卡方检验及校正卡方检验的计算

合集下载

统计方法卡方检验

统计方法卡方检验

统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。

它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。

卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。

2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。

卡方检验的原理是基于观察到的频数与期望的频数之间的差异。

观察到的频数是指在实际数据中观察到的变量组合的频数。

期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。

卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。

在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。

零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。

卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。

表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。

2.计算期望频数:根据变量边际分布计算得到期望频数。

期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。

3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。

卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。

4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。

在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。

5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。

6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。

生物统计学—卡方检验

生物统计学—卡方检验

独立性检验
步骤: 1. 提出无效假设,即认为所观测的各属性之间
没有关联 2. 规定显著性水平 3. 根据无效假设计算出理论数 4. 根据规定的显著水平和自由度计算出卡方值,
再和计算的卡方值进行比较。 如果接受假设,则说明因子之间无相关联,
是相互独立的 如果拒绝假设,则说明因子之间的关联是显
著的,不独立
一、2X2列联表的独立性检验
设A、B是一个随机试验中的两个事件,其中A可能
出现r1、r2个结果,B可能出现c1、c2个结果,两 因子相互作用形成4个数,分别以O11、O12、O21、 O22表示,即
2X2列联表的一般形式
r1 r2 总和
c1 O11 O21 C1=O11+O21
c2 O12 O22 C2=O12+O22
解:(1)假设 H0 : 鲤鱼体色F2性状分离符合3:1 对 H A : 鲤鱼体色F2性状分离不符合3:1
(2)选取显著水平 0.05
(3)检验计算: 计算鲤鱼体色的理论值
体色 F2理论尾数
青灰色 1201.5
红色 400.5
总数 1602
k
cc2 i 1
Oi Ei
0.5 2 301.63
1
2
2
xx
将样本方差代入,则:c
2
(k
1) s 2
2
其c2服从自由度为(k-1)的卡方分布
卡方函数的使用
假设
H 0:
2
2 0
,
适用右尾检验 ,其否定区为: c 2 c2
假设
H
0:
2
2 0
,
适用左尾检验
,其否定区为:
c
2
c2 1
假设

医学统计学6卡方检验

医学统计学6卡方检验

卡方检验的卡方值
卡方值是卡方检验的统计量,用于衡量实际观测值和期望值之间的差异。 卡方值越大,就表示观测值与期望值之间的差异越大,这意味着结论更可信。
如何进行卡方检验
第一步
确定研究的问题和相关变量, 并给出所需的假设。
第二步
收集数据并整理成交叉列联 表。
第三步
计算卡方值和自由度。
第四步
查阅卡方分布表,确定相应置信度水准下的临 界值。
2
应用
概率常用于医学研究中,以测量一种治疗对患者的疗效。
3
公式
概率=事件发生的次数/总次数。
统计学中的假设
在统计学中,我们需要制定一个或多个假设进而做出相应的决策。常见的假设有零假设和备择假设。
零假设
零假设是指不存在两个群体之间的差异。
备择假设
备择假设是指存在两个群体之间的差异。
什么是卡方检验
卡方检验是一种用于比较两个或多个群体在某些因素上的分布情况的方法。
卡方检验与其他假设检验的区 别
卡方检验主要用于回答多个分类变量间是否有关联的问题,而 T 检验和 Z 检 验主要用于回答单变量的问题。
卡方检验对于数据的类型并无太多的要求,而 T 检验和 Z 检验只适用于概率 分布为正态分布的数据。
卡方检验的计算公式
卡方检验的计算公式如下: χ² = ∑(O-E)²/E
为什么需要统计学
准确
统计学可以让我们从收集到的数据中得出真正 准确可靠的结论。
决策
统计学有助于做出决策并帮助我们更好地理解 数据背后的信息。
推断
统计学允许我们通过对大量数据的推断得到新 的信息。
掌握
掌握医学统计学对于实现优质医保研究至关重 要。
概率

卡方检验--医学统计学

卡方检验--医学统计学

Value Measure of Agreement N of Valid Cases a. Not assuming the null hypothesis. Kappa .455 58
b. Using the asymptotic standard error assuming the null hypothesis.
Exact Sig. (1-sided)
Value Pearson Chi-Square Continuity Correction a Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association McNemar Test N of Valid Cases a. Computed only for a 2x2 table 14.154b 11.836 14.550
供了完整的支持,此处只涉及两分类变量间关联程度的指
标,更系统的相关程度指标见相关与回归一章。
两分类变量间关联程度的度量
相对危险度RR:是一个概率的比值,指试验组人群反应阳性概率 与对照组人群反应阳性概率的比值。数值为1,表明试验因素与
反应阳性无关联;小于1时,表明试验因素导致反应阳性的发生
率降低;大于1时,表明试验因素导致反应阳性的发生率增加。 优势比OR:是一个比值的比,是反应阳性人群中试验因素有无的 比例与反应阴性人群中试验因素有无的比例之比。 当关注的事件发生概率比较小时(<0.1),优势比可作为相对危
df
.000
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5. 16. c. Binomial distribution used.

卡方检验

卡方检验

表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。

按x2检验的自由度v=(行数-1)(列数-1),则该题的自由度v=(2-1)(2-1)=1,查x2界值表(附表20-1),找到x20.001(1)=6.63,而本题x2=10.01即x2>x20.001(1),P<0.01,差异有高度统计学意义,按α=0.05水准,拒绝H0,可以认为采用化疗加放疗治疗卵巢癌的疗效比单用化疗佳。

通过实例计算,读者对卡方的基本公式有如下理解:若各理论数与相应实际数相差越小,x2值越小;如两者相同,则x2值必为零,而x2永远为正值。

卡方检验

卡方检验

卡方检验是一种基于χ2分布的假设检验方法,其应用十分广泛,特别是在离散变量的分析中,χ2分布最早于1875年由F.Helmet提出,他计算出来自正态总体的样本方差分布服从χ2分布,1900年Karl Pearson在做拟合优度研究时也得出χ2分布,并且提出χ2统计量,将其用于假设检验。

【卡方检验的主要用途包括以下几个方面】1.检验某个连续变量的分布是否与某种理论分布相一致。

如是否符合正态分布、是否服从均匀分布、是否服从Poisson分布等2.某无序分类变量各属性出现的概率是否等于指定概率,如骰子各面出现的概率是否等于1 \6,硬币正反两面是否等于0.5等3.检验两个无序分类变量之间是否独立,有无关联,如收入与性别是否有关。

4.控制某种分类因素之后,检验两个无序分类变量各属性之间是否独立,如上述控制年龄因素之后,收入与性别是否有关,5.检验两个或多个样本率(总体率)或构成比之间是否存在差别,也称为同质性检验。

6.多个样本(总体)之间的多重比较7.不同的方法作用于同一个变量时,产生的效果是否一致(配对检验)。

如两种治疗方法作用于同一组病人,疗效是否一样在以上用途中,除了第一点是针对连续变量之外,其余都是针对无序分类变量,由此可见,卡方检验大部分是用在分类变量的检验中发挥作用。

================================================ ==【卡方检验基本思想】卡方检验是以渐进χ2分布为基础,它的零假设H0是:观察频数与期望频数没有差别。

通过构造χ2统计量,得出P值,并以此进行检验。

应该来讲,凡是通过构造χ2统计量进行检验的都属于卡方检验,卡方检验是一类检验(希腊字母χ的英文音标就近似读为“卡”),我们在描述这些不同的卡方检验的时候,通常会加上特定名称来加以区分,如Pearson卡方、McNemar配对卡方、似然比卡方等。

由于是pearson最早提出用卡方统计量做假设检验,所以我们平时说的卡方检验,很多时候就是指pearson卡方。

卡方检验


第二节
行×列表资料的 检验
2
行×列表资料
① 两个样本率比较时,基本数据有4个,排成2行 2列,称为2 ×2表,即四格表; ② 多个样本率或构成比比较时,基本数据超过2 行2列,有R行C列,称R×C表或行列表。
检验统计量(通用公式)
A n( 1) nR nC
2
2
(行数 1)(列数 1)

2
2 χ 基本公式】
2
( AT ) , (行数-1)(列数 1) T
T为理论频数(theoretical frequency)
式中,A为实际频数(actual frequency)
nR nC TRC n
【 χ2检验的基本原理】
若H0:π1=π2=π0成立,
四个格子的实际频数A与理论频数T相差不应该很大,即统计
度函数可给出不同自由度的一簇分布曲线。
2分布的形状依赖于自由度的大小;当自由
度趋向于无穷大时, 2分布趋向正态分布。
χ2分布特点
χ2分布是一组曲线。 χ2分布与自由度有关 自由度一定时, χ2值越大,P值越小;反之亦然。 =1时, P=0.05, x2 =3.84 P=0.01, x2 =6.63
三、配对四格表资料的 检验
2
也称McNemar检验(McNemar's test)
例6.3 某研究室用甲、乙两种血清学方法检查410 例确诊的鼻咽癌患者,得到结果如表6.4 ,问两 种方法检出率有无差别?
表6.4 两种血清学检验结果
甲法 + - 合计 乙法 + 261(a) 8(c) 269 - 110(b) 31(d) 141 合计 371 39 410
表中,a, d 为两法观察结果一致, b, c 为两法观察结果不一致。

卡方检验

2
列联表中, (1)在 r×c 列联表中,若 1/5 以上的格子的理论频数小于 5,或 有一个格子的理论频数小于 1,则应使理论频数小于 5 或小于 1 的格子 与临组合并,以增大理论频数。 或采用四格表资料的 (或采用 与临组合并,以增大理论频数。 或采用四格表资料的 Fisher 确切概率 ( 法) 。 检验中,若拒绝原假设, (2)在 r×c 列联表的 χ 检验中,若拒绝原假设,说明被比较的 )
专业运动年限 发病人数 未发病人数 合计 发病率 %
1 年一下 2-4年 5-7年 10年 8 - 10 年 合计 4 15 10 12 41 80 70 50 40 240 84 85 60 52 281 4.76 17.65 16.67 23.08 14.59
问:发病率的不同是由随机误差引起还是由条件误差(运动年限)引起? 发病率的不同是由随机误差引起还是由条件误差(运动年限)引起? 误差引起还是由条H0:发病率与运动年限无关;H0:发病率与运动年限有关
A2 2 − 1 ≈10.36 ○ χ = n ∑ n ⋅n r c 3 ○ 取α=0.05, n' = (r − 1)(c − 1) =(4-1)×(2-1)=3, , ( ) ) ,
2
2
检验的专用公式。 检验的专用公式。即 : χ
2
=∑
( A − T )2
T
(ad − bc )2 n 或χ = 。 (a + b )(c + d )(a + c )(b + d )
2 2
检验的校正公式。 (2) 总例数 n>40 且 1 格子的 1<T<5 时: 当 用四格表资料 χ 检验的校正公式。 : 即
定义
随机变量x1,x2……xn相对独立,并且服从 标准正态分布。则随机变量

卡方检验校正公式条件

卡方检验校正公式条件
卡方检验是一种统计检验方法,可以用来检验两个分类变量之间是否存在显著性差异。

在使用卡方检验时,通常要满足以下条件:
1.样本大小要足够大。

卡方检验的检验统计量的分布是近似
的,所以样本越大,检验的结果越可信。

一般来说,每个小格子(行或列)的观测数都应大于等于5。

2.原假设为独立性假设。

卡方检验是基于独立性假设的,即
两个分类变量之间没有相互影响。

3.样本来自同一总体。

卡方检验是假设样本是从同一总体中
抽取的,所以样本必须是独立的。

4.检验的变量必须是分类变量。

卡方检验只适用于分类变量,
不能用于连续变量。

5.对于二项分布卡方检验,样本大小不能太小。

卡方检验的
检验统计量是近似二项分布的,所以样本大小不能太小。

一般来说,样本大小应大于等于20。

如果数据不满足上述条件,则可能需要使用卡方检验的校正公式进行调整,才能得出可靠的结果。

卡方检验

0.05。
2
3.03 ,
=1
2<3.84=2
按 =0.05 水 准 , 不 拒 绝 H0, …
配对四格表资料的 检验
2
也称McNemar检验(McNemar's test)
例 6-8 表 6-9
甲 法
两种血清学检验结果比较
乙 法 + - 10 (b) 11 (d) 21 90 42 132 合计
n2 n2 n
一般地,
理论频数
n n (行合计)(列合计) = R C 总计 n
例题:计算以下四格表的各理论频数: (1) (2) 35 27 25 8 16 33 15 22
2 检验的基本思想可通过其基本公式来解释:
2
观察值 理论值
理论值
2

A T 2
2
1
2

( / 21)
e
2 / 2
Ý ß ×·
×Ó ¶ £ 1 Ô É È ½
0.2 0.1 0.0 0 3
3.84
×Ó ¶ £ 2 Ô É È ½ ×Ó ¶ £ 3 Ô É È ½ ×Ó ¶ £ 6 Ô É È ½
P=0.05的临界值
7.81 12.59
6
9 12 ¿ ·Ö ¨½ µ
* 图形:单峰,正偏峰; 自由度 很大时, 近似地服从正态分布.有 2 ( ) 2 Z , ( )服从均数为 ,方差为2 的正态分布 2
2 ( )
χ2分布(chi-square distribution)
0.5 0.4 0.3
f ( ) 2( / 2) 2
2
2 =2.734<3.84,P>0.05,不拒绝无效假设H0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2X 检验或卡方检验和校正卡方检验的计算私立广厦学校 郭捷思在教育学量的研究中,各种各样的统计方法已经被广泛的应用,特别是由于统计软件(如:SPSS )的不断成熟,给教育研究者提供了多种量的研究方法。

但是,这并不是无论什么量的研究都要通过统计软件来实现,也不是所有量的研究一定要运用统计软件才能快捷,简便的实现。

本文将教给大家几种简便的方法来实现卡方检验。

2X 检验(chi-square test )或称卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。

它的零假设是样本来自的总体分布与期望分布或某一理论分布无显著差异。

根据卡方检验基本思想的理论依据,对变量总体分布的检验就可以从对各个观察频数的分析入手。

为检验实际分布与理论分布(期望分布)之间是否存在显著差异,可采用卡方检验统计量。

典型的卡方统计量是pearson 卡方,其基本公式为:∑=-=ki o i e i o i f f f X 12)( 式中k 为子集个数,o f 为观察频数,e f 为期望频数,2X 服从k —1个自由度的卡方分布。

如果2X 值较大,则说明观测频数分布与期望频数分布差距较大;反之,如果2X 值较小,则说明观测频数分布与期望频数分布较接近。

我们将通过代入数据运算这条公式,计算出2X统计量的观测值,并依据卡方分布表计算观测值对应的概率p值。

下面,将通过几个实际例子来探究如何进行卡方检验。

一、四格表资料的卡方检验例1:某学校分别运用传统教学和多媒体教学在两个平行班的数学课上进行试验,目的为了检测两种教学方法对学生的成绩影响是否有差异。

本实验把学生的成绩划分为优秀人数(80分以上)和非优秀人数。

表1:两种教学方法学生成绩优秀率的比较表内这四个数据(斜体)是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的;两种教学的优秀率分别为40%和68.6%,两者的差别可能是抽样误差所致,亦可能是两种教学效果确有所不同。

这里可通过卡方检验来区别其差异有无统计学意义,检验步骤:1.建立检验假设:H0:π1=π2 (表示样本来自的总体分布与期望分布无显著差异,即传统教学和多媒体教学对学生成绩的影响并没有存在差异)H1:π1≠π2(传统教学和多媒体教学对学生成绩的影响存在差异)α=0.05(显著性水平;该值将用于与求出2X的概率p值进行比较,如果2X的概率p值小于显著水平α,则应拒绝零假设;反之则不能拒绝零假设)2.计算理论(期望)频数(TRC),计算公式为:T RC=n nnCR公式(20.13)式中TRC是表示第R行C列格子的理论数,Rn为理论数同行的合计数,Cn为与理论数同列的合计数,n为总例数。

(这里期望频数精确到0.0001是为了减小误差)第1行1列:50×55/101=27.2277第1行2列:50×46/101=22.7723第2行1列:51×55/101=27.7723第2行2列:51×46/101=23.2277以推算结果,可与原四项实际数并列成表2:表2:某学校分别运用传统教学和多媒体教学在两个平行班的数学课的试验结果比较因为上表每行和每列合计数都是固定的,所以只要用TRC 式求得其中一项理论数(例如T1.1=27.2277),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:第1行1列:27.2277第1行2列:50-27.2277=22.7723第2行1列:55-27.2277= 27.7723第2行2列:51-27.7723=23.22773.计算x2值按公式∑=-=k i o i e i o i f f f X 12)(代入 2787.82277.23)2277.2316(7723.27)7723.2735(7723.22)7723.2230(2277.27)2277.2720()(2222412=-+-+-+-=-=∑=i o ie i o if f f X4.查2X 值表求P 值在查表之前应知本题自由度。

按2X 检验的自由度v=(行数-1)(列数-1),则该题的自由度v=(2-1)(2-1)=1,查2X 界值表(附表1),找到2X 0.01(1)=6.63,2X 0.001(1)=10.83而本题2X =8.2787即2X 0.001(1)>2X >2X 0.01(1),所以0.001<P <0.01,按α=0.05水准,p <α,拒绝H0,差异有高度统计学意义,可以认为传统教学和多媒体教学对差生成绩的影响存在显著差异。

通过2X 界值表可以看出,2X 越大,p 值就会越小,那么试验中的差异具有的统计学意义越大。

而从这个实例中,我们可以得到期望频数和实际频数相差越大,2X 值就会越大。

另一方面,2X 值的大小又跟子集个数的多少有关,格子数越多,2X 也会越大。

也就是说2X 随自由度的增大也增大。

二、用专用公式计算卡方2X 值对于四格表资料,还可用以下专用公式求2X 值。

首先把四个表依次表上字母。

如图所示:表3: 两种教学方法学生学习成绩的比较然后套用专用公式:))()()(()(22d b c a d c b a n bc ad X ++++-= 式中a 、b 、c 、d 各表示四个表中四个实际数,n 表示总例数。

结果可以得到:2787.846555150101)35301620(2=⨯⨯⨯⨯⨯-⨯=X计算结果与前述用基本公式一致,这种方法的更为简便。

三、四格表2X 值的校正算法。

上面讲解的例子中的2X 值是根据正态分布中∑=-=k i o i e i o i f f f X 12)(的定义计算出来的。

但是当自由度为1时(即在四格表中),如果出现期望频数e i f 小于5而总例数又大于40,应用以下的校正公式:∑=--=k i o i e i o i f f f X 122)5.0( 如果用四格表专用公式,亦应用下式校正:))()()(()2(22d b c a d c b a n n bc ad X ++++--= 例2,对某学校的学生是否在课外时间请家教进行调查,目的是为了检测课外辅导是否对学生的成绩有影响,结果如表4。

表4: 学生是否在课外时间请家教的对成绩的影响的卡方校正计算从表4可见,T1.2和T2.2数值都<5,且总例数大于40,故宜用校正公式检验。

步骤如下:1.检验假设:H0:π1=π2(表示样本来自的总体分布与期望分布无显著差异,即有请家教和没请家教对学生成绩的影响并没有存在差异)H1:π1≠π2(即有请家教和没请家教对学生成绩的影响存在差异)α=0.052.计算理论数:(已完成列入四格表括弧中)3.计算x2值:应用公式∑=--=k i o i e i o i f f f X 122)5.0(运算如下:∑=--=4122)5.0(i o i e i o i f f f X =2(3230.44780.5)30.4478--+2(2 3.55220.5)3.5522--+2(2829.5520.5)3.5522--+2(5 3.44780.5)3.4478--=0.7067则该题的自由度v=(2-1)(2-1)=1,查2X 界值表(附表1),找到2X 0.05(1)=3.84,而本题2X =0.7067即2X <2X 0.05(1),P>0.05,按α=0.05水准,接受H0,无统计学意义。

实验结果表明是否参加课外辅导对学生的学习成绩影响并不存在差异。

四、行×列表的卡方检验(2X test for R ×C table )前面所阐述的是适用于两个组的率或百分比差别的显著性检验,而对于两个组以上的卡方检验。

其检验步骤与上述相同,简单计算公式如下: 211o k i i R C f X n n n =⎛⎫=- ⎪⎝⎭∑ 式中n 为总例数;o i f 为各观察值;R n 和C n 为与各o i f 值相应的行和列合计的总数。

例3:许多教育学专家提出母亲的教育背景跟学生的学习成绩有很大的关系,通过以下的实验来验证该理论在某个学校中是否成立。

首先把母亲教育水平分为本科及本科以上、专科、中学和小学及小学以下;学生分为优秀(80分以上)和非优秀。

表5:母亲的教育背景与孩子的学习成绩的优秀率的比较该表资料由2行4列组成,称2×4表,可用公式⎪⎭⎫ ⎝⎛-=∑=1812i n n f C R o i n X 检验。

式中k 为子集个数,o f 为观察频数,R n 为理论数同行的合计数,C n 为与理论数同列的合计数,n 为总例数。

1.检验假设H0:不同母亲的教育背景下学生学习成绩的优秀率相同 H 1:不同母亲的教育背景下学生学习成绩的优秀率不同 α=0.052.计算2X 值⎪⎭⎫ ⎝⎛-=∑=1812i n n f C R o i n X =400(280195110⨯+26019595⨯+23019590⨯+225105195⨯+230205110⨯ +23512595⨯+26020590⨯+280205105⨯)=67.92 3.确定P 值和分析本例v=(2-1)(4-3)=3,据此查附表1:2X 0.001(3)=16.27,本题2X =67.92,2X >2X 0.001(3),P <0.001,按α=0.05水准,拒绝H0,可以认为不同教育水平的母亲,孩子的优秀率存在差异。

五.行×列表2X 检验注意事项1.一般认为行×列表中不宜有1/5以上格子的理论数小于5,或有小于1的理论数。

当理论数太小可采取下列方法处理:①增加样本含量以增大理论数;②删去上述理论数太小的行和列;③将太小理论数所在行或列与性质相近的邻行邻列中的实际数合并,使重新计算的理论数增大。

由于后两法可能会损失信息,损害样本的随机性,不同的合并方式有可能影响推断结论,故不宜作常规方法。

2.如检验结果拒绝检验假设,只能认为各总体百分比或总体构成比之间总的来说有差别,但不能说明它们彼此之间都有差别,或某两者间有差别。

附表1:(作者:私立广厦学校郭捷思********************** )11。

相关文档
最新文档