2.1正数与负数(教案)
新华师大版七年级上册初中数学 2-1-1 正数与负数 教案

第二章有理数2.1 有理数2.1.1 正数和负数1.明白生活中存在着无数表示相反意义的量,能举例说明;2.能体会引进负数的必要性和意义,建立正数和负数的数感.理解正数和负数的意义.体会现实生活中具有相反意义的量.一、情境导入,激发兴趣1.回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的.如:0,1,2,3,…,,.2.下面的温度怎样表示?【教学说明】让学生了解数的产生过程,初步认识到以前学过的数不能满足实际的需要.1.在日常生活中,常会遇到这样的一些量:如:汽车向东行驶3千米和向西行驶2千米;温度是零上10℃和零下5℃;收入500元和支出237元;水位升高1.2米和下降0.7米;像这样的日常生活中描述温度的零上多少摄氏度和___________________,水位的升高和_______,现金的收入和_______,商品的买进和_______等类似的数量都具有相反的意义,我们称之为具有相反意义的量.2.问题:你能再举几个其他的具有相反意义的量吗?【教学说明】必须满足两个条件:(1)意义相反;(2)同一种量.3.定义:一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,在过去学过的数(零除外)的前面放上一个“-”号来表示.如:在表示温度时,通常规定零上为“正”,零下为“负”,即零上10℃表示为10℃,零下5℃表示为-5℃.(1)正数小学学过的那些数(零除外),如10,3,500,5.5等,都是_______. 为了加以强调,_______前可加上“+”(读作正)号,但一般省略不写.如5可以写成+5, +5和5是一样的.(2)负数在正数的前面加上“-”(读作负)号的数是_______.“-”号不能省略.如:-5,-0.36.(3)0既不是_______,也不是_______(0不再仅仅表示“没有”,也是正、负数的分界点).【教学说明】通过归纳总结正数和负数的概念,举出实际例子加深对正数和负数的理解,使学生掌握正数和负数的特征及表示方法.例1 填空:(1)出口货物500吨记作-500,进口货物262吨记作_______;(2)如果产量增加20%,记作_______,那么产量减少3%记作_______;(3)向东前进30m记作+30,向西前进10m记作_______.【教学说明】让学生先观察记法,找到具有相反意义的量,再用正负数来表示.例2 把下列叙述改成使用正负数的方法(1)向南走-20 m,即_______;(2)飞机下降-200 m,即_______;(3)飞机上升-3000 m,即_______;(4)商店赢利-1000元,即_______.【教学说明】通过讲解,使学生理解正数和负数是表示相反意义的量,掌握它的表示方法.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.【教学说明】教师引导学生总结负数的产生是实际生活的需要,进一步理解用正数和负数表示互为相反意义的量.课本习题1.1。
正数和负数说课稿(优秀4篇)

正数和负数说课稿(优秀4篇)正数和负数说课稿篇一教学目标1、知识掌握目标:使学生了解和掌握正数、负数和零的意义。
2、技能能力目标:培养学生观察、分析、概括的逻辑思维能力和解决实际问题的能力。
培养创新意识和精神、培养学生合作意识。
3、德育目标:通过负数的。
引入,对学生进行爱国主义教育。
教材分析与处理、学情分析。
本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。
活泼好动,思维敏捷,表现欲强,但思考问题不全面等。
采用探索引导式的学习方式。
重点、难点:重点:正数、负数的意义及如何区别意义相反的量。
难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。
教学设计及依据:借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。
依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。
教学过程教学环节教学内容设计意图一、创设情境导入新课本节课中,首先呈现给学生的是两幅冬日雪景动画画面。
教师:同学们从这两幅动画中感觉到的是什么?谁能告诉我今天气温大约是多少度?动画里的温度大约是多少?能不能用我们所学过的数表示吗?学生:(天气比较冷20°C 零下10°C 不能)教师:正因为不能,为了解决这一问题,我们来学一些新数,从而引入新课题。
这两幅画符合学生的年龄特点,激发学生浓厚的学习兴起,给新知识的引入提供了一个丰富多彩的空间。
二、获得新知加深理解教师:像零下10°C我们可以记着“-10°C”读做“负的”。
2024年正数与负数教案(通用8篇)

2024年正数与负数教案(通用8篇)正数与负数教案篇1教学目标1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;2.会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5.通过本节课的教学,渗透对立统一的辩证思想。
教学建议一、重点、难点分析本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。
难点是学习负数的必要性及有理数的分类。
关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。
教材是由学生熟知的两个实例:温度与海拔高度引入的。
比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。
由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。
这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。
把负数理解为小于0的数。
教材中,没有出现“具有相反意义的量”的概念。
这是有意回避或淡化这个概念。
目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构1.正数、负数和零的概念正数负数零象1、2.5、48等大于零的数叫正数象-1、-2.5,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数2.有理数的分类三、教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。
初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
2022年《正数和负数教案》4篇

2022年《正数和负数教案》4篇《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
二年级数学上册二年级数学上册2.1(1)正数与负数(第一课时)教案

2.1(1)正数与负数(第一课时)教学目标:1、结合温度、海拔等角度认识具有相反意义的量。
2、知道正负数所表示的实际含义。
3、初步会用正负数表示简单实际问题中具有相反意义的量。
4、感悟正数与负数在生活中的应用。
教学重点及难点:重点:会用正负数表示简单实际问题中具有相反意义的量。
难点:认识具有相反意义的量与正负数之间的关系。
教学用具准备卡片、练习纸、多媒体设备教学过程设计一、情景引入1、在我们的生活中有很多表示相反意义的量,请大家找找这里哪些数量的意义是相反的?用线连一连。
上车5人下降10米运进出200吨下车8人上升9米运进98吨减少54辆增加36辆通过刚才的连线,我们发现“上车5人与下车8人”是一对意义相反的量,我们可以这样说:上车的人数与下车的人数是一对具有相反意义的量。
请学生也说说其它几组数量中意义相反的量2、举例:请同桌两人也举例说一对生活中表示相反意义的量。
[说明]教师要引导学生说出什么与什么是一对具有相反意义的量,鼓励学生思考、交流生活中表示相反意义的量,在小组交流中教师要积极参与学生的讨论,及时纠正错例。
通过教师的引导和学生的举例参与,可以让学生充分体验什么是意义相反的量,由此引发后面的学习。
二、探究新知(一)、认识相反意义的量:1、海拔高度:演示珠穆拉玛峰和马里亚纳海沟图片如果以海平面为分界点,珠穆拉玛峰位于海平面以上,马里亚纳海沟位于海平面以下,我们说海平面以上的高度和海平面以下的深度也是一对具有相反意义的量。
2、温度计:演示海口与哈尔滨的温度我们说零上温度和零下温度也是一对具有相反意义的量。
(二)、认识正数和负数:1、引入“+、-”:为了区别零上温度和零下温度,人们规定在零上温度前面添上这个符号“+”,而在零下温度的前面添上这个符号“-”请学生试读这两个符号这两个符号在这里不是运算符号,我们不能读作加、减。
“+”这是正号,读作“正”,“-”这是负号,读作“负”,海口的最低气温可以表示成正12摄氏度,读作正12摄氏度,哈尔滨的最低气温可以表示成-25摄氏度,读作负25摄氏度。
初一数学《正数和负数》教案(精选9篇)
初一数学《正数和负数》教案(精选9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初一数学《正数和负数》教案(精选9篇)教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天。
七年级数学上册第二章有理数2.1正数和负数2.1.1正数和负数教案2新版华东师大版
负数:-5 读作“负五”.
练习:
1.快速抢答题:判断下列各数哪些是正数,哪些是负数.
-1,2.5,+30, -3.14,120,-1.732
2.你能写出几个正数和负数吗?
【探究2】零
我们在小学的时候知道:0表示没有,0不能作除数,0乘以任何数都等于0.
3.正常水位为0m,水位高于正常水位0.2m记作______,低于正常水位0.3m记作________.
4.乒乓球比标准质量重0.039g记作________;比标准质量轻0.019g记作________;标准质量记作________.
5.下列数中哪些是正数,哪些是负数?
-0.3 ,52 ,+3 ,-1 , 0 ,-4 ,2015
课题
正数和负数
授课人
教
学
目
标
知识技能
1.在了解相反意义的量的基础上,使学生认识正负数和学习正负数的意义.
2.使学生能正确判断一个数是正数还是负数,掌握正、负数的表示方法,明确0既不是正数也不是负数.
3.会用正、负数表示实际问题中具有相反意义的量.
数学思考
体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.
从本节课的学习中我们知道,0不仅仅表示没有,0 ℃不是没有温度,而是规定冰水混合物的温度为0℃.在实际意义中,0往往表示基准,比如海平面、警戒水位等,有着丰富的内涵.
总结:零既不是正数,也不是负数.
【探究3】用正负数表示相反意义的量
“人有悲欢离合,月有阴晴圆缺”,这是宋代词人苏东坡写下的被人们广为传诵的佳句.其中,悲与欢、离与合、阴与晴,都是自然世界、人类生活中截然相反的状态的真实描绘,这些矛盾的东西融为一体,营造出了和谐而真实的氛围.在大千世界中,有上就有下,有赢就有亏.
七年级数学第二章有理数2.1正数和负数2.1.1正数和负数教案3华东师大版
整数和负数4一、教学目标:1。
使学生体会具有相反意义的量,并能用有理数表示.2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义.3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。
4。
会比较有理数的大小。
5。
了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6。
会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算.8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断.二、教材的特点:1。
本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算.教学中要注意正确地把握.3。
数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2。
1正数和负数———-—-—-—--——--2课时§2。
2数轴--—————-——--—-———----——--2课时§2。
3相反数—-——---—-——--——-—-——————1课时§2.4绝对值-------————---—-———-——1课时§2.5有理数的大小比较—-—-——---—1课时§2。
6有理数的加法——--——---—--——2课时§2。
7有理数的减法--—-——————--—-—-1课时§2.8 有理数的加减法混合运算----——-—2课时§2.9 有理数的乘法————-—-----———--2课时§2。
2.1 正数与负数
) 如果向北走 8km 记作+8km,
km 记作什么?
果粮库运进粮食 3t 记作+3t,
示什么? 举例说明用正数、负数表示生活中的具有相反意义的量.
用正数和负数表示生活中其他
量吗?
分数 整数分为正整数、零和负整数;分数分为正分数和负分数.
、负整数、零统称为整数.
引导学生感
、负分数统称为分数.
拓展他们对数的
下列各数填入相应的集合内: 解:整数集合{6,0, -101 ,+67,2009, 18 „};
1 1 1 1 5 ,0, -101 , +3 , 1.25 , 分数集合{ 99.9 , , +3 , 1.25 ,0.01, 10% , „}; 3 3 13 4 4 5 1 5 , 10% , ,2009, 18 . 正数集合{6, +3 ,0.01,+67, ,2009 „}; 13 13 4 1 合{„};分数集合{„}; 负数集合{ 99.9 , , -101 , 1.25 , 10% , 18 „}. 3 合{„};负数集合{„}.
理解负数的意义. 学生活动教学过程(教师)Fra bibliotek设计思
的正数与负数
从生活中的
:
学生感受到生活
里, 我们学过正数、 负数、 零. 你 分别说出 8844.43、-154、-117.3、-0.102%的意义.
和负数.它们都可
片中各数的意义吗?
中的各种意义的
负数的意义
理解正数、
43、100、357、78 这样的数叫 8848.43、100、357、78 是正数. -154、-38.87、-117.3、-0.102%是负数.
+7,
会根据正数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1正数与负数(教案)
班级_________ 姓名__________学号__________
【学习目标】
1、借助生活实例认识负数;
2、会判断一个数是正数还是负数;
3、会用正负数表示具有相反意义的量;
4、知道整数、分数的分类.
【学习过程】
一、情境创设
1.在中国地形图上,可以看到有一座世界最高峰----珠穆朗玛峰,图上标有8848;还有一个吐鲁番盆地,图上标有-155 (单位:米).这种数通常称为海拔高度,它是相对于海平面来说的.你知道海平面的高度通常用什么数表示吗?请说出图中所示的数8848和-155表示的实际意义.
2.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25ºC ,10ºC ,零下10ºC ,零下30ºC .
为书写方便,将测量气温写成25,10,―10,―30.
3.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?
在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生、发展起来的.
二、探索活动
1、正负数的概念:
像13,155,117.3,0.03%这样的数都是正数;
像-13,-155,-117.3,-0.03%这样的数都是负数;
0既不是正数也不是负数.
2、正、负数的读法与写法:
“–”号读作“负”,如–117.3,读作“负五”, “–”号是不可以省略的. “+”号读作“正”.如“ ”,读作“正三分之二”,“+” 可以省略不写. 3、议一议
有位同学说“一个数如果不是正数,必定就是负数.” 你认为这句话对吗?为什么?
例1、指出下列各数中的正数、负数.
—3,34
3,—2005,+2,0,+2.3,—0.71, —37
例2、把下列各数填入相应的集合中:
+10.2, —25
3, 8.7%, —4.8, +5.3, 0, —2.45, —0.3 正数集合:{ …}
负数集合:{ …}
练习:课本P13 练习1
32
4、相反意义的量:在日常生活中,常会遇到这样一些量(事情)具有相反意义.向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.
你能举出几对日常生活中具有相反意义的量吗?
例3、(1)如果向北走8km 记作+8km ,那么向南走5km 记作什么?
(2)如果运进粮食3t 记作+3t ,那么-4t 表示什么?
练习:
1、如果月收入100元记作+100元,那么月支出600元记作 .
2、如果规定盈利200元记作+200元,那么-55元表示为 .
3、若正午时记作0时,午后3点钟记作+3小时,那么上午9点钟可表示为 .
4、在一次数学测验中,某班的平均分为85分,把高于平均分的部分记作正数,若小明得95分,应记为 ;若小明得分被记作-12分,他实际得分是 分.
例4、用正数或负数表示下列问题中的数:
(1)甲传向东航行142km ,乙船向西航行142km ;
(2)A 车向北行驶50km ,B 车向南行驶40km ;
(3)拖拉机加油50L ,用油30L .
5、整数与分数的分类
统称为整数.
统称为分数.
例5、判断:
(1)0既不是正数也不是负数; ( ) (2)0既不是整数也不是分数; ( )
(3)自然数就是正数; ( )
例6、把下列各数写在相应的大括号里:
-3.5、71、-18、943、-2、0、+0.09、-23
1、47、+28 正整数集合:{ … };
正分数集合:{ …};
整数集合: { …};
分数集合: { …};
自然数集合:{ …};
负数集合: { …}.。