos =A ,且3:2:1)2(::)2(=+-c b a ,判断三角形的形状. 解:由题意令)0(32,2,2>=+==-k k c k b k a ,则23,2,2-==+=k c k b k a∵54cos =A ,由余弦定理得4=k ∴ 10,8,6===c b a ∴ 222c b a =+即△ABC 为直角三角形.7.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,cc b A 22cos 2+=,则△ABC 的形状为______8.在∆ABC 中,若tan 2,tan A c bB b-=,则A=类型二 求范围与最值1、在ABC ∆中,角C B A 、、所对的边分别为c b a 、、满足bc a c b =-+222,0>⋅,23=a ,则cb +的取值范围是 2、在△ABC 中,AD 为BC 边上的高线,AD =BC ,角A ,B ,C 的对边为a ,b ,c ,则b c +c b的最大值是________.解析 因为AD =BC =a ,由12a 2=12bc sin A ,解得sin A =a2bc,再由余弦定理得cos A =b 2+c 2-a 22bc 211(sin )22b c a b c A c b bc c b⎛⎫=+-=+- ⎪⎝⎭,得b c +cb =2cos A +sin A ,又A ∈(0,π),最大值为 5解析几何或者几何法1解析几何法:,BC 2,AB ,ABC ABC ∆==∆求面积的最大值。

2几何法:ABC ∆,知道BC=4,B 的范围。

方程有解,利用判别式求范围。

附例:4、已知ABC ∆中,B=3,3=b π,且ABC ∆有两解,则边a 的取值范围是5、借力打力型求取值范围 附例:钝角三角形中,3B π=,若最大边和最小边长的比为m ,则m 的取值范围是 ?+-33ππαα设钝角三角形的另外两个角是,6、已知△ABC 中,AB =1,BC =2,则角C 的取值范围是7、在△ABC 中若2C B ∠=∠,则ABAC的取值范围8、已知ABC ∆中,B=3,3=b π,且ABC ∆有一解,则边a 的取值范围是9、已知ABC ∆中,,2,45a x b B ===o,若该三角形有两解,则x 的取值范围是 10、钝角三角形ABC 的三边长为a ,a +1,a +2(a N ∈),则a= 11、在锐角ABC ∆中,1BC =,2B A =,则AC 的取值范围为 .12、设ABC ∆的内角A ,B ,C 所对的边分别为c b a ,,,若三边的长为连续的三个正整数,且C B A >>,C A 2=,则C B A sin :sin :sin 为B A Ca c b14、在锐角三角形ABC ∆中,B A 2=,则c b b +的取值范围是 )21,31( 15、在锐角三角形ABC ∆中,kb ac S 22)(--=,C 既不是最大角,也不是最小角,求k值取值范围________.)90,45(,2tan4οο∈=C Ck ,)4,424(-∈k 16. 在钝角三角形ABC ∆中,已知,2,1==b a 则c 的取值范围为 )3,5()3,1(⋃类型三 求值专题1、在△ABC 中,若BC=5,CA=7,AB=8,则△ABC 的最大角与最小角之和是 .2、在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C =________.3、在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°,若AC =2AB ,则BD =________.解析:∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,∴设b +c =4k ,c +a =5k ,a +b =6k (k >0),解得a =72k ,b =52k ,c =32k ,∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.答案:7∶5∶34、钝角三角形边长为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.5、在△ABC 中,已知a-b=4,a+c=2b 且最大内角为1200,则a= . 6、如果满足∠ABC =60°,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是________.7、在△ABC 中,若C =30°,AC =33,AB =3,则△ABC 的面积为________.解析:由正弦定理得:AB sin C =AC sin B ,sin B =AC AB sin C =333·12=32,所以B =60°或120°.当B =60°时,S △=12AB ×AC =12·3·33=932;当B =120°时,S △=12AB ×AC ·sin30°=934.答案:932或9348、 仅有一个等式作为方程求解时,注意整体思想,整体带入附例:在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b=6cos C ,则tan C tan A +tan C tan B的值是____4____9 海上有A 、B 两个小岛,相距10海里,从A 岛望C 岛和B 岛成60º的视角,从B 岛望C岛和A 岛成75º的视角;则B 、C 间的距离是 海里.10.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测得该渔轮在方位角45º、距离为10海里的C 处,并测得渔轮正沿方位角105º的方向、以每小时9海里的速度向附近的小岛靠拢。

我海军舰艇立即以每小时21海里的速度前去营救;则舰艇靠近渔轮所需的时间是 小时.11、在ABC ∆中,若A =600,a =23sin 2sin 3sin a b cA B C++=++__________. 412、在∆ABC 中,三边a ,b ,c 与面积s 的关系式为2221(),4s a b c =+-则角C为 .45o13、在ABC ∆中,在∆ABC 中,若tan 2,tan A c bB b-=,求A . 解:由正弦定理知C R c sin 2=,B b sin =,B B C BB A Asin sin sin 2cos sin cos sin -=∴1sin sin 2-=B CBC B A B A sin sin 21sin cos cos sin =+∴,B C A B B A sin sin 2cos sin )sin(=+∴,B CA B C sin sin 2cos sin sin =∴, 21cos =∴A ,3π=∴A .。

相关文档
最新文档