数值分析第四章数值积分与数值微分习题复习资料
数值分析第四章习题

数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。
〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。
〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。
〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。
〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。
〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。
〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。
数值分析-第4章 数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析Cht4数值积分和数值微分

x
j
)dx.
(1.7)
定理1
求积公式
ab f
( x)dx
n
wk
fk至少具有n次代数精度
k 0
它是插值型求积公式.
四、求积公式的余项
若求积公式
b
f (x)dx
a
n
wk fk的代数精度为m, 则其余项
k 0
R[ f ]
b
f (x)dx
a
n
wk fk Kf (m1) (),
k 0
a,b.
定义2 在求积公式(1.3)中, 若
lim
n
n
wk
k 0
f
( xk
)
ab
f
(x)dx,
h0
其中h max(xi xi1),则称求积公式(1.3)是收敛的.
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,, n), 则有
| In ( f ) In ( ~f ) |
12
(a,b).
2. 中矩形公式的余项
b f (x)dx f (a b)(b a), 代数精度为1.
a
2
K
1 2
1
3
(b3
a3)
(b
a)
a
2
b
2
(b
a)3 24
中矩形公式的余项 : R[ f ] (b a)3 f ''(),
24
(a,b).
五、求积公式的收敛性和稳定性
wk fk
k 0
1 1 (m 1)! m
2
(bm2
am2 )
n k 0
wk
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析--第4章数值积分与数值微分[1]详解
![数值分析--第4章数值积分与数值微分[1]详解](https://img.taocdn.com/s3/m/284cb1eaf61fb7360b4c65ae.png)
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()baI f x dx =⎰,若()f x 在区间[,]a b 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()baf x dx F b F a =-⎰似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算给出数据表时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-= 等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分41arc 1)arc 1)1dx tg tg C x ⎤=+++-+⎦+⎰ 对于上述这些情况,都要求建立定积分的近似计算方法——数值积分法。
1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。
由积分中值定理:对()[,]f x C a b ∈,存在[,]a b ξ∈,有()()()baf x dx b a f ξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a -而高为()f ξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()f ξ。
我们将()f ξ称为区间[,]a b 上的平均高度。
这样,只要对平均高度()f ξ提供一种算法,相应地便获得一种数值求积分方法。
如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b aT f a f b -=+ (4-1) 便是我们所熟悉的梯形公式(图4-2)。
第四章 数值积分及习题

(3) 被积函数f(x)没有具体的解析表达式, 其函数关系由表格或图形表示.对于这些情况, 要计算积分的准确值都是十分困难的. 由此可见, 通过原函数来计算积分有它的局限性, 因而研究一种新的积分方法来解决Newton-Leibniz公式所不能或很难解决的积分问题,这时需要用数值解法来建立求积分的近似计算方法.但是点ξ的具体位置一般是未知的, 因而的值也是未知的, 称为f (x )在区间[a ,b ]上的平均高度.那么只要对平均高度提供一种算法,相应地就获得一种数值求积方法)(ξf )(ξf )(ξf定义4.1如果某个求积公式对于次数不大于m 的多项式均能准确的成立,但对于m+1次多项式就不一定准确,则称该求积公式具有m 次代数精度.从而验证求积公式的代数精度时,只需验证该求积公式对是否成立即可.12,,,,,1)(+=m m x x x x x f 4.1.2 代数精度的概念mm xa x a x a a x f ++++= 2210)(注:由于次数不大于m 的多项式可以表示为例4.2验证梯形公式的代数精度.练习4.1验证中矩形公式和Simpson公式的代数精度.(2)先用某个简单函数近似逼近f (x ), 用代替原被积函数f (x ),即)(x ϕ)(x ϕ⎰⎰≈babadxx dx x f )()(ϕ要求:函数应对f (x )有充分的逼近程度,并且容易计算其积分.)(x ϕ由于多项式能很好地逼近连续函数,且又容易计算积分,因此将选取为插值多项式, 这样f (x )的积分就可以用其插值多项式的积分来近似代替)(x ϕ以此构造数值算法.定理4.1n +1个节点的求积公式至少有n 次代数精度的充要条件是它是插值型的.()nn k k k I A f x ==∑代入插值求积公式(4.6)有()0()()k nn n k k I b a C f x ==-∑称为Newton-Cotes 求积公式,称为Cotes 系数()kn C (2)显然, 是不依赖于积分区间[a ,b ]以及被积函数f (x )的常数,只要给出n ,就可以算出Cotes 系数.()kn C (1)容易验证()01nn kk C==∑注(4.7)4.2.2 偶阶求积公式的代数精度n阶Newton-Cotes公式至少具有n次代数精度梯形公式(一阶Newton-Cotes公式)具有1次代数精度Simpson公式(二阶Newton-Cotes公式)具有3次代数精度定理4.2当n为偶数时, Newton-Cotes公式(4.7)至少有n+1次代数精度.4.2.4 复化求积法及其收敛性由梯形、Simpson和Cotes求积公式余项可知,随着求积节点数的增多,对应公式的精度也会相应提高.但由于n≥8时的Newton-Cotes公式开始出现负值的Cotes 系数.根据误差理论的分析研究,当积分公式出现负系数时,可能导致舍入误差增大,并且往往难以估计.因此不能用增加求积节点数的方法来提高计算精度.在实际应用中,通常将积分区间分成若干个小区间,在每个小区间上采用低阶求积公式,然后把所有小区间上的计算结果加起来得到整个区间上的求积公式,这就是复化求积公式的基本思想.常用的复化求积公式有复化梯形公式和复化Simpson 公式.。
数值分析(清华大学第五版) 第四章数值积分和微分
b
a
l j ( x)dx ( x x j -1 )( x x j 1 ) ( x x j 1 )( x x j 1 ) ( x xn ) ( x j xn )
dx
作变量代换, x a th ,则
n t (t 1) h (t j 1)(t j 1) (t n) 上式 dt b a 0 j ( j 1) 1(1) ( j n) 1 n t (t 1) (t j 1)(t j 1) (t n) dt n 0 j ( j 1) 1 (1) ( j n)
该积分仅与 n 有关,与 a, b, f ( x) 无关.
③ 设 n 1 个线性无关的次数 n 的多项式为 e0 ( x), 等距结点 x0 ,
过同样 , en ( x) ,
, xn , 对每一个 ei ( x) 利用 Newton Cotes 公式求积,且积分
余项均为零.即有
n b 1 b a a e0 ( x) dx c j e0 ( x j ) j 0 n 1 b e1 ( x)dx c j e( x j ) a (1) b a j 0 n b 1 b a a en ( x)dx c j en ( x j ) j 0
, n) ,
又设过该结点的次数 n 的 Lagrange插值多项式
P( x) f ( x j )l j ( x) ,
j 0
n
余项
f ( ) R( x) ( x) . (n 1)!
( n 1)
代数精确度
b n
定义 设求积公式 f ( x)dx A j f ( x j ) R(a, b, f ) .
研究生课程《数值分析》第四章数值积分与数值微分
b
a
f
(x)dx
1 (b 6
a)
f
(a)
4
f
(a
2
b)
f
(b)
y=f(x)
梯形公式把 f(a), f(b) 的加权平均值
1 f (a) f (b)
2
aa ((aa++bb))//22 bb
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
中矩形公式把 [a,b] 的中点处函数值
f
ab 2
定义 (代数精度) 设求积公式(1)对于一切次 数小于等于 m 的多项式( f (x) 1, x, x2 , , xm 或 f (x) a0 a1x a2 x 2 am x m )是准确的,而对于 次数为 m+1 的多项式是不准确的,则称该求积公 式具有 m 次代数精度(简称代数精度)
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
Simpson公式是以函数 f(x)在 a, b, (a+b)/2 这三点的函数
值 f(a),
f(b),
f
a
2
b
的加权平均值
。
1 ( f (a) 4 f ( a b ) f (b))作为平均高度 f() 的近
6
2
似值而获得的一种数值积分方法。
将积分区间细分, 在每个小区间内用简单函数代替复 杂函数进行积分,这是数值积分的思想。本章主要讨论 用代数插值多项式代替 f(x) 进行积分。
5.1.1 数值积分的基本思想
积分 I b f (x)dx 在几何上可以理解为由 x=a, x=b, a
y=0 以及 y = f(x) 这四条边所围成的曲边梯形面积。如图 1 所 示,而这个面积之所以难于计算是因为它有一条曲边 y=f(x)。
最新数值分析第四章数值积分与数值微分习题答案
第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
(2)若21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1014h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则32211163h h A h A -=+ 从而解得11438383A h A h A h -⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则22322()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则22452264()5hhhhf x dx x dx h --==⎰⎰510116()(0)()3A f h A f A f h h --++=故此时,21012()()(0)()hhf x dx A f h A f A f h --≠-++⎰因此,21012()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
数值分析分章复习(第四章数值积分)
2第四章数值积分要点:(1)数值积分公式的代数精确度概念,代数精确度所蕴含的余项表达式(2) 插值型求积公式的构造及余项表达式 (3) 插值型求积公式关于代数精确度的结论及证明 (4) 梯形公式、SimPSOn 公式的形式及余项表达式 (5) 复合梯形公式、复合 SimPSOn 公式及其余项表达式 (6) 掌握如何根据要求的精度依据复合梯形(或SimPSOn )公式的余项确定积分 区间[a,b ]的等分次数n(7) NeWton-Cotes 求积分公式的特点以及代数精确度的结论 (8) 高斯型求积公式的概念复习题:1、已知求积公式为(1)确定它的代数精度,并指出它是否为GaUSS 公式;解: ( 1)依次取f (x) =1, x, X 2,X 3,X 4, X 5代入积分公式可发现:左端= 右端, 而当取f(x) =X 6时,左端尸可端 可见该是求积公式具有 5阶代数精确度由于求积公式节点数为 n = 3,而公式代数精确度 P = 2n -1 所以该求积公式为 GaUSS 公式1 / χ2+ 0 4 1討心dχ^(5P5166+沪 O.4264+轿 0∙5166" 0.95302、对于2结点插值型求积公式 L f (x Jdx 常A O f(X 0 )+A 1f (x 1 )。
(1)如果求积分公式是两结点牛顿一科特斯求积公式,请给出求积系数 A 0, A 1 ,求积 结点X 0,X 1 ,并给出积分余项表达式f x dx5f √0.6 8f 0 5f -、0.6(2)用此求积公式计算定积分1X 20.4 -讥5X 4 2.2(1)对于f(χ)X 2 0.4 '■ 5X 4 2.2f(-0,6)二X 2 0.4 '■5X 42.2= 0.5166, f (0)=0.426416 31 X3、 分别用梯形公式和二点 GaUSS 公式计算积分[edx ,比较二者的精度1X1 0 1解:利用梯形公式,e x dx (e 0 e 1) 1.8592*0 2注:GaUSS 公式部分不要1X4、 对于积分O ^^dX 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.564646
1.564648
2
1.564646
1.564646
1.564646
即人造卫星轨道的周长为48708km
11。证明等式
试依据 的值,用外推算法求 的近似值。
解
若
又
此函数的泰勒展式为
当 时,
当 时,
当 时,
由外推法可得
n
3
2.598076
6
3.000000
3.133975
9
3.105829
10.2075712
10.2075943
10.2075939
10.2075936
5
10.2112607
10.2075909
10.2075922
10.2075922
10.2075922
10.2075922
因此
9。用 的高斯-勒让德公式计算积分
解:
令 ,则
用 的高斯—勒让德公式计算积分
用 的高斯—勒让德公式计算积分
令 ,则
故此时,
因此,
具有3次代数精度。
2.分别用梯形公式和辛普森公式计算下列积分:
解:
复化梯形公式为
复化辛普森公式为
复化梯形公式为
复化辛普森公式为
复化梯形公式为
复化辛普森公式为
复化梯形公式为
复化辛普森公式为
3。直接验证柯特斯教材公式(2。4)具有5交代数精度。
证明:
柯特斯公式为
令 ,则
令 ,则
令 ,则
10地球卫星轨道是一个椭圆,椭圆周长的计算公式是
这是 是椭圆的半径轴,c是地球中心与轨道中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R=6371(km)为地球半径,则
我国第一颗地球卫星近地点距离h=439(km),远地点距离H=2384(km)。试求卫星轨道的周长。
解:
从而有。
0
1.564640
3.141105
3.141580
故
12。用下列方法计算积分 ,并比较结果。
(1)龙贝格方法;
(2)三点及五点高斯公式;
(3)将积分区间分为四等分,用复化两点高斯公式。
解
(1)采用龙贝格方法可得
k
0
1.333333
1
1.166667
1.099259
2
1.116667
1.100000
1.099259
3
1.103211
从而解得
令 ,则
故 成立。
令 ,则
故此时,
故
具有3次代数精度。
(2)若
令 ,则
令 ,则
令 ,则
从而解得
令 ,则
故 成立。
令 ,则
故此时,
因此,
具有3次代数精度。
(3)若
令 ,则
令 ,则
令 ,则
从而解得
或
令 ,则
故 不成立。
因此,原求积公式具有2次代数精度。
(4)若
令 ,则
令 ,则
令 ,则
故有
令 ,则
又 且
又
即计算值比准确值大。
其几何意义为, 为下凸函数,梯形面积大于曲边梯形面积。
8。用龙贝格求积方法计算下列积分,使误差不超过 .
解:
0
0.7717433
1
0.7280699
0.7135121
2
0.7169828
0.7132870
0.7132720
3
0.7142002
0.7132726
0.7132717
13.用三点公式和积分公式求 在 ,和1.2处的导数值,并估计误差。 的值由下表给出:
x
1.0 1.1 1.2
F(x)
0.2500 0.2268 0.2066
解:
由带余项的三点求导公式可知
又
又
又
故误差分别为
利用数值积分求导,
设
由梯形求积公式得
从而有
故
又
且
从而有
故
即
解方程组可得
解:
采用复化梯形公式时,余项为
又
故
若 ,则
当对区间 进行等分时,
故有
因此,将区间213等分时可以满足误差要求
采用复化辛普森公式时,余项为
又
若 ,则
当对区间 进行等分时
故有
因此,将区间8等分时可以满足误差要求。
7。如果 ,证明用梯形公式计算积分 所得结果比准确值 大,并说明其几何意义。
解:采用梯形公式计算积分时,余项为
1.098726
1.098641
1.098613
4
1.099768
1.098620
1.098613
1.098613
1.098613
故有
(2)采用高斯公式时
此时
令 则
利用三点高斯公式,则
利用五点高斯公式,则
(3)采用复化两点高斯公式
将区间 四等分,得
作变换 ,则
作变换 ,则
作变换 ,则
作变换 ,则
因此,有
第四章数值积分与数值微分
1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:
解:
求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若
令 ,则
令 ,则
令 ,则
令 ,则
令 ,则
令 ,则
令 ,则
因此,该柯特斯公式具有5次代数精度。
4。用辛普森公式求积分 并估计误差。
解:
辛普森公式为
此时,
从而有
误差为
5。推导下列三种矩形求积公式:
证明:
两边同时在 上积分,得
即
两边同时在 上积分,得
即
两连边同时在 上积分,得
即
6。若用复化梯形公式计算积分 ,问区间 应人多少等分才能使截断误差不超过 ?若改用复化辛普森公式,要达到同样精度区间 应分多少等分?
0.7132717
因此
0
3.451313
1
8.628283
-4.446923
因此
0
14.2302495
1
11.1713699
10.1517434
2
10.4437969
10.2012725
10.2045744
3
10.2663672
10.2072240
10.2076207
10.2076691
4
10.2222702