数值分析--第4章数值积分与数值微分[1]详解
数值分析-第4章 数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析(李庆杨第四版)Cht4 数值积分和数值微分

1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,,n), 则有
| In ( f ) In ( ~f ) |
n
wk
[
f
(
xk
)
~fk
].
定义3
若
0,
k 0
0,只要
f (xk )
~fk
(k
0,,n), 就有
| In ( f ) In ( ~f ) |
n
其中系数l (l 1,2,)与h无关.
T
( h) 2
I
1
h2 4
2
h4 16
l
h 2l
2
.
T1(h)
4T (h) T (h)
2
3
I
1h4 2h6 .
T1( h2)
I
1
h4 16
2
h6 64
.
T2 (h)
16T1(
h) 2
T1(h)
15
I
1h6
2h8
.
( 4.7) ( 4.8) ( 4.9)
1 8
2
1 3
0.000434 .
RS
I
S4
1 2880
1 4
4
1 5
0.27110-6.
作业 P159, 6.
§4 龙贝格求积算法
一、梯形公式的递推化(变步长求积法)
把区间[a,b]作n等分得n个小区间[xi , xi1],
h ba,则 n
复合梯形公式
Tn
n1h [
i02
f
(xi )
具有相应的收敛性和稳 定性.
复合柯特斯求积公式
数值分析课件第4章数值积分与数值微分

森(simpson)公式(又称为抛物形求积公式),即
S b a [ f (a) 4 f (a b) f (b)].
6
2
上页 下页
n = 4 时的牛顿-柯特斯公式就特别称为柯特斯公 式. 其形式是
上页 下页
4.1.1 数值求积的基本思想
由积分中值定理, 对连续函数f(x), 在区间[a, b]
内至少存在一点,使
I
b
a
f
(x)d
x
(b
a)
f
(
)
只要对平均高度 f() 提供一种近似算法, 便可相应
地获得一种数值求积方法. 即所谓矩形公式.
几何图形见书p119.
上页 下页
例如, 用区间[a, b]两端点的函数值 f(a)与f(b)的
nn
(t j)dt
0 jk
(k=0,1,,n)
则 Ak (b a)Ck(n) , 于是得求积公式
n
In (b a) Ck(n) f ( xk )
k0
称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, Ck(n) 称 为柯特斯系数。
显然, 柯特斯系数与被积函数 f (x) 和积分区间
如为了构造出上面的求积公式,原则上是一个 确定参数xk和Ak的代数问题.
上页 下页
4.1.3 插值型求积公式
设给定一组节点 a x0 x1 xn1 xn b
且已知f(x)在这些节点上的函数值 f(xk), 则可求得f(x)
的拉格朗日插值多项式(因为Ln(x)的原函数易求)
n
Ln ( x) f ( xk )lk ( x) 则 f (x)Ln(x)
k0
如果对任I给n( 小f )正 I数n(ε~f>)0, 只n 要Ak误[ f差( x|δkk)|充 ~f分k ]小就 ,有
数值分析--第4章数值积分与数值微分[1]详解
![数值分析--第4章数值积分与数值微分[1]详解](https://img.taocdn.com/s3/m/284cb1eaf61fb7360b4c65ae.png)
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()baI f x dx =⎰,若()f x 在区间[,]a b 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()baf x dx F b F a =-⎰似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算给出数据表时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-= 等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分41arc 1)arc 1)1dx tg tg C x ⎤=+++-+⎦+⎰ 对于上述这些情况,都要求建立定积分的近似计算方法——数值积分法。
1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。
由积分中值定理:对()[,]f x C a b ∈,存在[,]a b ξ∈,有()()()baf x dx b a f ξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a -而高为()f ξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()f ξ。
我们将()f ξ称为区间[,]a b 上的平均高度。
这样,只要对平均高度()f ξ提供一种算法,相应地便获得一种数值求积分方法。
如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b aT f a f b -=+ (4-1) 便是我们所熟悉的梯形公式(图4-2)。
1_数值分析4-数值积分与微分

回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn
h
k 1
fk
2 ( f0
fn )
b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x
xk
)(x
xk
1
),
k (xk , xk1)
(
f0
fn)
(3)
k 1
非等距分割梯形公式
Tn
n1 k 0
fk
fk 1 2
(xk 1
xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。
研究生课程《数值分析》第四章数值积分与数值微分

b
a
f
(x)dx
1 (b 6
a)
f
(a)
4
f
(a
2
b)
f
(b)
y=f(x)
梯形公式把 f(a), f(b) 的加权平均值
1 f (a) f (b)
2
aa ((aa++bb))//22 bb
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
中矩形公式把 [a,b] 的中点处函数值
f
ab 2
定义 (代数精度) 设求积公式(1)对于一切次 数小于等于 m 的多项式( f (x) 1, x, x2 , , xm 或 f (x) a0 a1x a2 x 2 am x m )是准确的,而对于 次数为 m+1 的多项式是不准确的,则称该求积公 式具有 m 次代数精度(简称代数精度)
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
Simpson公式是以函数 f(x)在 a, b, (a+b)/2 这三点的函数
值 f(a),
f(b),
f
a
2
b
的加权平均值
。
1 ( f (a) 4 f ( a b ) f (b))作为平均高度 f() 的近
6
2
似值而获得的一种数值积分方法。
将积分区间细分, 在每个小区间内用简单函数代替复 杂函数进行积分,这是数值积分的思想。本章主要讨论 用代数插值多项式代替 f(x) 进行积分。
5.1.1 数值积分的基本思想
积分 I b f (x)dx 在几何上可以理解为由 x=a, x=b, a
y=0 以及 y = f(x) 这四条边所围成的曲边梯形面积。如图 1 所 示,而这个面积之所以难于计算是因为它有一条曲边 y=f(x)。
数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分

( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2
记
1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1
4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。
数值分析4数值积分与数值微分

第4 章4数与数微数值积分与数值微分本章内容411.1 光波的特性4.1 引言4.2 Newton-Cotes 公式1.2 光波在介质界面上的反射和折射4.3 Romverg 算法4.4Gauss 1.3 光波在金属表面上的反射和折射4.4 Gauss 公式4.5 数值微分2本章要求主要内容:机械求积、牛顿柯特斯公式、龙贝格算法、高斯公式、•—数值微分。
•基本要求–(1)了解数值微分公式的导出方法及常用的数值微分公式。
–(2) 掌握数值积分公式的导出方法,截断误差;理解代数精度的概念,会用待定系数法。
–(3) 掌握梯形求积公式,抛物线求积公式,牛顿-柯特斯公式的构造及使用,并会应用公式求积分。
(4)熟悉复化梯形公式复化辛普生公式–(4) 熟悉复化梯形公式,复化辛普生公式。
–(5) 会用龙贝格积分法。
–(6) 了解高斯型求积公式的概念及导出方法,能构造简单问题的高精度求积公式,会使用常见的几种高斯型求积公式进行计算。
积公式会使用常见的几种高斯型求积公式进行计算•重点、难点重点牛顿柯特斯公式–重点:牛顿-柯特斯公式;–难点:代数精度的概念。
3414114.1 引言4.1.1 数值求积的基本思想一、问题,d)(∫=b a xxfI数学分析中的处方法由微积分学基本定当如何求积分数学分析中的处理方法:由微积分学基本定理,当f(x)在[a, b]上连续时,存在原函数F(x),牛顿-莱布尼茨(Newton-Leibniz)公式:).()(d)(aFbFxxf ba−=∫但有时用上面的方法计算定积分有困难但有时用上面的方法计算定积分有困难。
441N-L4.1 引言N L公式失效的情形:这时,N-L公式也不能直接运用。
因此有必要研究问题即用数值方法计算定积分因此,有必要研究数值积分问题,即用数值方法计算定积分的近似值.541二、构造数值积分公式的基本思想4.1 引言、构造数值积分公式的基本思想问题:点ξ的具体位置一般是不知道的,因而难以准确算出的值,怎么办?f(ξ)641采用不同的近似计算方法从而得到各种不同的4.1 引言)对f(ξ)采用不同的近似计算方法,从而得到各种不同的数值求积公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()ba I f x dx =⎰,若()f x 在区间[,]a b 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()baf x dx F b F a =-⎰似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算给出数据表时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-= 等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分241arc 1)arc 1)1dx tg tg C x ⎡⎤=+++-+⎣⎦+⎰ 对于上述这些情况,都要求建立定积分的近似计算方法——数值积分法。
1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。
由积分中值定理:对()[,]f x C a b ∈,存在[,]a b ξ∈,有()()()baf x dx b a f ξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a -而高为()f ξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()f ξ。
我们将()f ξ称为区间[,]a b 上的平均高度。
这样,只要对平均高度()f ξ提供一种算法,相应地便获得一种数值求积分方法。
如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b aT f a f b -=+ (4-1) 便是我们所熟悉的梯形公式(图4-2)。
而如果改用区间中点2a bc +=的“高度”()f c 近似地取代平均高度()f ξ,则可导出所谓中矩形公式(简称矩形公式)()2a b R b a f +⎛⎫=- ⎪⎝⎭(4-2)更一般地,我们可以在区间[,]a b 上适当选取某些节点k x ,然后用()k f x 加权平均得到平均高度()f ξ的近似值,这样构造出的求积公式具有下列形式:()()nbk k ak f x dx A f x =≈∑⎰(4-3)式中k x 称为求积节点;k A 成为求积系数,亦称伴随节点k x 的权。
权k A 仅仅与节点k x 的选取有关,而不依赖于被积函数()f x 的具体形式。
这类由积分区间上的某些点上处的函数值的线性组合作为定积分的近似值的求积公式通常称为机械求积公式,它避免了Newton-Leibnitz 公式寻求原函数的困难。
对于求积公式(4-3),关键在于确定节点{}k x 和相应的系数{}k A 。
1.2 代数精度的概念由Weierstrass 定理可知,对闭区间上任意的连续函数,都可用多项式一致逼近。
一般说来,多项式的次数越高,逼近程度越好。
这样,如果求积公式对m 阶多项式精确成立,那么求积公式的误差仅来源于m 阶多项式对连续函数的逼近误差。
因此自然有如下的定义定义4.1 如果某个求积公式对于次数不超过m 的多项式均准确地成立,但对于1m +次多项式就不准确成立,则称该求积公式具有m 次代数精度。
例1 判断求积公式111()[58(0)5(9f x dx f f f -≈++⎰ 的代数精度。
解 记111()()()[58(0)5(9I f f x dx I f f f f -==++⎰%, 因为111(1)2(1)(585)29I dx I -===++=⎰%,111()()[5805(09I x xdx I x -==⨯+⨯+⨯=⎰%=0,图4-1 图4-21222112()()(50.68050.6)93I x x dx I x -==⨯+⨯+⨯=⎰%2=,313333311()()[505(]09I x x dx I x -==⨯++⨯=⎰%=0, 1444112()()(50.36050.36)95I x x dx I x -==⨯++⨯=⎰%2=,515555511()()[505(]09I x x dx I x -==⨯++⨯=⎰%=0, 166633112()()[5(0.6)05(0.6)]0.2497I x x dx I x -==⨯++⨯=≠⎰%2=,7所以求积公式具有5次代数精度。
1.3插值型的求积公式最直接自然的一种想法是用()f x 在[,]a b 上的插值多项式()n x ϕ代替()f x ,由于代数多项式的原函数是容易求出的,我们以()n x ϕ在[,]a b 上的积分值作为所求积分()I f 的近似值,即()()bn aI f x dx ϕ≈⎰这样得到的求积分公式称为插值型求积公式。
通常采用Lagrange 插值。
设[,]a b 上有1n +个互异节点01,,,n x x x L ,()f x 的n 次Lagrange 插值多项式为()()()nn k k k L x l x f x ==∑其中0()n ik j k ij kx x l x x x =≠-=-∏,插值型求积公式为 0()()()nbn k k ak I f L x dx A f x =≈=∑⎰ (4-4)其中(), 0,1,,bk ka A l x dx k n ==⎰L 。
可看出,{}k A 仅由积分区间[,]a b 与插值节点{}k x 确定,与被积函数()f x 的形式无关。
求积公式(4-4)的截断误差为(1)1()()()()()(1)!n bbbn n n aaaf R f f x dx L x dx x dx n ξω++=-=+⎰⎰⎰(4-5)定义4.2 求积公式()()nbk k ak f x dx A f x =≈∑⎰如其系数()bk ka A l x dx =⎰,则称此求积公式为插值型求积公式。
定理4.1 形如(4-3)的求积公式至少有n 次代数精度的充分必要条件是插值型的。
证明 如果求积公式(4-3)是插值型的,由公式(4-5)可知,对于次数不超过n 的多项式()f x ,其余项[]R f 等于零,因而这时求积公式至少具有n 次代数精度。
反之,如果求积公式(4-3)至少具有n 次代数精度,那么对于插值基函数()k l x 应准确成立,并注意到()k j jk l x δ=,即有()()nbkj k j k a j l x dx A l x A ===∑⎰所以求积公式(4-3)是插值型的。
1.4 求积公式的收敛性与稳定性定义4.3 在求积公式(4-3)中,若0lim ()()nbk k an k h A f x f x dx →∞=→=∑⎰其中11max()i i i nh x x -≤≤=-,则称求积公式(4-3)是收敛的。
实际使用任何求积公式时,除截断误差外,还有舍入误差,因此我们必须研究其数值稳定性。
在求积公式(4-3)中,由于计算()k f x 可能产生误差k δ,实际得到k f %,即()k k kf x f δ=+%,记 0()(),()nnn k k n k kk k I f A f x I f A f ====∑∑%% 如果对任给正数0ε>,只要误差k δ充分小就有()()()nn n kk k k I f I f Af x f ε=⎡⎤-=-≤⎣⎦∑%% (4-6) 它表明求积公式(4-3)计算是稳定的,由此给出:定义4.4 对任给0ε>,若存在0δ>,只要() (0,1,,)k kf x f k n δ-≤=%L 就有(4-6)成立,则称求积公式(4-3)是稳定的。
定理4.2 若求积公式(4-3)中系数0 (0,1,,)k A k n >=L ,则此求积公式是稳定的;若k A 有正有负,计算可能不稳定。
证明 对任给0ε>,若取b aεδ=-,对0,1,,k n =L 都有()k kf x f δ-≤%,则有 0()()()()nnnn n k k k k k k k k k k I f I f A f x f A f x f A δ===⎡⎤-=-≤-≤⎣⎦∑∑∑%%% 注意对任何代数精度0≥的求积公式均有(1)1nbkn ak AI dx b a ====-∑⎰可见0k A >时,有()()()nnn n k k k k I f I f A A b a δδδε==-≤==-=∑∑%由定义4.4可知求积公式(4-3)是稳定的。
若k A 有正有负时,假设(())0k k kA f x f ->%,且()k k f x f δ-=%,有 00()()()()()nnn n kk k k k k k k n nk k k k I f I f Af x f A f x f A A b a δδδ====⎡⎤-=-=-⎣⎦=>=-∑∑∑∑%%%它表明初始数据的误差可能会引起计算结果误差的增大,即计算可能不稳定。
2 Newton-Cotes 公式2.1 Cotes 系数被积函数在积分区间内变化平缓,可用等距节点插值公式近似。
将积分区间[,]a b 划分为n 等分,步长b ah n-=,等距节点,0,1,,k x a kh k n =+=L 。
此时求积公式(4-4)中的积分系数可得到简化 00()()n n b b b j k k a a aj j k j j kj kx x x a jhA l x dx dx dx x x k j h==≠≠---===--∏∏⎰⎰⎰作变换x a th =+,则有000000()(1)(1)()()()()!()!!()!n k n k n n nnn n k j j j j kj kj kt j h h b a A hdt t j dt t j dt k j h k n k k n k n --===≠≠≠----==-=----∏∏∏⎰⎰⎰ 令()00(1)()!()!n kn n n kj j kCt j dt k n k n -=≠-=--∏⎰ 则()()n k k A b a C =-,求积公式(4-4)可简化为()0()()()nn k k k I f b a C f x =≈-∑ (4-7)称为n 阶Newton-Cotes 公式,简记为N-C 公式,{}()n k C 称为Cotes 系数。
由()n k C 的表达式可看出,它不但与被积函数无关,而且与积分区间也无关。