基于单片机的智能温室大棚监控系统的设计
基于STM32单片机的温室大棚监控系统开发

引言
随着现代农业的发展,温室大棚在农业生产中发挥着越来越重要的作用。温室 大棚能够提供适宜的土壤和气候条件,使得农作物可以在不同的季节正常生长。 然而,温室大棚的环境条件对农作物的生长有着至关重要的影响。为了确保农 作物的高产和优质,需要对温室大棚的环境进行智能控制,包括温度、湿度、 光照等因素。
3.实用性:系统的设计和实现均考虑到实际应用场景,使得操作简单便捷。系 统的能耗较低,适于在电池供电条件下长时间运行。
谢谢观看
关键词:
1、STM32单片机:STM32系列单片机是意法半导体公司推出的一款基于ARM Cortex-M内核的32位单片机,具有高性能、低功耗、易于开发等特点。
2、温室大棚:温室大棚是一种用于农业生产的高效设施,可以为农作物提供 适宜的生长环境,通过控制光照、温度、湿度等因素,提高农作物的产量和品 质。
2、传感器选择:传感器是监控系统的核心部件,直接影响着数据的准确性和 系统的稳定性。温室内需要监测的温度、湿度、光照等参数,选择相应的传感 器进行数据采集。
3、电路设计:电路设计是系统开发的重要环节,需要考虑各模块之间的接口 和连接方式,保证系统的稳定性和可靠性。
程序开发:
1、初始化程序:初始化程序主要用于配置STM32单片机的引脚、时钟等基本 参数,以及初始化传感器等外设。
基于STM32单片机的温室大棚监控系统 开发
基本内容
随着现代农业的发展,温室大棚在农业生产中发挥着越来越重要的作用。为了 提高温室大棚的产量和效益,监控系统的应用逐渐成为一种趋势。本次演示将 围绕基于STM32单片机的温室大棚监控系统开发,介绍该系统的背景、意义、 关键词、系统设计、程序开发、系统调试、系统应用和结论。
2、用户反馈:用户反馈是评价系统优劣的重要标准。在实际应用中,用户对 温室大棚监控系统的稳定性、可靠性、实用性等方面给出了较高的评价。例如, 有用户反映该系统能够根据环境参数自动调节温室设备,大大减轻了他们的劳 动强度。
基于STM32的智慧农业大棚系统设计

STM32单片机
STM32单片机是一种先进的32位微控制器,被广泛应用于各种嵌入式系统中。 它具有高性能、低功耗、易于开发和维护等特点,适用于各种环境下的高效数 据处理和控制任务。在温室大棚控制系统中,STM32单片机可以作为主控制器, 负责采集和处理各种传感器数据,根据预设算法实现对环境因素的调控。
(2)传感器和执行器的选型和接口设计:根据大棚环境因素的监测和控制需 求,选择适当的传感器和执行器型号,并设计相应的接口电路。
(3)数据传输模块的设计:根据实际需要,可以采用有线或无线方式进行数 据传输。如有线传输可选用RS485或CAN总线等方式;如无线传输可选用 Zigbee、NB-IoT或LoRa等技术。
总结本次演示所述,基于STM32的智能农业大棚系统设计具有以下优点:
1、使用STM32作为核心控制器,数据处理能力强,适用于各种复杂的控制场 景;
2、系统结构完整,包括数据采集、处理、控制和反馈等环节,能够实现对大 棚环境的实时监测与控制;
3、电源模块稳定可靠,可适应 各种环境下的电源供给需求。
引言:
随着科技的不断发展,智能化技术逐渐应用于各个领域,其中智慧农业也是其 中的一个重要方向。智慧农业是指通过物联网、传感器、云计算、大数据等先 进技术,实现农业生产的智能化、精细化、高效化和可视化。智慧农业大棚系 统作为智慧农业的一个重要组成部分,可以对大棚内的环境因素进行实时监测 和控制,提高农作物的产量和质量,
系统设计
1、硬件设计
基于STM32温室大棚控制系统的主要硬件包括STM32单片机、各类传感器(如 温度、湿度、光照强度等)、执行器(如通风机、遮阳帘、加湿器等)和人机 界面等。传感器和执行器与STM32单片机之间通过串口或I2C通信进行数据传 输和控制操作。同时,为了方便用户的使用,系统还设计了友好型的人机界面, 用于实时显示传感器数据和执行器状态,以及远程控制温室大棚的环境因素。
基于单片机的温室大棚自动控制系统毕业设计论文

毕业设计论文基于单片机的温室大棚自动控制系统【摘要】本系统由单片机STC89C52、温度检测电路、湿度检测电路、光照度检测电路、键盘扫描电路、时钟电路、传感器电路以及继电器控制电路等部分组成。
系统采用STC89C52单片机,功能强、功耗低、价格低、稳定可靠、应用广泛、通用性强等特点。
论文完成了以STC89C52单片机为核心对空气温度、土壤湿度、光照度进行数据的采集、处理、显示等系统的基本框图、工作原理和继电器控制的设计的阐述。
该系统对植物生长过程中的土壤湿度、环境温度、光照度进行了实时地、连续地检测、直观地显示并进行自动地控制。
克服了传统的人工测量方法不能进行连续测量的弊端,节省了工作量,并避免了人为的疏漏或错误造成的不必要的损失。
【关键词】单片机、湿敏传感器、数字温度传感器、光敏电阻、继电器控制。
目录1.绪论 (5)1.1选题背景 (5)1.2国内外的发展现状 (5)1.3课题内容、目的及思路 (5)1.4设计过程及工艺要求 (5)2.方案的比较和选择 (6)2.1湿度传感器的选择 (6)2.2温度传感器的选择 (7)2.3光照度传感器的选择 (8)3系统的总体设计 (9)3.1确定系统任务 (9)3.2系统的组成和工作原理 (9)3.3元件的特性 (12)3.3.1 STC89C52特点 (12)3.3.2AD0804特点 (13)4.电路设计 (13)4.1湿度测量电路 (13)4.2温度测量电路 (14)4.3光照度测量电路 (15)4.4数据显示电路 (15)4.5复位电路 (16)4.6键盘电路 (16)4.7继电器控制电路 (17)5.软件设计 (18)5.1主程序流程图 (18)5.2.参数测量子程序流程图 (20)5.3.键盘扫描子程序流程 (20)6.总结.................................................................................................................................. 错误!未定义书签。
基于单片机的温室智能监控系统设计

基于单片机的温室智能监控系统设计[摘要]本文设计了温、湿度智能控制系统。
介绍硬件、软件流程图和rs-485通讯网络。
附属设备主要负责收集数据、显示和发送数据到主机。
当参数超出阈值,设备运行同时发送报警信号。
核心设备经rs-485接收数据,存储数据到数据库,然后以曲线图的方式显示。
实验表明本系统具有很好的可扩展性、宽测量范围和强抗干扰特性。
[关键词]温室,监控系统,scm,通讯网络中图分类号:th 文献标识码:a 文章编号:1009-914x(2013)22-0213-011、简介随着科技进步和人民物质生活水平的提高,设施农业农业生产方式开始由传统分散小规模生产转变为集中大规模农业机械化生产。
智能化温室开始成为未来农业的发展趋势。
现代温室的自动化条件需求和信息系统的智能控制引起越来越多的关注,如何使用控制系统提高温室环境控制精度是目前重要的课题。
为了解决上述问题,根据温室结构分布情况和作物生长特征,运用智能控制算法,本文设计了一种基于微控制器的温度和湿度监控系统。
系统涉及多点温度和湿度数据获取、数据处理和数据显示。
整个系统易于操作,可扩展性强,具有很高的实用价值。
2、系统的工作原理本文设计的温室控制系统具有高精确度、高动力学特性和高稳定性的特点。
包含三部分:主机、附属设备和数据通讯网络。
主机选用工业型计算机,它的功能主要是参数设定、数据存储、数据处理和数据管理。
附属设备是控制部件,控制器是at89s51型单片机,实现监控功能并且在主机断电情况下仍能独立工作。
主机和附属设备之间的通讯总线是rs-485。
当系统上电时,附属设备开始工作。
操作人员首先用键盘设置系统的温度和湿度范围。
主机发送控制参数到附属设备,附属设备利用传感器执行数据检测和数据收集,得到农田内的环境参数并发送到主机。
具体过程是scm系统分别通过温度传感器和湿度传感器检测温度和湿度,并且和设定值比较。
如果温度和湿度超过了设定阈值,单片机系统输出指令使相连接的元件执行动作。
基于单片机的温室大棚温度控制系统设计【开题报告】

毕业设计(论文)开题报告题目:基于单片机的温室大棚温度控制系统设计专业:电子信息工程1选题的背景、意义国内对温室环境控制技术研究起步较晚。
自20世纪80年代以来,我国工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度和二氧化碳等单项环境因子控制技术的研究[1]。
实践证明,单因子控制技术在保证作物获得最佳环境条件方面有一定的局限性。
1996年江苏理工大学研制出一套温室环境控制设备,能对营养液系统、温度、光照、二氧化碳施肥等进行综合控制,在一个150M2的温室内,实现了上述四个因子的综合控制,是目前国产化温室计算机控制系统较为典型的研究成果[2]。
近年来,在国产化技术不断取得进展的同时,也加快了引进国外大型现代化温室设备和综合控制系统的进程。
这些现代温室的引进,对促进我国温室计算机的应用与发展,无疑起到了非常积极的推动作用。
[3]可以看出我国温室设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。
但是,大部分不够理想。
在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与欧美等发达国家相比,存在较大差距,尚需深入研究[4]。
温度、湿度作为温室的重要因素,它们是非常重要的物理量,温度、湿度控制广泛应用于人们的生产和生活中,人们通常使用温度计、湿度计来采集温度和湿度,通过人工加热、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。
即使有些用户采用半导体二极管作为温度传感器,但由于其互换性差,效果也不理想。
在某些行业中对温湿度的要求较高,由于温度过高或过低引起的元器件失效或由于环境湿度过高而引起的事故时有发生,对系统的可靠运行造成影响,甚至危及到系统局部及操作人员的安全[2]。
所以实施对温度的监控也日显重要。
本课题只要采用51单片机对蔬菜大棚中温度、湿度的数据进行采集、测量和控制[5]。
基于单片机温室大棚智能监测系统设计

第4脚:RS是寄存器选择端口,高电平是数据寄存器的选择,低电平是指令寄存器的选择。
第5脚:R/W为读写数据线,高电平为读操作,低电平为写操作。假如RS和R/W同一时间均是低电平,便可以写入指令或者显示地址。
图2-3单片机AT89C51的时钟电路图
1.5复位电路设计
单片机的初始化运作是复位,在RST复位端上外加两个机器周期可使单片机复位。复位电路通常采用两种方式自动复位和复位按钮。电源由电容C添加到复位端短的高电平信号,信号逐渐下降与VCC电容C充电时间RST充电过程,在这一高度的持续时间取决于电容C。因此,为了保证系统能够可靠地复位,在EST引脚高水平必须保持足够长的时间。有两种类型的复位方式,手动按钮和水平脉冲复位。复位电路如图2-4所示
3.调研的目的
在工业设计、农业生产、国防安全等行业,环境参数的监测都有着非常广泛的实际应用。因为使用的环境不同、采集的参数不同,其系统设计也有着很大不同。在现代实际生活和发展中这一系统的应用十分广泛,温度和湿度是室温大棚环境检测系统中两个举足轻重的显示和判断指标,需要对温度和湿度进行定期的抽样检测和分析,从而采用合理的方法进行应对。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口:
P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 INT0(外部中断0) P3.3 INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入) P3.6 WR (外部数据存储器写选通) P3.7 RD (外部数据存储器读选通)
基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计随着科技的发展和人工智能的应用,农业大棚智能监控系统已经成为农业生产中不可或缺的一部分。
这个系统可以帮助农民监测植物生长环境的各种参数,辅助农民进行农作物的及时管理和调控,提高生产效率和质量。
在这篇文章中,我们将介绍一个基于单片机的农业大棚智能监控网络系统的设计,以及它的工作原理和应用前景。
一、系统设计概述1)系统功能基于单片机的农业大棚智能监控网络系统通常包括环境监测模块、数据传输模块、数据处理模块和用户界面模块。
系统的功能主要包括:- 监测大棚内温度、湿度、光照等环境参数;- 基于传感器数据,实时分析大棚内环境的变化;- 控制通风、灌溉等设备,实现远程操控;- 数据传输和存储,实现数据的远程监控和管理;- 用户界面的设计,便于农民远程监控和管理。
2)系统组成系统主要由传感器、单片机、无线通信模块、执行器等组成。
传感器用于采集环境参数数据,单片机负责数据处理和控制,无线通信模块用于数据传输和远程控制,执行器用于执行控制指令。
3)系统优势相比传统的农业生产方式,基于单片机的农业大棚智能监控网络系统具有以下优势: - 实时监测:可以实时监测大棚内的环境参数,及时发现和解决问题;- 远程控制:农民可以通过手机或电脑远程控制大棚内的设备,方便灵活;- 数据分析:系统可以通过数据分析,为农民提供决策参考;- 节约成本:降低人工成本和资源浪费,提高生产效率和质量。
二、系统工作原理1)传感器采集数据传感器负责采集大棚内的环境参数数据,包括温度、湿度、光照等。
不同类型的传感器可以满足不同的监测需求,比如温湿度传感器、光照传感器等。
2)单片机数据处理单片机负责接收传感器采集的数据,并进行处理和分析。
单片机可以根据预设的环境参数范围,判断当前环境是否符合要求,如果不符合要求,可以发出报警或控制指令。
3)无线通信模块传输数据单片机处理后的数据通过无线通信模块传输到远程监控中心或用户手机、电脑上。
基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现1. 引言1.1 研究背景智能温室大棚系统是利用先进的单片机技术和传感器技术来实现对温室环境的监测和控制的系统。
随着全球气候变暖和粮食供应压力的增加,智能温室大棚系统的研究和应用变得越来越重要。
当前,传统的农业生产方式已无法满足不断增长的粮食需求,而智能温室大棚系统的出现为农业生产带来了革命性的改变。
传统的温室大棚产品受限于人工操作和环境条件的限制,往往无法实时监测温室内外环境的变化,导致温室作物生长过程中出现问题。
设计并实现基于单片机的智能温室大棚系统具有重要的意义。
通过引入单片机技术和传感器技术,智能温室大棚系统可以实现对温室内外环境参数的实时监测和控制,如温度、湿度、光照等。
智能温室大棚系统还可以实现远程监控和控制,为农业生产提供更便捷、高效、智能化的解决方案。
研究基于单片机的智能温室大棚系统具有重要的理论和实际意义。
1.2 研究目的研究目的是基于单片机的智能温室大棚系统设计与实现。
通过研究,旨在利用现代科技手段提高温室大棚的自动化程度,提升温室作物的生产效率和质量。
具体目的包括:1. 设计一套智能温室大棚系统,实现温室环境监测、控制和调节功能,实现对作物生长环境的精细化管控;2. 研究温室大棚系统中的传感器和执行器的选择、布局及调试方法,确保系统的稳定性和可靠性;3. 开发相应的软件模块,实现对温室大棚的智能控制,包括自动化灌溉、通风、照明等功能;4. 测试系统的性能,评估系统在实际作物种植环境中的使用效果和稳定性;5. 为农业生产提供更加智能、高效的技术手段,推动农业现代化发展,提升粮食生产能力和质量。
1.3 研究意义智能温室大棚系统的研究意义主要体现在以下几个方面:智能温室大棚系统的设计与实现能够有效提高农作物的产量和质量。
通过智能温室大棚系统,我们可以实现精确的环境控制,包括温度、湿度、光照等参数的实时监测和调节,从而为作物提供更适宜的生长环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的智能温室大棚监控系统的设计This model paper was revised by the Standardization Office on December 10, 2020学科分类号:___________湖南人文科技学院本科生毕业设计题目:基于单片机的智能温室大棚监控系统的设计学生姓名:胡佳欣学号系部:信息学院专业年级:2012级电子信息科学与技术指导教师:张吉左职称:工程师湖南人文科技学院教务处制湖南人文科技学院本科毕业设计诚信声明本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
作者签名:(手写)二○年月日(手写)目录基于单片机的智能温室大棚监控系统的设计摘要:在科学技术的推动下,智能温室大棚应运而生,它能让农作物拥有更好的生长环境。
将单片机运用到对大棚内温度、湿度的采集与监控,提出了基于单片机的智能温室监控系统的设计方案。
整套系统由温湿度传感器、AT89C51单片机、声光报警器、显示器等部分组成。
本设计以AT89C51单片机为核心单元,温湿度传感器为测量元件,储存并分析所测量的数据,通过与预设参数的对比,判断是否发出警报。
通过此设计可以实时有效的对农作物生长过程中的温度、湿度进行测量,并能直观的显示出来。
系统克服了人工传统温湿度采集的迟滞性、不准确性等诸多弊端,操作更方便,效率更高。
关键词:单片机;传感器;数据传输;监控系统Design of Intelligent Greenhouse Monitoring SystemBased on SCMAbstract:Under the promotion of science and technology, intelligent greenhouse came into being, it can make crops have better growing environment in the promotion of science and technology, the intelligent greenhouse came into being, it can with a better environment for the growth of crops. The SCM is applied to the collection and monitoring oftemperature and humidity in the greenhouse,a design scheme of Intelligent Greenhouse Monitoring System Based on SCM is put forward. The whole system consists of sensor, AT89C51 SCM, sound and light alarm, display. Comparison of the design AT89C51 microcontroller as the core unit, temperature and humidity sensor for measuring components, connected by single chip computer, storage and analysis of the measured data with preset parameters to determine whether the alarm.Through this design, we can measure the temperature and humidity in the process of crop growth in real time. The system overcomes the disadvantagesof artificial traditional temperature and humidity acquisition, such as hysteresis, inaccuracy and so on, which is more convenient and efficient. KeyWords:SCM; Sensor; Data transmission; Monitoring system第一章绪论课题背景及目的中国自古以来是农业大国,数千年来一直以种植业为主。
地域辽阔、人口众多,市场经济不断发展扩大,居民的生活水平要求达到更高的标准,对于食品安全质量也提出了更严格的要求。
在科学技术的推动下,农业现代化进程越来越快,越来越受到重视,农业科学的应用和研究逐步展开,进而催生了智能温室大棚技术。
智能温室大棚是把智能化操作模式运用到温室种植中,利用高科技的环境模拟技术,调节出农作物最适合的环境参数。
智能温室大棚在现代化农业生产中的占有着很重要的地位,我国的温室大棚产业在整个农业生产上比例不断加大。
目前,在全世界范围内我国的温室面积位居前列,但是这些普通的温室大棚没有技术、设备的支持,当自然灾害来临时,自我抵抗能力很低,不能很好的调节温室内的自然条件参数,智能化程度低,技术含量不高。
究其根本,在于温室大棚缺乏现代化的智能监控调节系统。
在现代农业生产中,往往需要对生产环境中的一些重要参数进行采集和检测。
许多环境条件都在影响着农作物的长势,例如:空气的温度、湿度、二氧化碳浓度、光照强度等,这些因素都与植物的生长发育密切相关,人们手工的对环境参数进行检测不仅测量不准确,而且不能连续作业,容易造成经济损失,很难达到种植的预期效果,也不利于提高种植质量和规模,信息化程度难以提升 [1]。
智能化温室大棚通过先进的科学技术与管理,运用环境科学、计算机科学、信息处理等技术,能对大棚内环境因素进行实时检测、采集、监控。
结合温室智能监控系统所收集到的参数数据,农作物的自然生长状况,有效的调节温室大棚内的环境条件,使得农作物达到预期的长势,提高产量与质量。
国内外研究状况我国是温室栽培发源地,温室大棚技术运用得最早,在很多年前我国就能利用类似温室覆盖设施来种植各种农作物。
我国的智能温室产业虽然起步落后于欧美等发达国家,但发展迅速。
在种植规模上,我国的温室种植面积排在世界前列。
随着科学技术的不断进步,温室大棚的环境调控方式不断在改进,传统农业转变为现代化农业,逐渐向大型产业化、模块化和多样化的方向发展 [2]。
我国温室规模虽然十分庞大,但是配备有智能监控系统的温室微乎其微。
上世纪八十年代开始,我国开始把将温室大棚结合计算机技术与用到农业发展上,90年代又研发出了温室大棚的控制管理系统,这套系统能对温湿度、光照、二氧化碳浓度等环境因素进行监测等综合控制。
欧美发达国家在发展智能温室产业中智能化程度很高,温室内温湿度、光强、肥料等都实现了智能调控。
不论是在电子计算机方面,还是将计算机结合到农业栽培上,美国都走在了所有国家的最前面,目前,美国的智能温室大棚种植面积也是最大的,他们拥有发达的硬件设施和先进的栽培技术,综合质量水平很高。
环境控制计算机是用来对影响作物生长的环境因素进行管控。
发达国家的智能温室产业已迈入高科技方向发展,远程无线遥测技术、局域网(互联网)等已在智能温室系统得以实现[3]。
另外还有多个端口连接到网络,通过无线连接等技术,工作人员可以在其他地方通过电子计算机、甚至手持终端对大棚进行监控管理。
在有了智能温室大棚监测系统的基础上,越来越多的发达国家正致力于大棚种植的无人化。
农业的根本出路在于机械化,我们可以设计出智能测温测湿等系统,接下来的一步便是实现大棚内无人化自动机械化操控。
欧美国家的大棚机械化程度很高,不仅仅再是人们繁琐的对大棚内环境进行手工改善,智能机械化大棚能够利用机械化技术,对大棚进行自我调节与操作。
机械臂、机器人越来越广泛地运用到了大棚种植技术中来,敲敲键盘就能控制大棚内的环境条件,这都是机械化的成果,自动喷灌系统,自动化遮阳帘,自动施肥通风甚至自动播种、收割等等,这将是智能自动化温室大棚的趋势[4]。
设计主要研究内容1、研究影响温室内温湿度参数变化的原因,分析调控温室大棚内温湿度参数的方法。
2、根据目前国内外温室大棚的研究成果,利用单片机技术、通信原理、传感器技术、设计编程等,设计出一套基于单片机的智能温室大棚监控系统。
3、详述AT89C51单片机在此设计方案中的工作方式,通过温湿度传感器准确地将温湿度参数测量出来,并将数据记录储存下来。
4、通过与预设的参数值进行对比,当检测到的温度参数超过预先设定的范围时(温度60℃),系统发出声光警报。
5、对设计方案进行模拟仿真。
第二章系统总体设计基于单片机的智能温室大棚监控系统的设计,分为系统硬件设计部分和系统软件设计部分。
在硬件设计部分中,传感器、单片机、显示屏、报警器等硬件相互兼容,为整套监控系统提供了强有力的硬件支撑。
系统软件设计部分,灵活运用核心硬件单片机的性能及功能,强化各部件的工作流程,编写出一套简单实用的程序,使整套设计系统运作流畅,能基本实现预期功能。
功能设计1、温度传感器和湿度传感器能对温室大棚内的温度和湿度进行实时监测和采集。
2、传感器所检测的数据由单片机进行处理,准确判断参数。
3、数据能直观的显示在显示屏上。
4、控制处理,当所测温度超过60℃时,触发声光警报器。
系统组成及工作原理以单片机为核心单元,运用传感器、通信原理等技术以及电路构成整套设计系统。
选用的主要元器件:AT89C51单片机、SHT10温湿度传感器、LCD1602显示屏、LED、蜂鸣器等[5]。
在系统的软件部分,系统初始化数据收集模块、数据判断模块、LCD显示模块、警报模块,其中,数据收集模块由SHT10温湿度传感器来完成,数据判断模块由预设程序来执行。
通过各硬件之间的正确连接,配合各硬件所设计的软件流程,从而构成了一套基于单片机的智能温室大棚监控系统的设计。
系统组成如图2-1所示:图2-1 系统的组成系统组成及工作原理:基于单片机的智能温室大棚监控系统是以AT89C51单片机为核心单元,利用温湿度传感器对温室大棚内的温度和湿度进行精确测量,将温度量和相对湿度量的模拟信号转换为单片机可以识别的数字信号并传输到AT89C51单片机中,通过与预设的温湿度参数值的对比,如果所测量的实时温湿度参数超过预设范围(温度60℃),自动触发警报系统,警报装置可发出声光警报,数据参数直观的显示在显示屏上 [6]。