数值分析积分下
数值分析-第4章 数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
1_数值分析4-数值积分与微分

回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn
h
k 1
fk
2 ( f0
fn )
b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x
xk
)(x
xk
1
),
k (xk , xk1)
(
f0
fn)
(3)
k 1
非等距分割梯形公式
Tn
n1 k 0
fk
fk 1 2
(xk 1
xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。
数值积分使用数值方法计算定积分

数值积分使用数值方法计算定积分定积分是数学中的重要概念,用于求解曲线下面的面积。
在某些情况下,定积分无法通过解析解来求解,此时可以使用数值方法来进行近似计算。
数值积分是一种广泛应用的技术,本文将介绍数值积分的基本原理以及常见的数值方法。
一、数值积分的基本原理数值积分的基本原理是将曲线下的面积近似为若干个矩形的面积之和。
假设要计算函数f(x)在区间[a, b]上的定积分,首先将[a, b]等分成n个小区间,每个小区间的宽度为Δx=(b-a)/n。
然后,在每个小区间上选择一个代表点xi,计算其对应的函数值f(xi),然后将所有矩形的面积相加,即可得到近似的定积分值。
二、矩形法矩形法是数值积分中最简单的方法之一。
它将每个小区间上的函数值看作是一个常数,然后通过计算矩形的面积来近似定积分的值。
矩形法主要有两种形式:左矩形法和右矩形法。
1. 左矩形法左矩形法使用小区间左端点的函数值来代表整个小区间上的函数值。
即近似矩形的面积为f(xi) * Δx,其中xi为小区间的左端点。
然后将所有矩形的面积相加,得到近似的定积分值。
2. 右矩形法右矩形法与左矩形法相似,仅仅是使用小区间右端点的函数值来代表整个小区间上的函数值。
近似矩形的面积为f(xi + Δx) * Δx,其中xi为小区间的左端点。
同样地,将所有矩形的面积相加,得到近似的定积分值。
三、梯形法梯形法是比矩形法更精确的数值积分方法。
它通过使用每个小区间的两个端点处函数值的平均值来代表整个小区间上的函数值,并计算梯形的面积来近似定积分的值。
梯形法的计算公式为:(f(xi) + f(xi + Δx)) * Δx / 2,其中xi为小区间的左端点。
将所有梯形的面积相加,得到近似的定积分值。
四、辛普森法辛普森法是一种更加高阶的数值积分方法,它使用三个点对应的函数值来逼近曲线。
将每个小区间看作一个二次函数,可以通过拟合这个二次函数来近似定积分的值。
辛普森法的计算公式为:(f(xi) + 4 * f(xi + Δx/2) + f(xi + Δx)) * Δx / 6,其中xi为小区间的左端点。
数值分析--第4章数值积分与数值微分[1]详解
![数值分析--第4章数值积分与数值微分[1]详解](https://img.taocdn.com/s3/m/9edd6ad82f60ddccdb38a082.png)
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿-莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()baf x dx F b F a =-⎰似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算给出数据表时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-= 等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分241arc 1)arc 1)1dx tg tg C x ⎡⎤=+++-+⎣⎦+⎰ 对于上述这些情况,都要求建立定积分的近似计算方法—-数值积分法。
1。
1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定.由积分中值定理:对()[,]f x C a b ∈,存在[,]a b ξ∈,有()()()baf x dx b a f ξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a -而高为()f ξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()f ξ。
我们将()f ξ称为区间[,]a b 上的平均高度。
这样,只要对平均高度()f ξ提供一种算法,相应地便获得一种数值求积分方法.如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b aT f a f b -=+ (4—1) 便是我们所熟悉的梯形公式(图4-2)。
数值分析-数值积分详解

xk
和 Ak 的代数问题.
b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。
1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n
b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:
数值分析中的龙贝格积分法详解

数值分析中的龙贝格积分法详解数值分析是一门研究数值计算方法和数值计算误差的学科,其在科学计算、工程计算以及金融计算等领域中有着广泛的应用。
而龙贝格积分法则是数值分析中常用的一种数值积分方法。
本文将详细介绍龙贝格积分法的原理、计算步骤以及应用场景。
一、龙贝格积分法的原理龙贝格积分法是一种数值积分方法,用于计算给定函数在一定区间上的积分值。
其基本思想是通过逐步逼近积分值,从而提高计算结果的精度。
具体而言,龙贝格积分法通过构造一系列逼近积分值的数列,并利用数列的收敛性质,最终得到所需的积分值。
二、龙贝格积分法的计算步骤1. 确定积分区间[a, b]以及需要计算积分的函数f(x)。
2. 将积分区间[a, b]等分为n个子区间,其中n为正整数。
即将[a, b]分为[a, x1,x2, ..., xn-1, b]。
3. 计算每个子区间的步长h = (b-a)/n。
4. 利用复化梯形公式计算第一级逼近积分值T(1):T(1) = (h/2) * [f(a) + f(b) + 2 * (f(x1) + f(x2) + ... + f(xn-1))]5. 构造递推公式,利用已知的逼近积分值T(k-1)计算第k级逼近积分值T(k):T(k) = (1/2^k) * (4^(k-1) * T(k-1) - T(k-1))6. 判断逼近积分值T(k)的精度是否满足要求,若满足则返回T(k)作为最终的积分值;若不满足,则重复步骤5,计算下一级逼近积分值。
7. 重复步骤5和步骤6,直到满足精度要求或达到迭代次数为止。
三、龙贝格积分法的应用场景龙贝格积分法在数值分析中有着广泛的应用,特别是在科学计算、工程计算以及金融计算等领域中。
以下是一些常见的应用场景:1. 科学计算:龙贝格积分法可以用于计算数学物理模型中的积分,如计算波函数的归一化常数、计算量子力学中的期望值等。
2. 工程计算:在工程领域中,往往需要对曲线或曲面进行积分计算。
数值分析-高斯求积分

p( x)ωn ( x)dx
Ak p( xk )ωn ( xk ) 0
a
k1
即ωn( x)与任意次数不超过n 1的多项式p( x)
在[a, b]上正交
充分性:如果w(x)与任意次数不超过n-1的多项式正 交,则其零点必为Gauss点
设f ( x)为任意次数不超过2n 1次的多项式,
用n ( x)除f ( x)得
3.6 高斯(Gauss)型求积公式
主要内容
• 具有(n+1)个求积节点的Newton-Cotes公式,
b
n
f ( x)dx
Ak f ( xk )
a
k1
至少具有n阶代数精度
•在确定求积公式求积系数Ak的过程中限定求积节点 为等分节点,简化了处理过程,但也降低了求积公 式的代数精度
去掉求积节点 为等分节点的限制条件,会有什么 结果??
1v( x)du(n 1)( x)
-1
1
1
u(n 1)( x)v ( x)d x
-1
v(1)u(n 1) (1) v(1)u(n 1) (1)
1
u(n 1) ( x)v ( x)d x
-1
v (1)u(n 2) (1)
1
u(n 2) ( x)v ( x)d x
-1
v(1)u(n 1) (1) v (1)u(n 2) (1)
a
证明: 必要性: 若x1, x2 ,, xn是高斯点,则求积公式
b
f ( x)dx
a
n
Ak f ( xk )具有2n 1次代数精度
k1
作多项式, ωn( x) ( x x1)( x x2 ) ( x xn ), 设p( x)为