初升高数学衔接知识点

合集下载

初高中数学知识点衔接 -回复

初高中数学知识点衔接 -回复

初高中数学知识点衔接 -回复
初中数学和高中数学在知识点上是有很多衔接的,初中数学是高中数学的基础,高中数学是初中数学的深化和拓展。

下面列举一些初高中数学知识点的衔接:
1. 数的四则运算:初中数学主要学习整数、分数和小数的四则运算,而高中数学中会深入研究有理数和无理数的运算,及其在方程、函数等方面的应用。

2. 代数方程与函数:初中数学主要学习一次方程与一次函数,而高中数学中会学习二次方程与二次函数、指数函数、对数函数、三角函数等更高阶的函数。

3. 几何:初中数学主要学习平面几何,高中数学中会学习空间几何、解析几何以及更高级的几何推理与证明。

4. 概率与统计:初中数学主要学习基本的概率与统计知识,高中数学中会深入研究概率与统计的定理与应用。

5. 数列与数列极限:初中数学学习数列的概念、性质及常见数列的求和公式等,而高中数学中会学习数列的极限及其在函数极限中的应用。

以上仅是初高中数学知识点的一些衔接示例,实际上初高中数学在很多知识点上都存在衔接与拓展的关系。

为了学好高中数
学,建议学生在初中数学时要扎实掌握基础知识,理解原理和定理,做好知识的迁移和拓展准备。

高一数学初升高衔接知识点

高一数学初升高衔接知识点

高一数学初升高衔接知识点随着高中入学后的课程调整和学习内容的增多,高一数学的学习也有了新的挑战。

对于初升高的同学们来说,如何顺利衔接初中数学和高中数学,掌握新知识点,是一个需要重视的问题。

本文将就高一数学初升高衔接的几个重要知识点进行探讨。

一、函数与方程的学习在初中数学中,我们已经接触过了一次函数和二次函数的概念。

而在高中数学中,我们将会深入学习各种函数的性质、图像和应用。

因此,在衔接初高的过程中,我们首先要夯实对于函数概念的理解。

在掌握了函数的基本定义和性质后,我们要学习如何解方程。

在初中数学中,我们只涉及了简单的一元一次方程和一元二次方程的解法。

而在高中数学中,我们将接触到更加复杂的方程类型,如多项式方程和分式方程。

因此,在初升高的过程中,我们需要花时间来学习并掌握这些新的解方程的方法。

二、向量和空间几何的学习初中数学中,并没有学习过向量和空间几何的知识。

然而,在高中数学中,向量和空间几何是非常重要的内容。

向量具有方向和大小的特点,在物理、几何和代数中都有广泛的应用。

空间几何则研究了三维空间中的点、线、面和体的性质和关系。

对于初升高的同学们来说,向量和空间几何的学习是一个全新的挑战。

在这一过程中,我们需要努力掌握向量的基本运算方法和性质,学习如何求解空间几何中的相关问题。

同时,还需要与初中数学中所学的平面几何知识进行对比和理解,以便更好地应用和拓展。

三、数列和数列极限的学习在初中数学中,我们学习了等差数列和等比数列的性质和求和公式。

而在高中数学中,我们将进一步学习数列的极限性质和收敛判定方法。

数列是高中数学中的重要内容,对于初升高的同学们来说,需要掌握数列极限的计算和推导方法,并了解数列的收敛和发散的概念。

通过学习数列的性质和应用,我们可以更好地理解和应用高中数学中的其他知识点。

总结:高一数学初升高的衔接是一个重要的过程,需要我们投入时间和精力来学习和理解。

本文分别就函数与方程、向量和空间几何、数列和数列极限这三个知识点进行了简要的介绍和探讨。

初高中数学衔接内容

初高中数学衔接内容

初高中数学衔接内容初中数学和高中数学在知识体系、思维方式和学习方法等方面存在着一定的差异。

为了让同学们能够顺利地从初中数学过渡到高中数学,做好衔接工作至关重要。

接下来,让我们一起来探讨一下初高中数学的衔接内容。

一、知识内容的衔接1、数与式在初中,我们主要学习了有理数、无理数、整式、分式等基本的数与式的概念和运算。

而在高中,会进一步拓展到复数的概念和运算,同时对代数式的变形和化简要求更高,例如乘法公式的灵活运用、因式分解的技巧等。

2、方程与不等式初中阶段,我们学习了一元一次方程、二元一次方程组、一元二次方程以及简单的不等式。

到了高中,会接触到一元二次方程根与系数的关系(韦达定理)、高次方程、分式方程、绝对值不等式等内容,并且需要掌握更复杂的求解方法和应用。

3、函数函数是初高中数学的重点和难点。

初中主要学习了一次函数、反比例函数和二次函数的基本性质和图像。

高中则在此基础上,引入了指数函数、对数函数、幂函数等更多类型的函数,同时对函数的性质(单调性、奇偶性、周期性等)、函数的图像变换以及函数的综合应用有更深入的要求。

4、几何图形初中的几何主要集中在平面几何,如三角形、四边形、圆等的性质和定理。

高中则将几何拓展到空间几何,学习空间点、线、面的位置关系,空间几何体的表面积和体积等,并且需要具备较强的空间想象能力和逻辑推理能力。

5、三角函数初中阶段,我们初步了解了锐角三角函数的概念和简单应用。

高中会对三角函数进行系统的学习,包括任意角的三角函数、诱导公式、三角函数的图像和性质、两角和与差的三角函数公式等。

二、思维方式的衔接1、从形象思维到抽象思维初中数学的内容相对较为直观和形象,例如通过图形来理解几何问题,通过实际例子来学习函数。

而高中数学则更加抽象,需要同学们具备更强的抽象思维能力,例如理解函数的概念、空间几何的位置关系等。

2、从常量思维到变量思维初中数学中,大多数问题涉及的是常量的计算和求解。

而高中数学中,变量的概念无处不在,函数就是研究变量之间关系的重要工具。

2024年新高一数学初升高衔接《基本不等式》含答案解析

2024年新高一数学初升高衔接《基本不等式》含答案解析

第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A.2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mA m n=+(m 、n 为互不相等的正实数),242B x x =-+-,则A 与B 的大小关系是( )A .A B>B .A B≥C .A B<D .A B≤【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a ,b ,c 满足22c b a a-=+-,2222c b a a a+=++,且0a >,则a ,b ,c 的大小关系是( )A .b c a>>B .c b a>>C .a c b>>D .c a b>>【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B.C.D .a b+【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A.2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x +取最小值时x 的取值为( )A .1B .1±C .2D .2±2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .13.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .24.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .85.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或36.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为28.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.10.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是.四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y+的最小值.13.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【答案】B【解析】由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >.故选:B.【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【答案】A【解析】A 选项,2642a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当8a b ==时等号成立,A 选项正确.B 选项,当a<0时,40a a+<,所以B 选项错误.C 选项,当0,0a b ><时,()20,02a b ab +<≥,所以C 选项错误.D 选项,当0,0a b <<时,0a b +<,a b +≥不成立,所以D 选项错误. 故选:A【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A .2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【答案】BCD【解析】对于A ,当,a b 为负数时不成立,故A 错误,对于B ,()()22222()0a b a b a b +-+=-≥,则()()2222a b a b +≥+,故B 正确,对于C ,0ab >,则,b aa b 都为正数,2b a a b +≥,当且仅当b a ab=,即a b =时等号成立,故C 正确,对于D ,111224b a a b ab a b ab a b ⎛⎫⎛⎫++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =和b aa b=同时成立,即1a b ==±时等号成立,故D 正确,故选:BCD 【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>【答案】AC【解析】由题意可知AB AC BC a b =+=+,2a bOA OB OD +===,因为90CBD CAD ADC ∠=-∠=∠ ,90ACD DCB ∠=∠= ,则Rt Rt ACD DCB ∽ ,所以,CD ACBC CD= ,即2CD AC BC ab =⋅=,所以CD =在Rt OCD △中,OD CD >,即)0,02a ba b +>>当OD AB ⊥时,O 、C 点重合,a b =,此时)0,02a ba b +=>>,则)0,02a ba b +≥>>,所以A 正确;对于C 选项,在Rt OCD △中,CE OD ⊥,则90DCE CDE DOC ∠=-∠=∠ ,又因为90DEC DCO ∠=∠= ,所以,Rt Rt DEC DCO ∽ ,可得CD DE DO CD=,即2CD DE OD =⋅,所以222112CD ab ab DE a b OD a b a b====+++,由于CD DE >111a b >+,当a b =时,CD DE =111a b=+,()20,011a ba b>>+,所以C正确;由于22a b+在该图中没有相应的线段与之对应,故BD中的不等式无法通过这种几何方法来证明,故选:AC.考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mAm n=+(m、n为互不相等的正实数),242B x x=-+-,则A与B的大小关系是()A.A B>B.A B≥C.A B<D.A B≤【答案】A【解析】m、n为互不相等的正实数,则m nn m≠,所以2n mAm n=+>=,2242(2)22B x x x=-+-=--+≤,=2x时,max2B=,所以A B>.故选:A.【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a,b,c满足22c b aa-=+-,2222c b a aa+=++,且0a>,则a,b,c的大小关系是()A.b c a>>B.c b a>>C.a c b>>D.c a b>>【答案】B【解析】因为0a>,由基本不等式得22220c b aa-=+-≥=>,故c b>,因为2222c b a aa+=++,22c b aa-=+-,两式相减得,2222222222a a a aabaa++-=-+++=,故2112a ab+=+,所以220141151216ab aa a⎛⎫-⎪-+-+⎝=⎭=>,故b a>,所以c b a>>.故选:B【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B .C .D .a b+【答案】ABC【解析】由于170,139a b <<<<,则a b ¹,故a b +>222a b +>,则不可能是最大值,B ,C 符合题意;由于22221132)2()()428(a b a b a b ++=--+--,当170,139a b <<<<时,221112()2(0448a -<-=,22111()(1224b -<-=,故221131132((0428848a b -+--<+-=,即222a b a b +<+,故222a b +不可能是最大值,A 符合题意,故选:ABC【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A .2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+【答案】ABD【解析】对于选项A ,因为0a b >>,则20>,所以2a b+A 正确;因为0a b >>,所以0a b +>,0ab >,又2a b +>,得到01<<故22ab a ba b +<<+,所以选项B 和D 正确,对于选项C ,取2,1a b ==,满足0a b >>,但243322ab a ba b +=<=+,所以C 错误,故选:ABD.考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【答案】B【解析】()32x x -()213234x x ⎡⎤≤⨯+-=⎣⎦,当且仅当2x x =-,即1x =取得等号,满足题意.故选:B.【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【答案】A【解析】因为100x >>,故()10x x +-≥5,当且仅当5x =时,等号成立,所以2253≥-=-.故选:A.【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【答案】C【解析】因为()2222228T a b a b ab =++++≥++=,当且仅当1a b ==时取等号,所以T 的最小值为8.故选:C.【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【答案】B【解析】由正数x ,y 满足44x y +=,得111111419(4)()(5)5)4444y x x y x y x y x y +=++=++≥=,当且仅当4y x x y =,即23x =,43y =时取等号,所以11x y +的最小值为94.故选:B【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19【答案】C【解析】因为a b ab +=且0a >,0b >,所以111a b+=,则()1192722799101016b a ab a b a a b b a b a b a b a b ⎛⎫-+=-++=+=++=++≥+= ⎪⎝⎭,当且仅当9111b aa ba b ⎧=⎪⎪⎨⎪+=⎪⎩时,即当4a =,43b =时,等号成立.因此,27ab a b -+的最小值是16.故选:C.考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析【解析】(1)0,0,1a b a b >>+= ,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭,当且仅当ba a b=,即12a b ==时等号成立.(2)0,0,1a b a b >>+= ,12212212()1111a b a b b a ab b a ab +⎛⎫⎛⎫∴++=+++=+++⎪⎪⎝⎭⎝⎭21223434111()a b b a a b a b a b ⎛⎫=++++=++=+++ ⎪⎝⎭3434134888b a b a a b a b =++++=++≥+=+当且仅当34b a ba =时,即3,4ab ==-时等号成立.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【答案】(1)证明见解析;(2)证明见解析【解析】(1)因为1a b +=,所以()222212a b a b ab ab +=+-=-,因为0a >,0b >,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以11121242ab -≥-⨯=,即2212a b +≥,故22221a b +≥;(2)因为1a b +=,所以()1919910b aa b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为0a >,0b >,所以0b a>,90a b >,所以96b a a b +≥,当且仅当9b a a b =,即334b a ==时,等号成立,则91016b aa b ++≥,即1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【答案】证明见解析【解析】∵a ,b ,c 均为正数,∴()()()0a b b c c a +++++≥>,当且仅当a b b c a c +=+=+,即a b c ==时,等号成立.1110a b b c a c ++≥>+++,当且仅当111a b b c a c==+++,即a b c ==时,等号成立.∴()11129a b c a b b c a c ⎛⎫++++≥= ⎪+++⎝⎭,故()11192a b c a b b c a c ⎛⎫++++≥ ⎪+++⎝⎭,当且仅当a b c ==时,等号成立.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)由222()()()a b c a b b c a c ++=+++++≥++,当且仅当a b c ==时等号成立,即a b c ++≥.(2)由11111()(3)22a b c a b c a b c b c a c a ba b c a b c a a b b c c++++++++=⋅++=⋅++++++119(3(3222)222≥++=⋅+++=,当且仅当23a b c ===时等号成立,则11192a b c ++≥,得证.(3)由222222()()()()(2)()ax by bx ay ab x y xy a b ab xy xy a b ++=+++≥++2()xy a b xy =+=,当且仅当x y =时等号成立,不等式得证.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【答案】Dm ≥恒成立,即5m +≥恒成立.又559≥+=,当且仅当a b =时取等号.故实数m 的最大值为9.故选:D【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【答案】A【解析】由410x mxy +-≥,则41828912222x x x x y m xy xy xy y x++++≤===+()9111991542222222221x y x y y x y x ⎛⎛⎫⎛⎫++==+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当922x y y x =,即12x =,32y =时,等号成立.故选:A.【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【答案】B【解析】9x y xy +=,故911x y +=,()91910x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭,0x >,0y >,故96x y y x +≥=,当且仅当9x y y x=,即12,4x y ==时取等号,故10616x y +≥+=,x y +最小值是16,由不等式a x y ≤+恒成立可得16a ≤.a 的取值范围是(],16-∞,故选:B.【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13【答案】ACD【解析】因为0x >,所以21113153x x x x x =≤=++++,当且仅当1x x=,即1x =时等号成立,由任意0x >,231xa x x ≤++恒成立, 所以15a ≥,符合条件有15,12,13,故A 、C 、D 对;11015<,故B 错;故选:ACD考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【答案】B【解析】如图,设AB x =,由矩形()ABCD AB AD >的周长为4,可知(2)AD x =-.设PC a =,则()DP x a =-.,90,APD CPB ADP CB P AD CB '''∠=∠∠=∠=︒= ,,Rt ADP Rt CB P AP PC a '∴∴== ≌.在Rt ADP 中,由勾股定理得222AD DP AP +=,即222(2)()x x a a -+-=,解得222x x a x-+=,所以22x DP x a x-=-=.所以ADP △的面积11222(2)322x S AD DP x x x x -⎛⎫=⋅=-⋅=-+ ⎪⎝⎭.所以33S ≤-=-2x x =时,即当x =时,ADP △的面积最大,面积的最大值为3-B .【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【答案】当水池设计成底面边长为40m 的正方形时,总造价最低,为198400元.【解析】设池底的一边长为()m 0x x >,则另一边长为48001600m=m 3x x,总造价为y 元,则1600160016001003280160000480y x x x x ⎛⎫⎛⎫=⨯++⨯⨯⨯=+⨯+ ⎪ ⎪⎝⎭⎝⎭160000480198400≥+⨯=,当且仅当1600x x=,即40x =时,等号成立,所以当水池设计成底面边长为40m 的正方形时,总造价最低,最低为198400元.【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【答案】长为时总造价最低.【解析】设处理池的长和宽分别为x ,y ,高为h ,总造价为z ,则150xy =,(016,016)x y <≤<≤,(22)400224815080(8001296)120001200012000z x y h yh x y h =+⨯+⨯+⨯=++≥+=+,当且仅当8001296x y =,又150xy =,即16x =<,16y 时取到等号,故长为时总造价最低.【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.【答案】当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .【解析】设()()m 0AB a a =>,上底()()m 0BC b b =>,分别过点,B C 作下底的垂线,垂足分别为,E F ,则BE ,2a AE DF ==,则下底22a aAD b a b =++=+,该等腰梯形的面积())22b a b S a b a ++==+=所以()2300a b a +=,则30022a b a =-,所用篱笆长为2l a b =+300222a a a =+-300322a a =+≥30=,当且仅当300322aa =,即()10m a =,()10mb =时取等号.所以,当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x+取最小值时x 的取值为( )A .1B .1±C .2D .2±【答案】B【解析】由题意可知,20x >,∴2212x x +≥=,当且仅当221x x =,即1x =±时,等号成立,即221x x+取最小值时x 的取值为1±.故选:B .2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .1【答案】B【解析】由题意1x y +=≥,解得14≤xy ,等号成立当且仅当12x y ==.故选:B.3.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .2【答案】C【解析】因为0x >,所以224y x x =+=≥,当且仅当22x x=,即1x =时等号成立,所以22y x x=+的最小值是4.故选:C.4.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .8【答案】C【解析】正数a ,b 满足41a b +=,则11114()2244444)(b a a b a b a a b b +=+=≥++++,当且仅当44b aa b =,即142a b ==时取等号,所以当11,82a b ==时,114a b +取得最小值4.故选:C5.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或3【答案】B【解析】由0x >,得244113x x x x x -+=+-≥=,当且仅当4x x =,即2x =时等号成立,所以24-+x x x的最小值为3.故选:B.6.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+【答案】D【解析】因为,AD a BD b ==,所以,22a b a b OF OC OD +-===,在Rt DOF △中,DF ==又CD AB ⊥,所以CD ===在Rt CDO △中,DE OC ⊥,故ED OC OD DC ⋅=⋅,得到22a bOD DC ED a b OC -⋅===+所以2abCE a b===+,所以CE DF ≤,即2ab a b +,故选:D.二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为2【答案】CD【解析】对于选项A ,当=1x -时,12x x+=-,故A 错误;对于选项B ,()()222211x x x x x -=-+=--+,所以()2x x -的最大值为1,故B错误;对于选项C,122222x x x x -+=+≥=,当且仅当122xx=,即0x =时,等号成立,故C 正确.对于选项D ,222277222222x x x x ++=+-≥=-++,当且仅当22722x x+=+,即22x =时,等号成立,故D 正确.故选:CD.8.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭【答案】ACD【解析】由,R a b ∈,则222a b ab +≥,得222a b ab +≥,A 正确;由,R a b ∈,取1,2a b =-=,则1202b a a b +=--<,故B 错误;由于,R a b ∈,则22()024a b a b ab +-⎛⎫-=-≤ ⎪⎝⎭,则2a b ab +⎛⎫≤ ⎪⎝⎭,故C 正确;由于2222()0224a b a ba b ++-⎛⎫-=-≤ ⎪⎝⎭,故D 正确,故选:ACD .三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.【答案】9【解析】由1x >,得10x ->,于是21616161119111x x x x x x x -+=+=-++≥=---,当且仅当1611x x -=-,即5x =时取等号,所以2161x x x -+-的最小值为9.故答案为:910.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.【答案】300【解析】购买x 台机器人的总成本为21()150600P x x x =++,则平均成本()150112600P x x x x =++≥+=,当且仅当150600x x=,即300x =时,平均成本最低为2万元.故答案为:300.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是 .【答案】1,2⎡⎫+∞⎪⎢⎣⎭【解析】若关于x 的不等式225x x a +≥-恒成立,则min 2(2)5x x a+≥-,因为x a >,故2222()2242x x a a a a x a x a +=-++≥=+--,当且仅当1x a =+时取等,故得425a +≥,解得12a ≥.故答案为:1,2⎡⎫+∞⎪⎢⎣⎭四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y +的最小值.【答案】(1)23;(2)2 ;(3)1+【解析】(1)2113434(43)(3)(43)[3323x x x x x x +--=⨯⨯-≤⨯=,当且仅当343x x =-,即2(0,1)3x =∈时取等号.故(43)x x -取得最大值43时,x 的值为23.(2)2222122311x x x x y x x +-++-+==--2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥+-.(1x >)当且仅当311x x -=-,即1(1,)x =∈+∞时取等号.故函数的最小值为2.(3)x ,R y +∈,()1311313112144y x x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当y =,即)21x =,(23y =时取等号.∴13x y +的最小值为113.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数数学31,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.【答案】(1)3-;(2)(43-【解析】(1)由题意得:(22a b =+=2≤=6ab ≤-所以132S ab =≤-a b =时,等号成立,所以直角三角形ABC面积的最大值为3-;(2)因为a b +≤所以21a b =+≤)21≥=,所以(2243S a b =+≥-,当且仅当a b =时,等号成立,所以正方形ABDE 面积的最小值为(43-.。

数学初高衔接内容

数学初高衔接内容

数学初高中的衔接内容是非常重要的,它涉及到学生在数学学科中的连贯性和深入理解。

下面列举了一些常见的数学初高中衔接内容:
1. 数学基础知识的复习和巩固:
-复习初中数学的基本概念、公式和运算规则,如整数、分数、代数等;
-温故而知新,通过练习和应用,巩固和熟练掌握初中数学的基础知识。

2. 函数与方程的深入学习:
-学习更高级的函数类型,如指数函数、对数函数、三角函数等,并掌握它们的性质和图像;
-学习更复杂的方程类型,如二次方程、立方方程、指数方程等,进一步提升解方程的能力。

3. 几何的推广与拓展:
-进一步学习平面几何和立体几何的相关知识,如平行线、相似三角形、立体几何的体积与表面积等;
-学习使用向量方法解决几何问题,如向量的加法、减法、数量积、向量夹角等。

4. 数据与统计的扩展应用:
-学习更复杂的数据统计方法,如概率、抽样调查和统计推断等;
-开展实际问题的统计与分析,培养学生的数据处理和解决问题的能力。

5. 探究型学习与证明思维的培养:
-引导学生进行探究性学习,鼓励他们提出问题、验证猜想和发现规律;
-培养学生的数学思想和证明能力,引导他们理解数学定理和定律的证明过程。

通过初高中数学的衔接,旨在帮助学生建立起对数学的整体性理解和扎实的基础,为进一步深入学习和应用数学打下坚实的基础。

重要的是,教师需要根据学生的具体情况和学科特点,适当调整教学内容和方式,使学生能够顺利过渡到高中数学,并进一步拓展数学思维和应用能力。

初中数学与高中数学衔接紧密的知识点

初中数学与高中数学衔接紧密的知识点

初中数学与高中数学衔接紧密的知识点初中数学与高中数学有很多紧密的知识点联系,其中包括以下几个重要的知识点:1.绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数。

需要注意的是,两个负数比较大小时,绝对值大的反而小。

另外,对于绝对值不等式,当|x|0)时,解为-aa(a>0)时,解为xa。

2.乘法公式:包括平方差公式、立方差公式、立方和公式、完全平方公式和完全立方公式。

这些公式在解题时非常有用,需要熟练掌握。

3.分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

有多种方法可以分解因式,包括提公因式法、运用公式法、分组分解法和十字相乘法。

4.一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

解一元一次方程的步骤包括去分母、移项、合并同类项和未知数系数化为1.需要注意的是,当方程为ax=b时,当a≠0时,方程有唯一解x=b/a;当a=0,b≠0时,方程无解;当a=0,b=0时,方程有无数解。

5.二元一次方程组:由两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

解二元一次方程组的方法包括代入消元法和加减消元法。

6.不等式与不等式组:不等式是用符号(。

≠、<)连接的式子,不等式的解集是能使不等式成立的未知数的值。

解不等式的过程需要注意不等式的变形,包括两边加减同一个整式、两边乘除同一个正数以及两边乘除同一个负数。

对于一元一次不等式,需要求出解集。

2.改写每段话:5)二次函数的性质:1.二次函数y = ax^2 + bx + c (a ≠ 0)的图像关于直线x = -b/2a对称。

2.当a。

0时,在对称轴左侧,y值随x值的增大而减少;在对称轴右侧,y的值随x值的增大而增大。

初升高数学衔接知识点

初升高数学衔接知识点从初中升入高中,数学学科的难度和深度都有了明显的提升。

为了更好地适应高中数学的学习,做好初升高的数学衔接至关重要。

以下是一些重要的衔接知识点。

一、函数函数是高中数学的重点和难点,而初中阶段对函数的学习只是一个基础。

在初中,我们主要学习了一次函数、反比例函数和二次函数的基本性质和图像。

但在高中,函数的概念更加抽象和广泛,不仅要深入研究函数的性质,如单调性、奇偶性、周期性等,还要学习更多类型的函数,如指数函数、对数函数、幂函数等。

对于函数的单调性,初中我们通过图像来直观判断,而高中则需要用定义和导数来进行严格的证明和计算。

例如,对于函数 f(x),如果在区间(a, b)内,当 x1 < x2 时,有 f(x1) < f(x2),则函数在该区间单调递增。

奇偶性方面,初中接触较少,高中则要求掌握奇偶函数的定义和常见的奇偶函数,如奇函数有正弦函数等,偶函数有余弦函数等。

周期性在高中也是一个重要概念,比如正弦函数和余弦函数就是周期函数。

二、代数式与方程初中阶段我们学习了一元一次方程、二元一次方程组、一元二次方程等。

高中会在此基础上拓展到高次方程、分式方程、无理方程等。

在求解方程时,初中主要运用消元法、配方法等,高中则会引入更多的方法,如换元法、参数法等。

对于代数式的运算,初中重点是整式和分式的运算,高中则会涉及到更多的复合运算,如指数式、对数式的运算,并且要求更高的运算技巧和准确性。

三、不等式初中学习了一元一次不等式和简单的一元二次不等式的解法。

高中会进一步深入学习不等式的性质、均值不等式以及不等式的证明。

均值不等式在高中数学中应用广泛,如对于正实数 a、b,有 a + b ≥ 2√ab ,当且仅当 a = b 时,等号成立。

不等式的证明方法多样,如比较法、综合法、分析法等,需要我们灵活运用。

四、几何图形初中的几何主要集中在平面几何,如三角形、四边形、圆等的性质和计算。

高中则会拓展到空间几何,包括空间直线与平面的位置关系、空间向量等。

初升高数学衔接知识点

初升高数学衔接知识点
1. 函数的概念嘿!你想想看,函数就像一个魔法机器,你给它一个输入,它就会给你一个特定的输出。

比如说,y = 2x,当你给 x 赋值 5 时,y 不就等于 10 了嘛,神奇吧!
2. 二次函数的图像哇塞!二次函数的图像就像一条会跳舞的曲线。

像抛物线 y = x^2,它有个最低点,多有意思啊!还记得你扔出的球的轨迹吗?那就和二次函数图像有点像呢。

3. 几何图形的认识哎呀!几何图形就像生活中的各种东西呀。

圆就像个大皮球,三角形像个屋顶,正方体像个盒子。

你看我们身边到处都是几何图形呢!
4. 不等式的求解嘿呀!不等式就像个天平,要让两边平衡呀。

比如说
2x + 5 > 10,解出来 x 的范围,不就知道哪些数满足条件啦,是不是很有
趣呢?
5. 因式分解哇靠!因式分解就像是把一个大东西拆分成好多小零件。

像x^2 - 9 可以分解成 (x + 3)(x - 3),厉害吧!
6. 概率的初步了解天哪!概率就像是在碰运气呢。

抛个硬币,正面朝上的概率是二分之一。

就好像抽奖一样,充满了未知和期待,多刺激呀!
7. 数列的奥秘哟呵!数列就像一串有规律的数字在排队。

等差数列 1,3,5,7,它们每次都增加 2,是不是很神奇呢!
8. 三角函数的神奇嘿嘿!三角函数就像是数学里的魔法师。

像正弦函数,余弦函数,它们能解决很多几何问题呢,你不好奇吗?
我的观点结论就是:初升高这些数学衔接知识点真的很重要,很有趣,能让我们更好地进入高中数学的学习呢!。

初高中数学衔接知识点

初高中数学衔接知识点随着学生从初中升入高中,数学的难度和复杂程度也随之增加。

因此,在初高中数学衔接方面,有一些重要的知识点需要我们注意和掌握。

本文将围绕初高中数学衔接的一些关键知识点展开讨论。

第一个关键知识点是函数。

函数在高中数学中占据重要地位,因此对初中学生来说,理解和掌握函数的概念至关重要。

在初中阶段,学生接触到了一次函数的概念,而在高中阶段,他们将学习更多类型的函数,如二次函数、指数函数、对数函数等。

因此,初中学生应该注重对一次函数的理解和运用,为高中学习奠定坚实的基础。

第二个关键知识点是平面几何。

虽然初中数学中有一定的几何知识,但高中几何的内容更加深入和复杂。

高中几何涉及的知识点包括向量、三角函数、平面解析几何等。

因此,初中学生需要掌握平面几何的基本概念和定理,如角的概念、三角形的性质、平行线与角度关系等。

只有牢固掌握初中几何知识,才能更好地应对高中的几何学习。

第三个关键知识点是概率与统计。

初中数学中的概率与统计内容较为基础,而高中的学习相对较深入。

在高中阶段,学生将学习更多的概率分布、统计分析方法和推断统计等知识。

因此,在初中阶段,学生应该理解和掌握概率与统计的基本概念,如样本空间、事件、频率等。

这样才能更好地适应和理解高中概率与统计的学习。

第四个关键知识点是三角函数。

初中学生在学习三角函数时,主要学习了正弦函数和余弦函数。

而在高中,学生将进一步学习正切函数、余切函数、正割函数和余割函数等。

此外,高中的三角函数还涉及到三角方程、三角恒等式等更为复杂的内容。

因此,初中学生应该注重对正弦函数和余弦函数的理解和运用,为高中的三角函数学习打下坚实的基础。

最后一个关键知识点是数列与数学归纳法。

在初中阶段,学生接触到了等差数列和等比数列的概念,并学习了基本的性质和公式。

而在高中,学生将学习更多类型的数列,如等差中项数列、等差前n项和等差通项和等比前n项和等比通项等。

此外,高中数列的学习还涉及到数列极限、数列的和与差、数列的递推关系等。

初高中数学知识点的衔接问题-PPT课件-图文

8.重视专题教学 利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识,应用形式,解决方法和解题规律.并借此机会对学生进行学法的指点,有意渗透数学思想方法.
9.引导学生转变观念、改进学法,提升思维能力 (1)指导学生正确对待学习中遇到的新困难和新问题. (2)教师应注意培养学生的预习习惯,提高听课效率.高中课堂内容多,难度大,需要学生在课前进行预习,以缓解教师授课速度快,课堂容量大,学生接受知识吃力等问题.. (3)在高初中衔接过程中,单凭教师的力量不能解决同学们的所有疑问,这就需要利用同学中的良好资源,开展探讨,互帮互助,这也是新课程倡导的合作学习,探究学习的一种形式.正如哲学家萧伯纳所说:“如果你有一种思想,我有一种思想,我们进行交换,每人可以有两种思想.” (4)荷兰著名数学教育家弗赖登塔尔指出:“反思是数学思维活动的核心和动力.”
(5)重视培养良好的演算、验算习惯,提高运算能力.学习数学离不开运算,运算是数学学习的基础. (6)数学是关于思维的科学,学习数学的过程就是数学思维形成与发展的过程.高一新生其思维习惯正由直觉形象型向抽象经验型过渡,因此,必须重视抓紧培养. 例如,在学习高一教材《函数》时,我们可借助于二次函数. 首先,画出下列函数的图像,由图像观察函数的值域 ①y=x2-2x ②y=x2-2x,x∈[0,+∞) ③y=x2-2x,x∈(-∞,4) ④y=x2-2x,x∈[0,4) ⑤y=x2-2x,x∈[2,4] ⑥y=x2-2x,x∈[-1,0] ⑦y=x2-2x,x∈[a,a+1] ⑧y=(x-a)2-1,x∈[2,4] 这样不仅有助于函数概念和性质的学习,还有助于数形结合,化归转化等重要数学思想的培养,从而提高学生的思维能力.
5.思维方式方面 初中学习更多的是记忆与模仿,而高中学习更重要的是发散思维和创新意识.高中强调数学能力和数学思想的运用,其中运算能力、逻辑推理能力、空间想像能力和分析问题、解决问题的能力都有很高的要求.高中数学中渗透四大数学思想方法,即数形结合思想、函数与方程的思想、分类讨论、化归与转化.这些虽然在初中教学中有所体现,但在高中教学中反映得更充分. 例如解决ax2+4x+6>0这样简单的不等式时,首先要讨论a是否为零,如果不为零,还要讨论a是正数还是负数,这需要学生有分类讨论的思想意识(高一新生往往做不好).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 . 绝 对 值绝对值的代数意义:正数的绝对值是它的自己,负数的绝对值是它的相反数,零的绝对值还是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义: a b 表示在数轴上,数 a 和数 b 之间的距离. 1.填空:,则 x ;若,则 x( )若x5x4=_________.1=_________( )假如ab 5 ,且 a1,则 b =;若,则 c =________.2________1 c 22.选择题:以下表达正确的选项是()(A )若 ab ,则 a b( B )若 a b ,则 a b (C )若 a b ,则 a b ( D )若 ab ,则 a b3.化简: | x - 5| -|2 x - 13| (x >5).2. 乘法公式我们在初中已经学习过了以下一些乘法公式:(1)平方差公式(a b)( a b)a 2b 2 ;(2)完满平方公式 (a b)2 a 2 2ab b 2 . 我们还能够经过证明获得以下一些乘法公式: (1)立方和公式 (a b)( a 2 ab b 2 ) a 3 b 3 ; (2)立方差公式 (a b)(a 2ab b 2 ) a 3b 3 ; (3)两数和立方公式(a b) 3 a 3 3a 2b 3ab 2 b 3 ; (4)两数差立方公式(a b) 3 a 33a 2b 3ab 2b 3 .练 习1.填空:(1) 1a21 b2 ( 1 b1a) ();94 23(2) (4m) 2 16 m 2 4m () ;(3 )(a 2b c) 2 a 2 4b 2c 2() .2.选择题:( 1)若 x21mx k 是一个完满平方式,则 k 等于()2 ( ) 1 m 2 ( ) 1 m 2 ( ) 1m 2(A ) m 2B4CD3 16( 2)无论 a , b 为什么实数,a 2b 2 2a 4b 8 的值()(A )老是正数(B )老是负数 (C )能够是零(D )能够是正数也能够是负数3. 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,其他还应认识求根法及待定系数法.1.十字相乘法例1分解因式:(1)x 2- 3x +2;2(3) x(a b)xyaby 2 ;(2)x 2+4x - 12;(4) xy 1 x y .2.提取公因式法与分组分解法例 2 分解因式:(1) x 39 3x2 3x ;( )2x 2xy y2 4x 5 y 6.2练 习 1.选择题:多项式 2 x 2 xy 15 y 2 的一个因式为()(A ) 2 x 5y( B ) x 3y(C ) x 3y(D ) x 5 y2.分解因式:( 1) x 2 +6x +8; ( 2)8a 3-b 3;( 3) x 2 -2x -1;(4) 4( x y 1) y( y 2x) .3.分解因式:(1)a 31 ;( ) 4 13x 29 ;2 4 x(3) b 2 c 2 2ab2ac 2bc ;( 4) 3x 2 5xy 2 y 2 x 9 y4 .4. 根的鉴别式我们知道,对于一元二次方程 ax 2 +bx + c =0(a ≠0),用配方法能够将其变形为b)2b 2 4ac.①(x4a22a由于 a ≠0,所以, 4a 2>0.于是(1)当 b 2 -4ac >0 时,方程①的右端是一个正数,所以,原方程有两个不相等的实数根x 1, 2=b b 24ac ;2a(2)当 b 2- 4ac =0 时,方程①的右端为零,所以,原方程有两个等的实数根x 1=x 2=- b;2ab) 2 必然大于(3)当 b 2- 4ac <0 时,方程①的右端是一个负数, 而方程①的左侧 ( x2a或等于零,所以,原方程没有实数根.由此可知,一元二次方程 ax 2+bx +c =0(a ≠0)的根的状况能够由 b 2 -4ac 来判断,我们把 b 2-4ac 叫做一元二次方程 ax 2 +bx + c =0(a ≠0)的根的鉴别式 ,平常用符号“Δ”来表示.2综上所述, 对于一元二次方程 ax +bx + c = 0( a ≠0),有x 1,2 =bb 2 4ac ;2a (2)当= 0 时,方程有两个相等的实数根x 1 =x 2=- b;2a(3)当 < 0 时,方程没有实数根.x 1=x 2= 1;5. 根与系数的关系(韦达定理)若一元二次方程 ax 2+ bx +c =0(a ≠0)有两个实数根x 1bb 24ac, x 2bb 2 4ac ,2a2a则有x 1 x 2bb 2 4ac bb 2 4ac 2b b ;2a2a2a ax 1 x 2bb 2 4ac bb 2 4ac b 2(b 2 4ac) 4ac c.2a2a4a 24a 2 a所以,一元二次方程的根与系数之间存在以下关系:假如 ax 2+bx +c = 0(a ≠0)的两根分别是 x 1 , x 2,那么 x 1+x 2=b,x 1 ·x 2= c.这aa一关系也被称为 韦达定理 .例 1已知方程 5x 2kx 60 的一个根是 2,求它的另一个根及 k 的值.2+m -2有两个实数根,并且这两个实数根例 2 已知对于 x 的方程 x2( 2) x +m + =4 0的平方和比两个根的积大 21,求 m 的值. x 2 + x - = 的两根.例 3 若 x 1 和 x 2 分别是一元二次方程25 3 0 (1)求 | x 1- x 2 | 的值;(2)求11的值;22x 1 x 2(3)x 13+ x 2 3. 6. 二次函数 y = ax 2+bx + c 的图像和性质( )当 a >时,函数 y =ax 2+bx +c 图象张口向上;极点坐标为(b 4acb 2 1,4a ) ,2a对称轴为直线 x =-b;当 x <b时,y 跟着 x 的增大而减小;当 x >b时,y 跟着 x2a2a2a的增大而增大;当 x =b时,函数取最小值 y =4acb 2 .2a4ab 2 ( )当 a < 0 时,函数 y = ax 2+ bx +c 图象张口向下; 极点坐标为 ( b 4ac ,2a4a对称轴为直线 x =-b;当 x <b时,y 跟着 x 的增大而增大;当 x >b时,y 跟着 x2a2ab 22a的增大而减小;当 x =b时,函数取最大值 y =4ac.2a 4a例 1 求二次函数 y =-3x 2-6x +1 图象的张口方向、对称轴、极点坐标、最大值(或最小值),并指出当 x 取何值时, y 随 x 的增大而增大(或减小)?并画出该函数的图象.现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式, 初中没有讲, 高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲, 而高中还在使用;3、因式分解中 , 初中主假如限于二次项系数为 1 的二次三项式的分解, 对系数不为 1 的波及不多 , 并且对三次或高次多项式的分解几乎不作要求;高中教材中很多化简求值都要用到它, 如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求, 而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低, 学生处于认识水平 . 而高中则是贯串整个数学教材的素来的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单一区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必然掌握的基此题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系, 根与系数的关系(韦达定理)初中不作要求, 此类题目仅限于简单的常例运算 , 和难度不大的应用题 ,而在高中数学中, 它们的互相转变凡是屡次, 且教材没有专门讲授 , 所以也脱节;7、图像的对称、平移变换初中只作简单介绍, 而在高中讲解函数时, 则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中但是定量介绍认识, 高中则作为要点 , 并没有专题内容在教材中出现, 是高考必然考的综合题型之一;9、几何中很多见解(如三角形的五心:重心、心里、外心、垂心、旁心)和定理(平行线均分线段定理、平行线分线段成比率定理、射影定理、订交弦定理)初中早就已经删除, 多数没有去学习;10、圆中四点共圆的性质和判断初中没有学习. 高中则在使用 .其他 , 象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化, 甚至老师根本没有去延长挖掘 , 不利于高中数学的学习 .新的课程改革 , 不免会致使很多知识的脱节和破绽. 本书自然也没有详细列举出来. 我们会不停的研究新课程及其系统 . 将倾尽全力地找到新的初高中数学教材系统中存在的不足, 加以增补和圆满 .目录第一章数与式数与式的运算绝对值乘法公式二次根式分式分解因式第二章二次方程与二次不等式一元二次方程根的鉴别式根与系数的关系?二次函数二次函数y=ax2+bx+c 的图像和性质二次函数的三种表达方式二次函数的应用方程与不等式二元二次方程组的解法第三章相像形、三角形、圆相像形平行线分线段成比率定理相像三角形形的性质与判断?三角形三角形的五心解三角形:钝角三角函数、正弦定理和余弦定理及其应用?圆直线与圆、圆与圆的地点关系:圆幂定理点的轨迹四点共圆的性质与判断直线和圆的方程(选学)。

相关文档
最新文档