11正数和负数同步练习1
正数与负数 苏科版七年级数学上册同步练习(含答案)

正数与负数知识目标1.通过生活中的实例展示,能准确识别生活中的正数和负数.2.在认识正数和负数的基础上,会用正、负数表示具有相反意义的量.3.通过认识整数、分数的意义,能对所学的数进行分类.目标一 能准确识别正、负数例1 教材例1针对训练把-13,+4,-32,0,3.5,-1112,12,-5,100,0.03,-21,-15%填入相应的括号内.正数集合:{ …};负数集合:{ …}.【归纳总结】识别正、负数的方法:(1)像2,+2.34,12这样的数是正数,要注意“+”号可以省略. (2)正数前加“-”号就是负数,要注意“-”号不能省略.目标二 会用正、负数表示具有相反意义的量例2 教材例2变式题(1)如果向北走8 km 记作+8 km ,那么-5 km 的意义是____________.(2)与运进粮食5 t 具有相反意义的量是______(只填一个即可).【归纳总结】具有相反意义的量的特征:(1)具有相反意义的量是成对出现的,单独一个量不能称为相反意义的量.(2)与一个量成相反意义的量不止一个.例如:与上升3米成相反意义的量可以是下降0.2米、下降1米等.(3)具有相反意义的量包含两个要素:一是它们的意义相反,二是它们都具有数量.(4)具有相反意义的量必须是同类量.例如:节约粮食5吨与浪费钢材2吨就不是具有相反意义的量.(5)对于具有相反意义的两个量,把哪一个规定为正并不是固定不变的.例如:若规定前进为正,则后退为负;若规定后退为正,则前进为负.目标三 会对所学的数进行分类例3 教材补充例题把下列各数填在相应的大括号里:1,0,-45,8.9,-7,56,-3.2,+1008,-0.06,28,-9,-0.5·. 整数集合:{…};分数集合:{…};正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.【归纳总结】区分整数、分数的方法:(1)因为有限小数、无限循环小数都可以化成分数的形式,所以有限小数、无限循环小数都是分数.(2)像51这样的数是具有分数形式的数,它不是分数,而是整数.知识点一 正、负数的识别像+2,+2.4,300,523这样的数都是________;像-0.01,-4,-133这样的数都是________. 0既不是正数,也不是负数.知识点二 用正、负数表示相反意义的量属性________,但表示的意义________的量叫做具有相反意义的量.知识点三 整数、分数的分类正整数、负整数、零统称为整数,正分数、负分数统称为分数.如果运进粮食3 t 记作+3 t ,那么-4 t 表示运出粮食-4 t .这种表示对吗?为什么?参考答案【目标突破】例1 [解析] 正数前面加“+”号表示其本身;正数前面加上“-”号为负数;0既不是正数,也不是负数.解:正数集合:⎩⎨⎧⎭⎬⎫+4,3.5,12,100,0.03,…; 负数集合:{-13,-32,-1112,-5,-21,-15%,…}. 例2 [答案] (1)向南走5 km(2)运出粮食6 t(答案不唯一)例3 解:整数集合:{1,0,-7,+1008,28,-9,…};分数集合:{-45,8.9,56,-3.2,-0.06,-0.5·,…}; 正整数集合:{1,+1008,28,…};负整数集合:{-7,-9,…};正分数集合:{8.9,56,…}; 负分数集合:{-45,-3.2,-0.06,-0.5·,…}. 备选目标 数的分类例 如图,两个圈分别表示负数集合和整数集合.请你从-1,5,-80%,-7,0,-0.2,27,-10这些数中,选择适当的数填在这两个圈的重叠部分.[解析] 由于两个圈分别表示负数集合和整数集合,所以这两个圈的重叠部分是负整数集合,根据负整数的概念依次填空即可.解:负数分别是-1,-80%,-7,-0.2,-10;整数分别是-1,5,-7,0,-10,所以这两个圈的重叠部分应填的数为-1,-7,-10.如图.[归纳总结] 所有整数组成的数集叫做整数集合.类似地,所有正数组成的数集叫做正数集合,所有负数组成的数集叫做负数集合,所有非负整数组成的数集叫做非负整数集合.负数集合与整数集合的公共部分是负整数集合.【总结反思】[小结]知识点一正数负数知识点二相同相反[反思]解:不对,因为此题中正数表示运进,负数表示运出,所以-4 t表示运出粮食4 t.。
正数和负数(练习)-2022-2023学年七年级数学上册同步精品课堂(人教版)(原卷版)

1.1《正数和负数》精选练习 一、单选题1.(2020·河南许昌·七年级期中)如果体重增加2kg 记作+2kg ,那么体重减少1.5kg 记作( ) A .0kg B .+1.5kg C .﹣1.5kg D .﹣1kg2.(2021·江苏南京·中考真题)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A .10:00B .12:00C .15:00D .18:003.(2021·广东阳江·七年级期中)如果向右走3m 记作3+m ,那么向左走2m 记作( ) A .3+m B .3-m C .2+m D .2-m4.(2021·福建省泉州第一中学七年级期中)中国古代数学著作《九章算术》中,在世界数学史上首次正式引入负数.如果温度上升2℃记作+2℃,那么温度下降3℃记作( )A .+2℃B .-2℃C .+3℃D .-3℃ 5.(2021·全国·七年级单元测试)在0,1-,3,12,﹣0.1,0.08中,负数的个数是( )A .1B .2C .3D .46.(2020·广西河池·中考真题)如果收入10元记作10+元,那么支出10元记作( ) A .10+元B .10-元C .20+元D .20-元二、填空题7.(2022·黑龙江·哈尔滨市第四十七中学七年级期中)如果向东80米记作+80米,那么向西60米记作___________米.8.(2020·四川雅安·中考真题)如果用3+℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为___________.9.(2020·云南·中考真题)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为7+吨,那么运出面粉8吨应记为___________吨.10.(2020·福建·中考真题)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米. 基础篇11.(2018·福建·泉州第十六中学七年级期中)若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和﹣3分,则第一位学生的实际得分为______分.12.(2011·贵州六盘水·中考真题)如果上升10米记作+10米,那么下降5米记作_______米.三、解答题13.聪聪和慧慧为了合理计划自己的开支,每天坚持记录自己当天的收支情况如下表,是她们上周各天收支情况(记收入为正,单位:元)根据上表回答下列问题:(1)分别说出聪聪这一行中10,0,-2各数的实际意义.(2)把上表补充完整.14.(2022·黑龙江·哈尔滨市萧红中学校期中)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的质量比标准总质量质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?15.(2021·全国·七年级单元测试)眉山市东坡区出租车司机老刘某天下午营运全是在东西走向的长江路上进行,如果规定向东正,向西为负,他这天下午行车里程(单位:km)如下:+8,+4,-10,-3,+6,-5,-2,-7,+4,+6(1)将第几名乘客送到目的地时,老刘刚好回到下午出发点?(2)将最后一名乘客送到目的地时,老刘距下午出发点多远?(3)若汽车耗油量为0.4L/km,这天下午老刘耗油多少升?16.(2022·江西景德镇·七年级期末)教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,﹣4,﹣8,+10,+3,﹣6,+7,﹣11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为5.70元/升,则小王共花费了多少元钱?17.(2021·甘肃酒泉·七年级期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,油箱中有10升油摩托车能否最后返回岗亭?18.(2019·江苏扬州·一模)体育课上,老师对七()1班男生进行了引体向上的测试,以做7个为标准,超过的个数用正数表示,不足的个数用负数表示,其中8名男生的成绩如下(单位:个)---2,1,0,3,2,3,1,0()1这8名男生的达标率是多少? .()2他们共做了多少个引体向上?提升篇1.(2020·广东·铁一中学七年级期中)某班抽查了10名同学期中考试的数学成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下(单位:分):+1,+8,-3,0,+12,-7,+10,-3,-8,-10.(1)这10名同学中最高分是多少?最低分是多少?(2)这10名同学的平均成绩是多少?2.(2021·广东广州·七年级期中)体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.-1.2+0.70-1-0.3+0.2+0.3+0.5(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?3.(2020·山东青岛·七年级单元测试)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?4.(2020·山东省济南泉城中学七年级阶段练习)某检修小组甲队乘一辆汽车沿公路检修线路,约定向东为正,某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6;另一小组乙队也从A地出发,在南北方向检修,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,两组在A地的哪一边,距A地多远?(2)若每千米汽车耗油量为0.06升,求出发到收工甲队耗油多少升?5.(2021·全国·七年级)某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.。
冀教版初中数学七年级上册《1.1 正数和负数》同步练习卷

冀教新版七年级上学期《1.1 正数和负数》同步练习卷一.选择题(共27小题)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.最早使用负数的国家是()A.中国B.印度C.英国D.法国3.按照“神舟”六号飞船环境控制与生命保障系统的设计指标,要求“神舟”六号飞船返回舱的温度在21℃±4℃之间,则该返回舱中温度t(℃)的范围是()A.17≤t≤25B.25≤t≤17C.t≥17D.t≤254.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg5.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为﹣1,10:45记为1等等,依此类推,上午7:45应记为()A.3B.﹣3C.﹣2.15D.﹣7.456.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作()A.+7步B.﹣7步C.+12步D.﹣2步7.某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差()A.0.03克B.0.06克C.2.73克D.2.67克8.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在实数﹣1,﹣2,0,﹣π中,其中负数共有()A.1个B.2个C.3个D.4个9.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利50元记作+50元,那么亏本30元记作:()A.﹣30元B.﹣50元C.+50元D.+30元10.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2B.﹣3C.+4D.﹣111.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克12.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃13.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作()A.256B.﹣957C.﹣256D.44514.月球是地球的近邻,它的起源一直是人类不断探索的谜题之一.全球迄今进行了126次月球探测活动,因为研究月球可提高人类对宇宙的认识,包括认识太阳系的演化及特点,认识地球自然系统与太空自然现象之间的关系.我们已经认识到,在月球表面,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到﹣183℃.下面对“﹣183℃”的叙述不正确的是()A.﹣183是一个负数B.﹣183表示在海平面以下183米C.﹣183在数轴上的位置在原点的左边D.﹣183是一个比﹣100小的数15.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣23;④﹣(﹣2)2,计算结果为负数的概率是()A.1B.C.D.16.若a<b<0<c<d,则以下四个结论中,正确的是()A.a+b+c+d一定是正数B.c+d﹣a﹣b可能是负数C.d﹣c﹣a﹣b一定是正数D.c﹣d﹣a﹣b一定是正数17.体育课上全班女生进行了百米测试,达标成绩为18秒,下表是第一小组8名女生的成绩表,其中正号表示成绩大于18秒,负号表示小于18秒,则这组女生的达标率是()A.B.C.D.18.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为﹣11℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()A.27℃B.19℃C.23℃D.不能确定19.若a,b,c均为正数,则a+b﹣c,b+c﹣a,c+a﹣b这三个数中出现负数的情况是()A.不可能有负数B.必有一个负数C.至多有一个负数D.可能有两个负数20.珠穆朗玛峰顶比吐鲁番盆地底部高9003米.已知珠穆朗玛峰海拔高度是8848米,则吐鲁番盆的海拔高度是()米.A.﹣155B.155C.﹣17851D.1765121.在防治“非典”的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.一位同学在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么,该同学一周中测量体温的平均值为()A.37.1℃B.37.31℃C.36.69℃D.36.8℃22.2013年5月14日,英国《自然》杂志报道华人数学家张益唐破译了孪生素数猜想,学界沉浸在一场重大发现的狂欢中,有人认为其对学界的影响将超过陈景润的“1+2”证明.素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,5和7等都是孪生素数,那么下列各对数中也是孪生素数的是()A.7和9B.9和11C.11和13D.13和15 23.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)24.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7,…},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2018﹣x也必是这个集合的元素,这样的集合我们又称为对称集合,例如{2,2016}就是一个对称集合,若一个对称集合所有元素之和为整数M,且23117<M<23897,则该集合总共的元素个数是()A.22B.23C.24D.2525.下列说法中,不正确的是()A.有最小正整数,没有最小的负整数B.若一个数是整数,则它一定是有理数C.0既不是正有理数,也不是负有理数D.正有理数和负有理数组成有理数26.下面说法正确的是()A.有理数是整数B.整数和分数统称有理数C.整数一定是正数D.正数和负数统称有理数27.在|﹣4|、7、﹣、﹣π、0.3、0中,负有理数有()A.0个B.1个C.2个D.3个二.填空题(共8小题)28.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.29.在检测排球质量过程中,规定超过标准的克数为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是号排球.30.根据机器零件的设计图形(如图),用不等式表示零件长度L的合格尺寸为.31.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.如表是某次测量数据的部分记录(用A﹣C表示观测点A相对观测点C的高度):根据这次测量的数据,可得观测点A相对观测点B的高度是米.32.规定[x]表示不超过x的最大整数,如[2.6]=2,[﹣3.14]=﹣4,若[x]=3,则x的取值范围是.33.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为.34.在数(﹣2)3,3,2.008,﹣,1,0,3.14,﹣|﹣4|中,负数有个,整数有个.35.如果x是绝对值最小的有理数,y是最大的负整数则x2001+y2002的值是.三.解答题(共5小题)36.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.37.阅读下面文字,根据所给信息解答下面问题:把几个数用大括号括起来,中间用逗号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素所以吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8,}是条件集合.(1)集合{﹣4,12}是否是条件集合?(2)集合{,﹣,}是否是条件集合?(3)若集合{8,n}和{m}都是条件集合.求m、n的值.38.阅读理解把几个数用大括号围起来,中间用逗号断开,如:{3,4},{﹣3,6,8,18},我们称之为集合,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合,例如:集合{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素,所以{3,﹣2}是条件集合;例如:集合{﹣2,9,8},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8}是条件集合.(1)集合{﹣4,12}条件集合;集合{,﹣,}条件集合(填“是”或“不是”)(2)若集合{8,10,n}和集合{﹣m}都是条件集合,求m,n的和.39.操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.40.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x 也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.冀教新版七年级上学期《1.1 正数和负数》2019年同步练习卷参考答案与试题解析一.选择题(共27小题)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.最早使用负数的国家是()A.中国B.印度C.英国D.法国【分析】根据数学历史材料即可得出答案.【解答】解:中国是世界上最早认识和应用负数的国家,比西方早(一千多)年.负数最早记载于中国的《九章算术》(成书于公元一世纪)中,比国外早一千多年.故选:A.【点评】此题主要考查了负数的来源,根据历史记载是解决问题的关键.3.按照“神舟”六号飞船环境控制与生命保障系统的设计指标,要求“神舟”六号飞船返回舱的温度在21℃±4℃之间,则该返回舱中温度t(℃)的范围是()A.17≤t≤25B.25≤t≤17C.t≥17D.t≤25【分析】标准温度是21℃,+4℃表示返回舱的温度不高于标准温度4℃,﹣4℃表示不低于标准温度4℃.【解答】解:∵21℃+4℃=25℃,21℃﹣4℃=17℃,∴该返回舱中温度t(℃)的范围是17≤t≤25.故选:A.【点评】解答此题的关键是弄清题意,“神舟”六号飞船返回舱的温度在21℃±4℃之间,即温度在21℃+4℃=25℃,21℃﹣4℃=17℃之间.4.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【分析】根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为﹣1,10:45记为1等等,依此类推,上午7:45应记为()A.3B.﹣3C.﹣2.15D.﹣7.45【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵10时以前记为负,10时以后记为正,且以45分钟为1个时间单位,∴上午7:45与10时相隔135分,即3个单位;应记为﹣3.故选:B.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作()A.+7步B.﹣7步C.+12步D.﹣2步【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.7.某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差()A.0.03克B.0.06克C.2.73克D.2.67克【分析】根据题意可以求得两只乒乓球的质量最多相差多少,本题得以解决.【解答】解:∵某品牌乒乓球的标准质量为2.7克,误差为±0.03克,∴若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差:(2.7+0.03)﹣(2.7﹣0.03)=0.06(克),故选:B.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.8.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在实数﹣1,﹣2,0,﹣π中,其中负数共有()A.1个B.2个C.3个D.4个【分析】根据负数的定义从这些数中找出来即可.【解答】解:在实数﹣1,﹣2,0,﹣π中,其中负数有﹣1,﹣2,﹣π,共有3个.故选:C.【点评】此题考查了负数,掌握负数的定义是解题的关键,是一道基础题,比较简单.9.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利50元记作+50元,那么亏本30元记作:()A.﹣30元B.﹣50元C.+50元D.+30元【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:如果盈利50元记作+50元,那么亏本30元记作﹣30元,故选:A.【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.10.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2B.﹣3C.+4D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克【分析】根据一种面粉的质量标识为“25±0.25千克”,可以求出合格面粉的质量的取值范围,从而可以解答本题.【解答】解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25﹣0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选:C.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.12.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.13.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作()A.256B.﹣957C.﹣256D.445【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:公元701年用+701年表示,则公年前用负数表示;则公年前256年表示为﹣256年.故选:C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.月球是地球的近邻,它的起源一直是人类不断探索的谜题之一.全球迄今进行了126次月球探测活动,因为研究月球可提高人类对宇宙的认识,包括认识太阳系的演化及特点,认识地球自然系统与太空自然现象之间的关系.我们已经认识到,在月球表面,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到﹣183℃.下面对“﹣183℃”的叙述不正确的是()A.﹣183是一个负数B.﹣183表示在海平面以下183米C.﹣183在数轴上的位置在原点的左边D.﹣183是一个比﹣100小的数【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:A、﹣183是负数,正确;B、﹣183表示在零摄氏度以下183℃,错误;C、﹣183在数轴上的位置在原点的左边,正确;D、﹣183是一个比﹣100小的数,正确;故选:B.【点评】本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣23;④﹣(﹣2)2,计算结果为负数的概率是()A.1B.C.D.【分析】根据小于0的数是负数,可得负数的个数,根据负数的个数与数的总个数的比,可得答案.【解答】解:负数有﹣|﹣2|,﹣23,﹣(﹣2)2,计算结果为负数的概率是3÷4=,故选:B.【点评】本题考查了正数和负数,先算出负数的个数,再算出负数的概率.16.若a<b<0<c<d,则以下四个结论中,正确的是()A.a+b+c+d一定是正数B.c+d﹣a﹣b可能是负数C.d﹣c﹣a﹣b一定是正数D.c﹣d﹣a﹣b一定是正数【分析】本题应用特值排除法,对于A,如果设a=﹣2,b=﹣1,c=1,d=2,则a+b+c+d=0非正数;对于B,d+c>0,﹣a>﹣b>0,所以d+c﹣a﹣b一定大于零;对于D,设a=﹣2,b=﹣1,c=1,d=5,则c﹣d﹣b﹣a=﹣1.【解答】解:A、根据已知条件a<b<0<c<d,可设a=﹣2,b=﹣1,c=1,d =2,则a+b+c+d=0,是非正数,故错误;B、由已知条件a<b<0<c<d知d+c>0,﹣a>﹣b>0,所以d+c﹣a﹣b>0,故错误;C、由已知条件a<b<0<c<d知d﹣c>0,﹣a﹣b>0,所以d﹣c﹣a﹣b>0,即d﹣c﹣a﹣b一定是正数,故正确.D、根据已知条件a<b<0<c<d,可设a=﹣2,b=﹣1,c=1,d=5,则c﹣d﹣b﹣a=﹣1,﹣1是负数,故错误;故选:C.【点评】本题主要考查了正数和负数的定义;在解题时采用的是特殊值排除法,此法适合于选择题.17.体育课上全班女生进行了百米测试,达标成绩为18秒,下表是第一小组8名女生的成绩表,其中正号表示成绩大于18秒,负号表示小于18秒,则这组女生的达标率是()A.B.C.D.【分析】“+”表示成绩大于18秒,“﹣”表示成绩小于18秒.从图中知道,达标的人数为6人,所以达标率就好求了.【解答】解:由题意可知,达标的人数为6人,所以达标率为=,故选:B.【点评】本题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.18.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为﹣11℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()A.27℃B.19℃C.23℃D.不能确定【分析】抓住中心句即可解答.温度计在零下7°为﹣11°,36°时为32°,则真正的温度比温度计低4度.【解答】解:根据题意可知真正的温度比温度计低4度.则室外的实际气温应是:23+4=27℃.故选:A.【点评】本题考查了“正”数和“负”数的相对意义,找对是实际温度高,还是温度计的温度高.19.若a,b,c均为正数,则a+b﹣c,b+c﹣a,c+a﹣b这三个数中出现负数的情况是()A.不可能有负数B.必有一个负数C.至多有一个负数D.可能有两个负数【分析】本题可采用假设法,当a=1,b=1,c=3时有(1+1)﹣3<0,1+3﹣1>0,1+3﹣1>0,这样有一个负数,排除A,当a=b=c=1时,没有负数,故B错误,再假设有两个负数,则设a+b<c①,b+c<a②,得出结果矛盾与已知条件,排除D,采用排除法选出答案.【解答】解:显然当a=1,b=1,c=3时有(1+1)﹣3<0,1+3﹣1>0,1+3﹣1>0,所以排除A.当a=b=c=1时,没有负数,故B错误,对于D,若假设有两个负数,则不防设:a+b<c①,b+c<a②由①+②可得:b<0,矛盾于已知条件,∴假设错误,不可能有两个负数,同理a+b﹣c,a+c﹣b,b+c﹣a中不可能有3个负数,故选:C.【点评】本题考查有理数的加减法法则,属于基础题,难度不大,注意细心进行判断.20.珠穆朗玛峰顶比吐鲁番盆地底部高9003米.已知珠穆朗玛峰海拔高度是8848米,则吐鲁番盆的海拔高度是()米.A.﹣155B.155C.﹣17851D.17651【分析】用从盆地到顶峰高度减去珠穆朗玛峰的海拔高度,即吐鲁番盆地的高度,但要注意方向,故前面要加负号.【解答】解:∵珠穆朗玛峰顶比吐鲁番盆地底部高9003米,且已知珠穆朗玛峰海拔高度是8848米,∴9003﹣8848=155(米),吐鲁番盆地在海平面以下,故方向为负,即﹣155米.故选:A.【点评】特别注意正负数的概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.21.在防治“非典”的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.一位同学在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么,该同学一周中测量体温的平均值为()A.37.1℃B.37.31℃C.36.69℃D.36.8℃【分析】根据题意将这位同学一周内的体温写出来相加再除以七,得出其体温的平均值.【解答】解:根据题意检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”得这位同学在一周内的体温分别是37.1、36.7、36.5、37.1、37.2、36.4、36.6;将(37.1+36.7+36.5+37.1+37.2+36.4+36.6)÷7=36.8℃;故选:D.【点评】概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.22.2013年5月14日,英国《自然》杂志报道华人数学家张益唐破译了孪生素数猜想,学界沉浸在一场重大发现的狂欢中,有人认为其对学界的影响将超过陈景润的“1+2”证明.素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,5和7等都是孪生素数,那么下列各对数中也是孪生素数的是()A.7和9B.9和11C.11和13D.13和15【分析】根据“孪生素数”是指两个相差为2的素数,对选项进行选择即可求解.【解答】解:A、9不是素数,故选项错误;B、9不是素数,故选项错误;C、符合孪生素数的定义,故选项正确;D、15不是素数,故选项错误.故选:C.【点评】考查了“孪生素数”,关键是理解“孪生素数”是指两个相差为2的素数的知识点.23.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)【分析】利用题中的新定义判断即可.【解答】解:A、由(3,),得到a﹣b=,a•b+1=+1=,不符合题意;B、由(2,),得到a﹣b=,a•b+1=+1=,不符合题意;C、由(5,),得到a﹣b=,a•b+1=+1=,不符合题意;D、由(﹣2,﹣),得到a﹣b=﹣,a•b+1=+1=,符合题意,故选:D.【点评】此题考查了有理数,弄清题中的新定义是解本题的关键.24.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7,…},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2018﹣x也必是这个集合的元素,这样的集合我们又称为对称集合,例如{2,2016}就是一个对称集合,若一个对称集合所有元素之和为整数M,且23117<M<23897,则该集合总共的元素个数是()A.22B.23C.24D.25【分析】根据题意可知对称集合都是成对出现的,并且这对对应元素的和为2018,然后通过估算即可解答本题.【解答】解:∵在对称集合中,如果一个元素为a,则另一个元素为2018﹣a,∴对称集合中的每一对对应元素的和为:a+2018﹣a=2018,2018×11=22198,2018×11.5=23207,2018×12=24216,又∵一个对称集合所有元素之和为整数M,且23117<M<23897,∴该集合总共的元素个数是11.5×2=23.故选:B.【点评】本题考查有理数、是探究性问题,关键是明确什么是对称集合,集合中的各个数都是元素,明确对称集合中的元素个数,在此还要应用到估算的知识.25.下列说法中,不正确的是()A.有最小正整数,没有最小的负整数B.若一个数是整数,则它一定是有理数C.0既不是正有理数,也不是负有理数D.正有理数和负有理数组成有理数【分析】根据有理数的分类,利用排除法进行求解.【解答】解:最小正整数是1,没有最小的负整数,A正确;一切整数都是有理数,B正确;0既不是正数也不是负数,C正确;正有理数、0和负有理数组成有理数,D错误.故选:D.【点评】本题主要考查有理数的性质和一些概念,熟练掌握是解题的关键.。
人教版七年级上册数学教材同步练习全套(含答案)

人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。
正数和负数练习题(含答案)

第一章有理数1.1 正数和负数1.一个月内,小丽的体重增长–1千克,意思就是这个月内A.小丽的体重减少–1千克B.小丽的体重增长1千克C.小丽的体重减少1千克D.小丽的体重没变化2.如果运入仓库大米10吨记为+10吨,那么运出大米8吨记为A.–8吨B.+8吨C.–10吨D.+10吨3.下列各数:5,−56,0.56,–22.5,227,+3,–0.2,0.001.其中负数的个数是A.1 B.2 C.3 D.44.若收入6元记作+6元,则支出10元记作A.+4元B.–4元C.+10元D.–10元5.钱塘江水库水位上升5cm记作+5cm,则水位下降3cm记作A.–2 B.2cm C.–3cm D.3cm6.一辆汽车向南行驶8千米,再向南行驶–8千米,结果是A.向南行驶16千米B.向北行驶8千米C.回到原地D.向北行驶16千米7.春节联欢晚会上,导演要求小品的演出时间应为(14±2)分钟,下面4次排练所用的时间中不符合要求的是A.13分钟B.14分钟C.15分钟D.17分钟8.下面是具有相反意义的量的是A.向东走5m和向北走3m B.上升和下降C.收入100元和支出50元D.长大1岁和减少3千克9.水位上升3米,记做+3米,水位下降2米,记作__________;如果运进粮食3吨记作+3吨,那么–4吨表示__________.10.吐鲁番盆地低于海平面155米,记作–155米,南岳衡山高于海平面1900米,则衡山记作__________米.11.用正数和负数表示下列各量:(1)零上24°C表示为__________°C,零下3.5°C表示为__________°C.(2)足球比赛,赢2球可记作__________球,输1球可记作__________球.(3)如果自行车链条的长度比标准长度长2mm,记作+2mm,那么比标准长度短 1.5mm,记作__________mm.12.七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作–5分,则小明同学得92分,可记为__________,李聪得90分可记为__________,程佳+8分,表示__________.13.如表是国外部分城市与北京的时差(带正号的数表示同一时刻该城市比北京时间快的时数):城市纽约巴黎东京芝加哥时差/时–12 –6 +1 –12 如果现在北京时间是16:00,那么纽约时间是__________(以上均为24小时制).14.下列各对量中:①向东行2千米与向南行3千米;②胜3局与负2局;③气温上升3°C与气温为–3°C;④增长2%与减少3%.其中具有相反意义的量有对.A.1 B.2 C.3 D.415.下列说法中:(1)带正号的数是正数,带负号的数是负数;(2)任意一个正数,前面加上负号就是一个负数;(3)0是最小的正数;(4)大于0的数是正数.其中正确的是A.(1)(2)B.(2)(4)C.(1)(2)(4)D.(3)16.物理竞赛成绩100分以上为优秀,老师将其中三名同学的成绩以100分为标准记为:+10,–6,0,这三名同学的实际成绩分别是__________.17.工业生产的方便面,每袋是80±5(克),现在有10袋方便面,称得它们的重量分别比标准重量重1克,0克,–1.5克,2克,–2克,3克,–3克,3.5克,–6克,7克.这10袋方便面有__________袋合格.18.每筐杨梅以20千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,求这4筐杨梅的总质量.19.(2018•绍兴)如果向东走2m记为+2m,则向西走3m可记为A.+3m B.+2mC.–3m D.–2m20.(2018•遵义)如果电梯上升5层记为+5.那么电梯下降2层应记为A.+2 B.–2C.+5 D.–51.【答案】C【解析】若体重增长为正,则体重减少为负,故小丽的体重增长–1千克,意思就是这个月内小丽的体重减少1千克,故选C.2.【答案】A【解析】如果运入仓库大米10吨记为+10吨,那么运出大米8吨记为–8吨,故选A.5.【答案】C【解析】根据题意,水位下降3m记作–3m.故选C.6.【答案】C【解析】∵汽车向南行驶8米记作+8米,∴再向南行驶–8米就是向北行驶8米,∴回到原地.故选C.7.【答案】D【解析】由小品的演出时间应为(14±2)分钟,得符合条件的分钟是12分钟~16分钟,∵17>16,∴17分钟不符合题意,故选D.8.【答案】C【解析】A、向东走5m和向北走3m不是具有相反意义的量,故本选项错误;B、因为具有相反意义的量一定是具体的数量,所以上升和下降不是具有相反意义的量,故本选项错误;C、收入100元和支出50元是具有相反意义的量,故本选项正确;D、长大1岁和减少3千克不是具有相反意义的量,故本选项错误.故选C.11.【答案】(1)+24,–3.5;(2)+2,–1;(3)–1.5mm.【解析】由于“正”和“负”相对,所以,(1)零上24°C表示为+24°C,零下3.5°C表示为–3.5°C;(2)足球比赛,赢2球可记作+2球,输1球可记作–1球;(3)如果自行车链条的长度比标准长度长2mm,记作+2mm,那么比标准长度短1.5mm,记作–1.5mm.12.【答案】+2分,0分,得了98.【解析】七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作–5分,则小明同学得了92分,可记为+2分,李聪得90分可记为0分,程佳+8分,表示得了98分,故答案为:+2分,0分,得了98.13.【答案】4:00【解析】∵由表格可得,北京时间比纽约时间快的时数为:0–(–12)=12,∴当北京时间是16:00时,纽约时间为:16–12=4(时),即如果现在北京时间是16:00,那么纽约时间是4:00,故答案为:4:00.14.【答案】B【解析】根据相反意义可知:②胜3局与负2局,④增长2%与减少3%是具有相反意义的量.所以具有相反意义的量有2个.故选B.15.【答案】B【解析】带正号的数不一定是正数,带负号的数不一定是负数,所以(1)错误;任意一个正数,前面加上负号就是一个负数,所以(2)正确;0不是正数,也补是负数,所以(3)错误;大于0的数是正数,所以(4)正确.故选B.16.【答案】110分,94分,100分【解析】“正”和“负”相对,所以三名同学的成绩高于100分正,低于100分记作负数,+10,–6,0表示的三名同学的实际成绩分别是110分,94分,100分.故这三名同学的实际成绩分别是110分,94分,100分.19.【答案】C【解析】若向东走2m记作+2m,则向西走3m记作–3m,故选C.20.【答案】B【解析】∵电梯上升5层记为+5,∴电梯下降2层应记为:–2.故选B.。
苏科版-数学-七年级上册-《正数与负数》同步练习1

2.1正数与负数姓名____________班级___________学号____________分数______________一、选择题1.在下列四个数中,比0小的数是()A. 0.5B. -2C. 1D. 32.下列说法:① 2.5-既是负数、分数,也是有理数;②25-既是负数,也是整数,但不是自然数;③0既不是正数,也不是负数;④0是非负数.其中正确的个数是( ) A.1B.2C.3D.43.在、、、这四个数中比小的数是( )A.B.C. D.4.如果+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为( )A.-5吨B.+5吨C.-3吨D.+3吨5.如果向东走2km 记作+2km,那么-3km 表示( )A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km 6.如果水位上升1.2米,记作 1.2+米;那么水位下降0.8米,记作_______米. 7.下列各数中:+6,-8.25,-0.4,32-,9,57, -28负有理数有( )个 A.1个 B.2个 C.3个 D.4个8.一次军事训练中,一驾直升机“停”在离海面180米的低空,一艘潜水艇潜在水下150米处,设海平面的高度为0米,用正负数表示该直升机和潜水艇的高度为( ) A.+180m,-150m B.+180m,+150m C.-180m, -150m D.-180m, +150m 9.大于-2.5而不大于4的整数有( )A.5个B.6个C.7个D.8个2-01302-01310.下列判断正确的为( )A.0,23,4,1是正数 B.0,-2,-3,-12是负数C.-1,0,1,2,3是自然数D.-2,-1,0,1,2是整数11.对于-3.271下列说法不正确的是( )A.是负数,不是整数B.是分数,不是自然数C.是有理数,不是分数D.是负有理数,且是负分数12.正整数集合和负整数集合合在一起,构成数的集合是( )A.整数集合B.有理数集合C.自然数集合D.非零整数集合13.下列说法正确的是( )A.在有理数中,零的意义仅表示没有;B.正有理数和负有理数组成全体有理数;C.0.9既不是整数,也不是分数,因此它不是有理数;D.零既不是正数,也不是分数14.下列语句中,正确的是A.1是最小的正有理数B.0是最大的非正整数C.-1是最大的负有理数D.有最小的正整数和最小的正有理数15.有公共部分的两个数集是( )A.正数集和负数集B.负数集和整数集C.整数集和分数集D.非负数集和负数集二、填空题16.写出一个比2大的负分数:_______________.17.在“迎奥运,展风采”校运会中,小明的跳远比赛跳出了4.25米,若小明的跳远成绩记做+0.25,那么小东跳出了3.85米,记作___________.18.若向南走2m 记作2m -,则向北走3m 记作________m .19.如果盈利250元记作+250元,那么-70元表示____________________. 20.3-的倒数是 _____;最大的负整数是 _____;最小的自然数是 _____. 21.观察下列数字的排列规律,然后在括号内填入适当的数:3,-7,11,15-,19,-23,( ),( ).22.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.23.如果规定向北走为正,那么70-米表示_______________________。 24.在21-, 3.14,2003,-4,-5℅各数中,属于负分数的有_________个. 25.在10,311,1.0,151,8-----中最大的数是_________。 26.如果向北运动10m,记作+10m,则-2m 表示__________.27.观察下面的一列数,按某种规律在横线上填入适当的数, 并说明你的理由.23,34,45,______,67,…,你的理由是__________. 28.将下列各数填入它所属于的集合的圈内:20,-0.08,-213,4.5,3.14,-1,+43,+5.探索:这四个集合合并在一起_______(填“是”或“不是”)全体有理数集合. 若不是,缺少的是_________.29.请写出6个数,分别是正整数、负整数、正分数、负分数、正小数、负小数,并填写在集正整数集合...负整数集合...正分数集合......合里,有理数集:{______,_____,______,______,_____,_____, …}. 30.在有理数中举出三个负分数________,________,________. 31.在有理数中举出三个整数______,________,_________.32.若A 表示整数,B 表示分数,C 表示正整数,D 表示零,E 表示负整数, F 表示正分数,G 表示负分数,用A,B,C,D,E,F,G 填空.然后将下列各数填入相应的大括号内: 13.-37,0,1.25,-35,-0.33,227,+5,-600. 有理数______{}____________{}______{}______{}____________{}⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩33.大于–3且不大于2的所有整数写出来是________________________34.如果水位升高3m 时水位变化记作+3m,则水位下降5米时水位变化记作:________________ 35.写出一个比零小的数:______. 36.把下列各数填在相应的集合内:100,—0. 82,2130-,3.14,-2,0,-2008,.51.3-, 73. 正分数集合:{ …}整数集合:{ …} 负有理数集合:{ …} 非正整数集合;{ …} 37.如果水位升高1.2m 记作+1.2元,那么—0.8m 表示 __________________。2.1比0小的数参考答案一、选择题1.B 2.D 3.A 4.A 5.C 6.0.8-7.D8.A 9.C 10.D 11.C 12.D 13.D 14.B 15.B 二、填空题 16.21-等(答案不惟一); 17.-0.05米18.3 19.亏损70元; 20.0,1,31--; 21.27,-31;22.25 23.向南走70米 24.2; 25.151-26.向南运动2m 27.56后一个数是前一个数的分子、分母都加1所得的数. 28.正整数集合里有:20,+5;负整数集合里有:-1;正分数集合里有:4.5,3.14,+43;负分数集合里有:-0.08,-213.不是,0. 29.4 -523-0.5 7.8 -6.9(答案不惟一) 30.-13 -0.4 -32(答案不惟一) 31.-2 -20 200(答案不惟一)32.有理数{13,5,}{0}{35,600,}22{1.25,,}73{,0.33,}7C A D E F B G ⎧+⎧⎪⎪⎨⎪⎪⎪--⎩⎪⎨⎧⎪⎪⎪⎪⎨⎪⎪--⎪⎪⎩⎩33.-2、-1、0、1、234.-5m35.(填对任何一个负数都对); 36.3.14,73;100,-2,0,-2008;—0. 82,2130-,-2,-2008,.51.3-; -2,0,-2008.37.水位下降0.8m。
人教版初中七年级上册数学《正数和负数》同步练习含答案解析

《1.1 正数和负数》一.选择.1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.在一个正数前添上一个负号,它就成了负数D.0 既是正数也是负数2.下列说法正确的是()A.有最小的整数 B.有最小的负数C.有最大的整数 D.有最大的负整数3.下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.正整数集合、负整数集合、正分数集合、负分数集合合并在一起就是全体有理数集合D.以上说法都正确4.向东行进﹣50m表示的意义是()A.向东行进50 m B.向南行进50 m C.向北行进50 m D.向西行进50 m5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数二.填空6.以下各数中,正数有;负数有.﹣,0.6,﹣100,0,,368,﹣2.7.北京与埃及的时差为﹣5小时,(“+”表示同一时刻比北京时间早的时数)当北京时间是17:00 时,埃及时间是.8.如果收入15元记作+15元,那么支出20元记作元.9.海面上的高度为正,海面下的高度为负,那么海面上982米记作米,﹣1190米的意义是.10.若下降8米记作﹣8米,那么+12米表示,不升不降记作.11.如表是某周周一至周五每日某一股票的涨跌情况(单位:元)星期一二三四五涨跌+0.4 +0.55 ﹣0.2 +0.34 ﹣0.5则该股票上涨的是星期,下跌的是星期.三.解答12.一次体检中,5位同学的身高分别是156cm,157cm,153cm,154cm,155cm.(1)求这5位同学的平均身高.(2)以平均身高为基础,用正数和负数分别表示每位同学的身高比平均身高高出的长度.13.某工厂有一种秘密的记账方式.当他们收入300元时,记为﹣240元;当他们用去300元时,记为360元.猜一猜当他们用去100元时,可能记为多少元?当他们收入100元时,可能记为多少元?说说你的理由.14.对于正整数a,b,规定一种新运算*,a*b 等于由a开始的连续b个正整数之和,如2*3=2+3+4=9.(1)计算7*8 的值.(2)计算 1*(2*6)的值.15.某停车场原停有汽车50辆,每辆10分钟记录一次,驶入为正,1小时内驶入和驶出的汽车情况如下(单位:辆):12,﹣6,3,15,﹣20,﹣12.问:1小时后停车场内还有多少辆汽车?16.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如表:星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?《1.1 正数和负数》参考答案与试题解析一.选择.1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.在一个正数前添上一个负号,它就成了负数D.0 既是正数也是负数【考点】正数和负数.【分析】根据正负数的意义进行选择即可.【解答】解:A、“+15米”表示向东走15米,故错误;B、0℃表示没有温度,故错误;C、在一个正数前添上一个负号,它就成了负数,故正确;D、0 既不是正数也不是负数,故错误;故选C.【点评】本题考查了正数和负数,掌握正负数的意义、性质是解题的关键.2.下列说法正确的是()A.有最小的整数 B.有最小的负数C.有最大的整数 D.有最大的负整数【考点】有理数.【专题】计算题;实数.【分析】利用整数,负数的定义判断即可.【解答】解:A、没有最小的整数,错误;B、没有最小的负数,错误;C、没有最大的整数,错误;D、有最大的负整数,正确,故选D【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.3.下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.正整数集合、负整数集合、正分数集合、负分数集合合并在一起就是全体有理数集合D.以上说法都正确【考点】有理数.【分析】按照有理数的分类即可求解.【解答】解:(A)有理数分为正数,负数和0,故A错误;(B)有理数分为整数与分数,故B正确;(C)整数包括正整数、负整数和0,故C错误;故选(B)【点评】本题考查有理数的分类,属于基础题型.4.向东行进﹣50m表示的意义是()A.向东行进50 m B.向南行进50 m C.向北行进50 m D.向西行进50 m【考点】正数和负数.【分析】根据向东和向西是相反意义的量解答即可.【解答】解:向东行进﹣50m表示的意义是向西行进50 m,故选:D.【点评】本题考查了正数和负数,掌握正数和负数的意义是解题关键.5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数【考点】正数和负数.【专题】常规题型.【分析】根据实数分为正数,负数和零,即可得出答案.【解答】解:根据0既不是正数,也不是负数,可以判断A、B、C都错误,D正确.故选D.【点评】本题考查了正数和负数的知识,属于基础题,注意基础概念的熟练掌握.二.填空6.以下各数中,正数有0.6,,368 ;负数有﹣,﹣100,﹣2.﹣,0.6,﹣100,0,,368,﹣2.【考点】正数和负数.【分析】根据正数和负数的定义分别进行解答即可,正数都大于0,负数都小于0.【解答】解:在﹣,0.6,﹣100,0,,368,﹣2中,其中正数有0.6,,368;负数有﹣,﹣100,﹣2;故答案为:0.6,,368;﹣,﹣100,﹣2.【点评】此题考查了正数和负数,掌握正数和负数的定义是本题的关键,正数都大于0,负数都小于0,0既不是正数也不是负数.7.北京与埃及的时差为﹣5小时,(“+”表示同一时刻比北京时间早的时数)当北京时间是17:00 时,埃及时间是12时.【考点】正数和负数.【分析】根据负数的意义,用北京的时间减去时差计算即可得解.【解答】解:∵北京与埃及的时差为﹣5小时,∴北京时间是17:00 时,埃及时间是17﹣5=12时.故答案为:12时.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.8.如果收入15元记作+15元,那么支出20元记作﹣20 元.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故答案﹣20元.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.9.海面上的高度为正,海面下的高度为负,那么海面上982米记作+982 米,﹣1190米的意义是海面下1190米.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:由题意知:海面上的高度记为正,海面下的高度记为负;则海面上982米记作+982米,﹣1190米表示海面下1190米.故答案为:+982;海面下1190米.【点评】本题考查了正负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.若下降8米记作﹣8米,那么+12米表示上升12米,不升不降记作0米.【考点】正数和负数.【分析】根据正负数表示相反意义的量,升高记为正,可得下降记为负,不升不降记为0.【解答】解:如果下降8米记作﹣8米,那么+12米表示上升12米,水位不升不降时,水位变化记为0m.故答案为:上升12米,0米.【点评】本题主要考查了用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,包含两个要素,一是它们的意义相反,二是它们都是数量.11.如表是某周周一至周五每日某一股票的涨跌情况(单位:元)星期一二三四五涨跌+0.4 +0.55 ﹣0.2 +0.34 ﹣0.5则该股票上涨的是星期一、二、四,下跌的是星期三、五.【考点】正数和负数.【分析】根据正负数的意义,正数则是上涨的,负数是下跌的即可判断.【解答】解:∵星期一、二、四涨跌为正,三、五涨跌为负,∴星期一、二、四是上涨的;三、五是下跌的,故答案为:一、二、四;三、五.【点评】本题考查了正负数的意义,理解题意是关键.三.解答12.一次体检中,5位同学的身高分别是156cm,157cm,153cm,154cm,155cm.(1)求这5位同学的平均身高.(2)以平均身高为基础,用正数和负数分别表示每位同学的身高比平均身高高出的长度.【考点】正数和负数.【分析】(1)根据平均数的计算方法列式计算即可得解;(2)根据正负数的定义分别写出即可.【解答】解:(1)平均身高=×(156+157+153+154+155),=×775,=155cm;(2)5位同学的身高分别是+1cm,+2cm,﹣2cm,﹣1cm,0cm.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.13.某工厂有一种秘密的记账方式.当他们收入300元时,记为﹣240元;当他们用去300元时,记为360元.猜一猜当他们用去100元时,可能记为多少元?当他们收入100元时,可能记为多少元?说说你的理由.【考点】正数和负数.【专题】应用题.【分析】收入记为负数,用去记为正数,再按比例进行计算.【解答】解:∵收入300记﹣240,300和240相差60,用去300记360,300和360相差60,所以用去100元记作:100+60=160元,收入100元记作﹣(100﹣60)=﹣40元.∴当他们收入100元时,可能记为﹣40元.【点评】考查逆向思维,难度较大.14.对于正整数a,b,规定一种新运算*,a*b 等于由a开始的连续b个正整数之和,如2*3=2+3+4=9.(1)计算7*8 的值.(2)计算 1*(2*6)的值.【考点】有理数的混合运算.【分析】(1)根据题意可以求得7*8 的值;(2)根据题意可以求得1*(2*6)的值.【解答】解:(1)7*8=7+8+9+10+11+12+13+14=84;(2)1*(2*6)=1*(2+3+4+5+6+7)=1*27=1+2+3+…+27=378.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.15.某停车场原停有汽车50辆,每辆10分钟记录一次,驶入为正,1小时内驶入和驶出的汽车情况如下(单位:辆):12,﹣6,3,15,﹣20,﹣12.问:1小时后停车场内还有多少辆汽车?【考点】正数和负数.【分析】由正负数的意义,结合有理数的加减运算,可求得答案.【解答】解:由题意可在:50+12﹣6+3+15﹣20﹣12=50+12+3+15﹣6﹣20﹣12=42,答:1小时后停车场内还有42辆.【点评】本题考查了正数与负数,有理数加减混合运算,根据题意准确列式是解题的关键.16.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如表:星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?【考点】正数和负数.【分析】根据给出的数据和正数和负数的意义解答即可.【解答】解:由表可知,星期二、星期四、星期五生产的摩托车比计划量多;250+10=260辆,则星期五生产的摩托车最多,是260辆;250﹣25=225辆,则星期日生产的摩托车最少,是225辆.【点评】本题考查了正数和负数,掌握正数和负数的意义、有理数的加法运算是解题关键.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
正数和负数同步练习(附答案)

正数和负数同步练习(附答案)篇一:正数与负数同步练习及答案正数与负数同步练习及答案一、选择题1、某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是()A、-1℃B、0℃ C、1℃ D、2℃2、下列各数中,为负数的是()A.0B.﹣2C.1D.123、如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A.﹣3m B.3mC.6m D.﹣6m4、下列具有相反意义的量是()A.“对”与“错”B.盈利10万元和亏损7万元C.向东+8米与向西-8米D.气温零下5度5、某地清晨时的气温为-2℃,到中午时气温上升了8℃,再到傍晚时气温又下降了5℃,则该地傍晚气温为()A. -1℃B. 1℃C. 3℃D. 5℃6、在数-12, 0 , 4.5, |-9|, -6.79中,属于正数的有()个A.2B.3C.4D.57、下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是()A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃8、下列一组数:-1,0,-3,2.其中负数有()个A. 1B. 2 C. 3 D.49、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作()A.+2米B.-2米C.+18米D.-18米10、如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()ABCD二、填空题11、运出货物7吨记作-7吨时,那么运进驻吨记作吨.12、我国现采用国际通用的公历纪年法,如果我们把公元2013年记作+2013年,那么,处于公元前500年的春秋战国时期可表示为年.13、某旅游景点11月5日的最高气温为8℃,最低气温为-2℃,那么该景点这天的温差是____℃.14、如果向东走5米记作+5米,那么向西走3米记作米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1正数和负数同步练习
基础巩固题:
1.某人存入银行1000元,记作+1000元,取出600元,则可以记为: 2 .向东走5米记作5米,那么向西走10米,记作:
米,一条鲨鱼在潜水艇的上方 10米处,则鲨鱼所在的高度是
米。
4.请举出三对具有相反意义的词语:
6.气象局预报某天温度为
-12 C,则这天的最低气温是
是:
3, — 0.01 , 0,— 2 1
, +3.333, — 0.010010001 …,
2
8
+8, — 101.1,+ - , — 100 其.中:正数有:
7
10 ±0.05 (单位:伽),表示这种零件的标准尺寸是
10.到目前为止,同学们学过的数有: ,11.下列说法正确的是: A 零表示什.么也没有
C 7没有符号 D
零既不是正数,也不是负数
12•下列说法中,正确的是: A 整数一定是正数
B 有这样的有理数,它既不是正数,也不是负数
C 有这样的有理数,它既是正数,也是负数 D0是最小的正数
5.—个同学前进100米。
再前进 -100米,则这个同学距出发地
米。
7 .预测某地区人
2005年将出现负增长,“负增长”的意义
伽,加工要求最大不能超过
伽,最小不能超过
mmo
3. 一潜水艇所在的高度是
-50 &把下列各数分别填在对应的横线上:
负数有: 整数有:
正分数有:
负分数有:
9. 在一种零件的直径在图纸上是
B 一场比赛赢4个球得+4分,
—3分表示输了 3个球
应用与提咼题
13.某天,小华在一条东西方向的公路上行走,他从家里出发,如果把向东350米记作—350米, 那么他折回来行走280米表示什么意思?这时,他停下来休息,休息的地方在他家的什么方向上?
距家有多远?小华共走了多少米?
14 •某电脑批发商第一天运进+50台电脑,第二天运进—32台电脑,第三天运进40台电脑,
第四天运进一29台电脑,如果运进记作正的,那么四天共运进电脑多少台?
15.体育课上,对初三(1)的学生进行了仰卧起坐的测试, 以能做24个为标准,超过次数
10名女学生成绩如下:
用正数来表示,不足的次数用负数来表示,其中
(1) 这10名女生的达标率为多少?
(2) 她们共做了多少个仰卧起坐?
7
中考链接
16.如果水位下降了 3m 记着—3 m 那么,水位上升4
A 1m
B 7m
C 4m
—7m
17.下列四个数中,在一 2到0之间的数是: (
A ,—l
B, l
C —3
18.我市冬季某一天的最高气温为-IC,最低气温为
—6C ,那么,这一天的最高气温比最
低气温高
Co
参考答案:
—600 元 —10米 —40 上升与下降,
前进与后退,
收入与支出
—5C
自2006年开始,这个地区人口将逐年下降
8
正数:3, +3.333, +8, + -,负数:—0.01 ,— 7 整数:3, 0, +8, —100, 正分数:+3.333, 1
2 - , — 0.010010001 …,—100,— 101.1
2
8
—101.1 ,
10, 10.05 , 9.95
m 记作()
折回来行走280米表示向西行走280米;休息的地方在小明家的正西方向上,离小明家70 米; 小明一共走了630米
14 运进28台
15 (1) 达标率是60 %; (2) 256个
16
17
18 +5C
10 有理数(或正数,零,和负数;或整数和分数)
11
12
13
19。