苏科版中考数学一轮复习知识点
中考数学苏科版知识点总结

中考数学苏科版知识点总结一、代数1. 代数基础代数运算规则:加法、减法、乘法、除法整式与分式:整式的概念、分式的概念代数式的计算:同类项、合并同类项、分拆因式、化简代数式2. 一元一次方程与不等式一元一次方程的解:解方程的基本步骤、方程的解、检验方程的解一元一次不等式的解:解不等式的基本步骤、不等式的解、解不等式的规律3. 二元一次方程组二元一次方程组的解:解二元一次方程组的基本步骤、二元一次方程组的解、检验方程组的解4. 分式方程分式方程的解:解分式方程的基本步骤、分式方程的解、检验分式方程的解5. 平方根与整式平方根的概念:正数的平方根、负数的平方根、根号的运算规则完全平方公式:完全平方公式的应用、完全平方公式的推导6. 二次函数二次函数的图象:二次函数图象的性质、二次函数的平移二次函数的性质:二次函数的增减性、二次函数的大于零值和小于零值、二次函数的最值二、几何1. 几何基本概念角的概念:角的基本概念、角的种类、角的性质直线和线段的概念:直线和线段的基本概念、平行线及其性质2. 直角三角形直角三角形的性质:直角三角形的特殊角、勾股定理3. 四边形四边形的性质:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质4. 圆圆的性质:圆的基本概念、圆心角、圆周角、弧、弦、冠、相交弦定理5. 圆的应用圆的应用:切线的性质、切线定理、切线长度定理、切线与半径的关系6. 相似三角形相似三角形的性质:相似三角形的判定、相似三角形的性质、相似三角形的应用三、数据统计与概率1. 统计图与统计量统计图的绘制:直方图、折线图、饼图统计量的计算:平均数、中位数、众数2. 概率基本概率模型:随机事件、概率、事件的概率计算概率分布模型:二项分布、正态分布四、解决实际问题的数学方法1. 实际问题的建立数学模型解决实际问题的步骤:问题的建立、数学模型的建立、模型的求解2. 运用函数解决实际问题用函数解决实际问题:函数的概念、函数的应用3. 运用方程组解决实际问题用方程组解决实际问题:方程组的应用、方程组的解法4. 运用不等式解决实际问题用不等式解决实际问题:不等式的应用、不等式的解法5. 运用统计与概率解决实际问题用统计与概率解决实际问题:统计与概率的应用、统计与概率的计算总结:数学是一门科学而又实用的学科,对于学生来说,学好数学是非常重要的。
中考数学一轮总复习 第4课时 分式(无答案) 苏科版

第4课时:分式【课前预习】(一)知识梳理1、分式的有关概念:①定义;②分式有意义的条件;③分式的值为0的条件.2、分式的基本性质:①约分;②最简分式;③通分;④最简公分母.3、分式的运算:①分式的乘除;②分式的加减;③分式的混合运算.(二)课前练习1. 下列有理式: x 1,()12x y +,y x y x --22,π2,3-x x ,1394y x +,212-+x x 中,分式是____ _______________.2、当x 时,分式x x -2有意义,当x 为 时,分式3212-++x x x 的值为零. 3、不改变分式的值,把分式b a b a 212.031+-的分子和分母各项系数化为整数,结果是__ ______.4、约分:222axy y ax =_ ____ ,32)()(x y y x --=___ __, 11222-+-x x x =____ ___. 5、分式245a b c ,2310c a b 与252b ac -的最简公分母为_________;分式11,122-+x x x 的最简公分母为_________. 6、计算① xx x x x x x +-⋅-+÷+--111112122= ; ② 1111--+x x = .【解题指导】例1 计算: (1)112---x x x (2) x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+-- (3) )212(112a a a a a a +-+÷--例2 化简求值:①(x 2+4x -4)÷ x 2-4 x 2+2x ,其中x =-1, ②222(1)(1)(1)121x x x x x x x --÷+---+,其中210x x +-=.③先化简211()1122x x x x -÷-+-,1-中选取一个你认为合适..的数作为x 的值代入求值.例3、已知22)2(2)2(3-+-=-+x B x A x x ,则A= ,B= .【巩固练习】 1.要使分式212x x x -+-的值为零,则x 的取值为 ( ) A.x =1 B. x =-1 C. x ≠1且x ≠-2 D.无任何实数2.将分式y x xy -中的y x ,都扩大2倍,分式的值 ( ) A.扩大4倍 B.扩大2倍 C.不变 D.缩小23、计算:(1))3()42()(-62322b a b a ab -÷-⋅ (2)222+-+y y y (3))11(122b a b a b a -++÷-4、 先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x【课后作业】 班级 姓名一、必做题: 1.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >2.若分式33x x -+的值为零,则x 的值是( ) A .3 B .3- C .3± D .03.化简222a b a ab -+的结果为( )A .b a -B .a ba - C .a ba + D .b -4.化简22422b a a b b a +--的结果是( )A .2a b --B .2b a -C .2a b -D .2b a +5.计算22()ab a b -的结果是( )A .aB .bC .1D .-b6.分式111(1)a a a +++的计算结果是( )A .11a +B .1a a +C .1aD .1a a +7.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x xx x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的8、当x 时,分式12x -无意义;若分式22221x x x x --++的值为0,则x 的值等于 .9、化简: 22a aa += ;=---b a bb a a _____________.10、计算:①(12-a )÷(1a 1-) ②2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭11、先化简aa a a a -+-÷--2244)111( ,再选取一个适当的a 的值代入求值.二.选做题:1、 a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 2、某单位全体员工在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).3、设0a b >>,2260a b ab +-=,则a b b a+-的值等于 . 4、(1)若3a b +=0,求22222124b a ab b a b a b ++⎛⎫-÷ ⎪+-⎝⎭; (2已知x 2-3x -1=0,求x 2+1x 2的值.5、观察下列格式:111122=-⨯,1112323=-⨯,1113434=-⨯,… (1)计算111111223344556++++=⨯⨯⨯⨯⨯__________; (2)探究()11111223341n n ++++=⨯⨯⨯+…__________;(用含有n 的式子表示) (3)若()()111117133557212135n n ++++=⨯⨯⨯-+…,求n 的值.。
中考数学一轮总复习 第28课时 矩形、菱形、正方形(无答案) 苏科版

A B C DEA′第28课时:矩形、菱形、正方形【知识梳理】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件(1)矩形:①有一个角是 的平行四边形是矩形.②对角线 的平行四边形是矩形.③有三个角是 的四边形是矩形.(2)菱形:①一组 的平行四边形是菱形.②对角线 的平行四边形是菱形.③四条边都相等的四边形是菱形.(3)正方形:①有一个角是 的菱形是正方形.②对角线 的菱形是正方形.③有一组 的矩形是正方形.④对角线 的矩形是正方形.矩形 4.面积计算:(1)矩形:S=长×宽;(2)菱形:1212S l l =⋅(12l l 、是对角线);(3)正方形:S=边长2【课前预习】1、如图,将矩形ABCD 沿BE 折叠,若∠CBA′=30°则∠BEA′= .2、如图,菱形ABCD 的边长为10cm ,D E⊥AB,3sin 5A =,则这个菱形的面积= m 2. 3、如图,矩形内有两个相邻的正方形面积分别为25和4,那么阴影部分面积为 . 4、正方形的对角线长为a ,则它的对角线的交点到各边的距离为( ) A 、22 a B 、24 a C 、a2D 、2 2 a 【例题讲解】例1 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形. (若四边形ABCD 是矩形,则四边形EFGH 有什么变化?若四边形ABCD 是菱形呢……你能说明中点四边形的形状是由什么决定的么?) 正平行四边形矩形菱形方形B例2 如图,在平行四边形ABCD 中,∠D AB =60°,AB =2AD ,点 E 、F 分别是CD 的中点,过点A 作AG∥BD,交CB 的延长线于点G . (1)求证:四边形DEBF 是菱形;(2)请判断四边形AGBD 是什么特殊四边形?并加以证明.例3 如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,AG=2,求EB 的长.例4 如图,△ABC 中,已知∠BAC=45°,AD⊥BC 于D ,BD =2,DC =3,求AD 的长.解答了此题.请按照小萍的思路,探究并解答下列问题:(1)AB 、AC 为对称轴,画出△ABD、△ACD 的轴对称图形,D 为E 、F ,延长EB 、FC 相交于G点,证明四边形AEGF 是正方形;设AD=x ,利用勾股定理,建立关于x 的方程模型,求出x 的值.【巩固练习】 1、如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( ) A .2 B .4 C . D .2、如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN = EF ,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF .你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对 3、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .4、四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是 (只填一个你认为正确的即可).6、在□ABC D 中,BC AE ⊥于E ,CD AF ⊥于F ,BD 与AE 、AF 分别相交于G 、H .(1)求证:△ABE∽△ADF;(2)若AH AG =,求证:四边形ABCD 是菱形.【课后作业】 班级 姓名OD CA BA DC B GEH F一、必做题1、如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE//CA , DF//BA .下列四个判断中,不正确...的是( ) A. 四边形AEDF 是平行四边形B. 如果∠BAC=90°,那么四边形AEDF 是矩形C. 如果AD 平分∠BAC,那么四边形AEDF 是菱形D. 如果AD⊥BC 是AB =AC ,那么四边形AEDF 是正方形 2、下列命题正确的是( )A .对角线互相平分的四边形是菱形;B .对角线互相平分且相等的四边形是菱形C .对角线互相垂直且相等的四边形是菱形;D .对角线互相垂直且平分的四边形是菱形. 3、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形4、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD ED B ∠=∠C .ABE CBD △∽△ D .sin AE ABE ED∠=5、如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连DF ,∠CDF 等于 °.6、如图,矩形ABCD 中,AB=3,BC=5过对角线交点O 作OE⊥AC 交AD 于E 则AE 的长是 .7、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 .8、如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC 的中点,EP⊥CD 于点P ,则∠FPC= .9、如图,平行四边形 ABCD 中,O 是对角线AC 的中点,EF⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由.10、如图,已知矩形ABCD 的两条对角线相交于O ,∠ACB=30°,AB=2. (1)求AC 的长;(2)求∠AOB 的度数;(3)以O B 、OC 为邻边作菱形OBEC ,求菱形OBEC 的面积.二、选做题第3题图第5题图 第6题图第8题图CD C 'A B E第4题图11、如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α∠= 度.12、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .13、将五个边长都为2cm 的正方形按如图所示摆放,点A 、B 、C 、D 分别是正方形的中心,则途中四块阴影部分的面积和为__________cm 2.14、如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.15、如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF . (1)求证:∠ADP=∠EPB;(2)求∠CBE 的度数; (3)当APAB的值等于多少时,△PFD∽△BFP?并说明理由.16、学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第11题图 第13题图 DA B C ml α 65°C 'B第12题图 第14题图。
【苏科版】2014届中考数学第一轮夯实基础《第7讲 一元二次方程及其应用》

直接 开平 方法 因式 分解 法
一元二次方程的四种解法
适合于(x+a)2=b(b≥0)或(ax+b)2=(cx+d)2形式的 方程
基本思想
把方程化成ab=0的形式,得a=0或b=0
方法规律
常用的方法主要运用提公因式法、平方差 公式、完全平方公式型因式分解
第7讲┃ 考点聚焦
第7讲┃ 归类示例
[解析] (1)由题意可得出3月份的用电量超过了a度,而4 月份的用电量在a度以内,那么可根据3月份的用电情况来 求a的值.可根据:不超过a度的缴费额+3月份超过a度部 分的缴费额=总的电费;列出方程,进而可求出a的值.然 后可根据4月份的用电量大致判断出a的取值范围,由此可 判定解出的a的值是否符合题意.(2)由(1)得a的值,把45代 入即可.
(1)毛利润=售出价-进货价(2)纯利润=售出价 -进货价-其他费用(3)利润率=利润÷进货价
第7讲┃ 归类示例
归类示例
► 类型之一 一元二次方程的有关概念 命题角度: 1.一元二次方程的概念; 2.一元二次方程的一般式; 3.一元二次方程的解的概念. 例1 已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) ,则a-b的值为( A ) A.-1 B.0 C.1 D.2 [解析] 把x=-a代入x2+bx+a=0,得(-a)2+b×(-a) +a=0,∴a2-ab+a=0, 所以a-b+1=0,∴a-b=-1,故选择A
第7讲┃ 归类示例
利用因式分解法解方程时,当等号两边有相 同的含未知数的因式(如例2)时,不能随便先约 去这个因式,因为如果约去则是默认这个因式 不为零,那么如果此因式可以为零,则方程会 失一个根,出现漏根错误.所以应通过移项, 提取公因式的方法求解.
中考数学一轮总复习 第9课时 根的判别式(无答案) 苏科版

第9课时:一元二次方程根的判别式、一元二次方程根与系数的关系【课前预习】 (一)知识梳理1、一元二次方程20(0)ax bx c a ++=≠根的一般形式:2b x a-=; 它的根的判别式△= 24b ac -,利用△判断一元二次方程根的情况. 2、韦达定理(一元二次方程根与系数关系)及其逆定理:1212;+=-⋅=b c x x x x a a(二)课前预习1.方程()()22x 13x 1x 2-+=+化为一般形式为_ _____,其中a =____,b =____,c =____.2.关于x 的一元二次方程2230+++=mx nx m m 有一个根为零,则m 的值等于_____.3.关于x 的一元二次方程20++=x mx n 的两个根为x 1=1,x 2=-2,则2++x mx n 分解因式的结果是_____ _.2222121212224.(1)0 1140+= , = 6.-2)-(-2)10x x x m m x x x x x x x x x m x m x m +-=+=++==若关于的方程2-4有两个相等的实数根,则的值是。
5.已知,是方程2-7的两根,则。
若关于的方程(的两根互为倒数,则。
【解题指导】例1 k 是什么数时,关于x 的一元二次方程2(21)0-++=kx k x k : (1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?例2 如果关于x 的一元二次方程()22250-+++=mx m x m 没有实数根,试判断关于x 的方程()()25220--++=m x m x m 的根的情况.例3 当m 为何值时,关于x 的方程2230-+=x x m ; (1)有两个正数根?(2)有一个正根,一个负跟?例4 若22310+-=x x 的两根分别为1x 、2x ,则:+;(3);(4);(6)(-221212121221212122111(1) ;(2) ;(5)) ;(7) .=⋅=+=+=+==-=x x x x x x x x x x x x x x x x【巩固练习】1、已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为 .2、设1x 、2x 是方程22630-+=x x 的两根,则2212+x x 的值是 .3、关于x 的方程2210-+=ax x 中,如果a <0,那么根的情况是 .4、若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______. 5、m 为何值时,关于x 的方程()()2242110-+++=m x m x 有实数根.6、已知12,x x 是一元二次方程()22213110+-+-=x m x m 的两个实数根.(1)m 取什么实数时,方程有两个相等的实数根; (2)是否存在实数m ,使方程的两根12,x x ,满足21121+=-x x x x ?若存在,求出方程的两根;若不存在,请说明理由.【课后作业】 班级 姓名 一、必做题:1、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A.1k >-B.1k >-且0k ≠C.1k <D. 1k <且0k ≠ 2、设方程x 2-4x -1=0的两个根为x 1与x 2,则x 1x 2的值是( ).A .-4B .-1C .1D . 0 3、下列方程中,有两个不相等实数根的是( ).A .0122=--x xB .0322=+-x xC .3322-=x x D .0442=+-x x4、若方程2310x x --=的两根为 1x 、2x ,则1211x x +的值为( ) A .3 B .-3 C .13 D .13-5、若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26、如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k = . 7、关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,则k 的取值范围是 . 8、一元二次方程230x mx ++=的一个根为1-,则另一个根为 .9、已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,则实数m 的取值范围是 . 10、已知:关于x 的方程2210x kx +-= (1)求证:方程有两个不相等的实数根; (2)若方程的一个根是1-,求另一个根及k 值.11、已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判断△ABC 的形状.12、已知关于x 的一元二次方程x 2 + 2(k -1)x + k 2-1 = 0有两个不相等的实数根.(1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.二、选做题:1、若a 、b 为方程式x 2-4(x +1)=1的两根,且a >b ,则ba=( ) A .-5 B .-4 C .1 D. 32、定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a c =B .a b =C .b c =D . a b c ==3、关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .254、关于x 的方程2(2)20ax a x -++=只有一解(相同解算一解),则a 的值为( )A .0a =B .2a =C .1a =D .0a =或2a = 5、设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .20096、 已知12x x ,是方程220x x a -+=的两个实数根,且1223x x +=. (1)求12x x ,及a 的值;(2)求32111232x x x x -++的值.2(21)405.2(1)2422x k y y x k x a x bABC a b c c y a y b ABC ⎧-+-=⎨=-⎩==⎧⎧∆=⎨⎨=-=-⎩⎩∆已知方程组求证:不论为何值时此方程组总有实数解;()设等腰的三边长分别为、、,其中,且;,是该方程组的两组解,求的周长。
中考数学一轮总复习 第1课时 实数(无答案) 苏科版

第1课时:实数【课前预习】 (一)知识梳理1、实数的概念:⎪⎪⎩⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧数无理数:无限不循环小数有限小数或无限循环小分数整数有理数 ⎪⎩⎪⎨⎧负数正数实数02、相关概念:数轴、相反数、绝对值、倒数.3、实数的大小比较.⎩⎨⎧作差法利用数轴进行比较4、实数的运算:运算法则、运算律、运算顺序、零指数幂和负整数指数幂、科学计数法、近似数. (二)课前练习1、-5的绝对值是 ,相反数是 ,倒数是 ,绝对值小于3的整数有 .2、数轴上点A 表示-5,点B 表示2,则A 、B 两点之间的距离是 .3、在实数-23,0-3.14,2π-0.1010010001…(每两个1之间依次多1个0),tan60°. 这8个实数中,无理数有 . 4、下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5、某市在一次扶贫助残活动中,共捐款25.8万元.将25.8万元用科学记数法表示为 .6、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 【解题指导】例1 下列各数中:-1,0,169,2π,1.101001…,0.6.,12-, 45cos ,- 60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e(a+b )+12cd -2e °的值;(2)实数a 、b 、c 在数轴上的对应点如图所示,化简c a例3 计算:(-1)2009+ 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.例4 已知(x-2)2=0,求xyz 的值.例5 用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么-5☆3= ;当m 为实数时,m ☆(m ☆2)=【巩固练习】1、2的相反数是_____,1的绝对值是______,-23的倒数为_______= .2、绝对值大于1不大于4的所有整数的和为 .3、已知数2a -与23a -,若这两数的绝对值相等,则a 的倒数是 .4、下列各数中:-30,2,0.31,227,2π,2.161161161,(-2 005)0是无理数的5B 关于 点A 的对称点为C ,则点C 表示的数是 .6、实数a 、b 在数轴上的位置如图所示:化简2a +∣a -b ∣= .7、计算 03π316(2)20073⎛⎫-+÷-+- ⎪⎝⎭【课后作业】 姓名 一、必做题:1、32-= ;213-的倒数是 ;0(=_________;14-的相反数是_________.2、若()2240a c --=,则=+-c b a .3、绝对值最小的数是______;若 |a |<2,则a 的整数解为_______;已知|a +3|=1 ,那么a =______.4、计算:312-=_________,22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=__________.5、定义2*a b a b =-,则(12)3**=______.6、地球上陆地面积约为149 100 000 km 2,用科学记数法可以表示为____________km 2(保留三个有效数字)7、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米8、在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .49、如果a <0,b >0,a +b <0,那么下列关系式中正确的是( ).A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a 10、若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B.a 的倒数是a1 C.a a =2D. b 2是一个正数 11、已知:3,2xy ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-1 12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求)21()(2122m m cd b a +-÷+--的值.13、计算:①︒-+--⎪⎭⎫ ⎝⎛--45sin )32(2102②||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°.二、选做题1、在实数范围内定义运算“⊕”,其法则为:22a b ab ⊕=-,求方程(4⊕3)⊕24x =的解.2、我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3、将一根绳子对折1次从中间剪断,绳子变成3段;将一根绳子对折2次,从中间剪断,绳子变成5段;依此类推,将一根绳子对折n 次,从中间剪一刀全部剪断后,绳子变成 段.4、罗马数字共有7个:I (表示1),V (表示5),X (表示10),L (表示50),C (表示100),D (表示500),M (表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如:IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL= ,XI= .5、如图所示是标出长度单位和正方向的数轴,若点A 对应于实数a ,点B 对应于实数b ;a ,b 是整数,且2b a -=7,则图中数轴上的原点应是点,的算术平方根是 .6、设,a b为非零实数,则a a ).A. ±2B.±1或0C.±2或0D.±2或±1 7、计算:12345314,3110,3128,3182,31244,+=+=+=+=+=…归纳计算结果中的个位数字的规律,猜测200931+的个位数字是( )A. 0B. 2C. 4D. 8 8、已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,….观察上面的计算过程,寻找规律并计算C 610=____________.........A B C D。
2023年中考苏科版数学一轮复习专题讲义与练习-轴对称图形

2023年中考数学一轮复习专题讲义与练习轴对称图形【课标要求】1.进一步认识轴对称,了解它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质;2.能按要求作出简单平面图形经过一次或两次轴对称后的图形;3.了解轴对称与轴对称图形的区别和联系;4.进一步巩固和掌握基本图形(线段.角.等腰三角形.矩形.菱形.正多边形.圆)的轴对称性及其相关性质,并能运用这些性质解决问题;5.能利用轴对称进行图案设计.【要点梳理】1.把一个图形沿着一条直线折叠,如果它能够与另一个图形_____,那么称这两个图形成轴对称,这条直线叫做_____;把一个图形沿着某条直线折叠,如果直线两旁的部分能够_____,那么称这个图形是______,这条直线就是对称轴.2.轴对称的性质:①_____________;②_______________________.3.线段是_____图形,____________是它的对称轴;性质:_______________;判定:_______________4.角是_____图形,对称轴是____________;性质:________________;判定:______________5.等腰三角形是_____图形,对称轴是____________;性质:①_______________;②________________;判定:_____________________________.6.直角三角形的性质:___________________7.等边三角形的性质:①______________;②__________. 【规律总结】1.图形的轴对称与图形的平移.旋转是近两年的新题型.热点题型,在试题中的比重逐年上升.考查的形式以填空题.选择题为主,与其他知识如三角形.平行四边形综合的解答题也时有出现,分值在5~12分左右;2.解决与轴对称相关的问题时,一定要充分利用轴对称的性质,有时需要结合题目条件添加适当的辅助线来解决问题;3.轴对称知识的一个重要体现形式是折叠问题,此类问题常常需要联系全等三角形以及勾股定理,并结合方程思想来解题,故解题时一定要充分挖掘题目中的隐含条件;4.在解决等腰三角形的相关问题时,要运用其轴对称的本质特性来分析和解决问题. 【强化训练】一、选择题1.下列图形中,为轴对称图形的是()A .B .C .D .2.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()3.下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆4.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20 B.25 C.30 D.355.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点第4题第5题第6题6.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个B.2个C.3个D.4个7.如图,在矩形ABCD中,连接BD,将△BCD沿对角线BD折叠得到△BDE,BE交AD于点O,BE恰好平分∠ABD,若AB=2,则点O到BD的距离为()A .B.2 C .D.3第7题第8题第9题8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠2=40°, 则图中∠1的度数为()A B C D E F A .115° B .120° C .130° D .140°9.图1为某四边形ABCD 纸片,其中∠B=70°, ∠C=80°. 若将CD 叠合在AB 上,出现折线MN, 再将纸片展开后,M.N 两点分别在AD.BC 上,如图2所示,则∠MNB 的度数为( )A .90°B .95°C .100°D .105°二、填空题10.等腰三角形中,有一个角是80°,则它的顶角是______.11.直角三角形斜边上的中线和面积分别是5cm.20cm 2,则它斜边上的高是___cm12.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分的面积为____cm 2.第12题 第13题 第14题13.如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将△CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若AE =5,则GE 的长 . 14.如图,过边长为4的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为____________.三、解答题15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF (顶点为网格线的交点),以及过格点的直线l .(1)将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF 关于直线l 对称的三角形.(3)填空:∠C+∠E=________________.16.如图,在△ABC 中,∠ABC 的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.17.已知:如图,△ABC.△CDE都是等边三角形,AD.BE相交于点O,点M.N分别是线段AD.BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.18.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C’的位置,BC’交AD于点G.(1)求证:AG=C’G.(2)如图(2),再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.19.如图,在矩形纸片ABCD中,点E.F分别在矩形的边AB.AD上,将矩形纸片沿CE.CF折叠,点B落在H处,点D落在G处,点C.H.G恰好在同一直线上,若AB=6,AD=4,BE =2,求DF的长.。
中考数学一轮总复习 第13课时 不等式(组)的应用(无答案) 苏科版

第13课时:不等式(组)的应用【课前预习】 一、知识梳理1.列不等式解应用题的特征:列不等式解应用题,一般所求问题有“至少”“最多”“不低于”“不大于”“不小于”等词,要正确理解这些词的含义.2.列不等式解应用题的一般步骤:列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:① ;② ;③ ;④ ;⑤ 。
(其中检验是正确求解的必要环节) 二、课前预习1、一饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为______克.2、采石块工人进行爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移,到400m 以外的安全区域,导火线燃烧逮度是1/cm s ,人离开的速度是5/m s ,导火线的长度至少需要_______ ___.3、发电厂派汽车去拉煤,已知大货车每辆装10吨,小货车每辆装5吨,煤场共有煤152吨,现派20辆汽车去拉,其中大货车x 辆,要一次将煤拉回电厂,至少需派多少辆大货车?列式为_______ ___.4、某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了_______支.5、某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的短形彩条如右图,在Rt△ABC 中,∠C=90°,AC=30cm ,AB=50cm ,依次裁下宽为1cm 的矩形彩条a 1,a 2,a 3……若使裁得的矩形彩条的长都不小于5cm ,则将每张直角三角形彩纸裁成的矩形纸条的总数是( )A .24;B .25;C .26;D .27 【解题指导】例1.某市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房.如果每间住5人,那么有12人安排不下; 如果每间住8人,那么还有一间房余部分床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?例2.某公司计划生产甲、乙两种产品共20件,其总产值w (万元) 满足:1150<w <1200,相关数据如表.为此,公司应怎样设计这两种产品的生产方案.例3.2011年我市某县筹备30周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A造型需甲种花卉80盆,乙种花卉40盆;搭配一个B造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中知识点汇总每次课前十分钟记忆、理解,上课抽查!第一篇 代数1、(1)有理数: 整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.(2)无理数:无限不环循小数叫做无理数.如:π,-,sin60°,0.1010010001…(两个1之间依次多1个0)等.(3)实数:有理数和无理数统称为实数.实数与数轴上的点一一对应。
2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0;2.0×210精确到十位,2.0 精确到十分位,有效数字都有两个2,0.4、科学记数法:把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×104,0.000043=4.3×10-5.有效数学字往往和科学计数法结合起来考,10435000(保留4个有效数字)710044.1⨯=,10435000(保留2个有效数字)7100.1⨯= ,00000328350.0(保留2个有效数字)5103.3-⨯=,00000300850.0-(保留2个有效数字)5100.3-⨯-=5、整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.(单项式、多项式的次数、系数) 一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
例如:①5332y x -的系数为53-,次数为5次;②32b a π-的系数为3π-,次数为3次。
6、幂的运算性质:①a m ×a n =a m +n .②a m ÷a n =a m -n (a ≠0).③(a m )n =a mn .④(ab )n =a n b n .⑤ a -n =n a1(a ≠0),⑥a 0=1(a≠0).如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、乘法公式(反过来就是因式分解的公式):①平方差公式 (a +b )(a -b )=a 2-b 2.符号相同的项的平方减去只有符号不同项的平方(a-b-c)(a+b-c)=(a-c)2-b 2=……②完全平方公式 (a ±b )2=a 2±2ab +b 2.各项平方和带上两两积2倍.313-!31422b a b a 应写成写法错误-1)3(2)(2)32)(3(22=--=---6bc12ac 4ab 9c b 4a 3c)b (2a 2222-+-++=+-)12(222+=+8、选择因式分解方法是:先看能否提公因式.在没有公因式的情况下:二项式用平方差公式a 2-b 2=(a +b )(a -b ),三项式用十字相乘法(特殊的用完全平方公式a 2±2ab +b 2=(a ±b )2),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.因式分解一定要注意最后结果是乘积的形式9.分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式..B .中含有字母.....,那么称A B 为分式.注:(1)若B ≠0,则AB 有意义;(2)若B=0,则A B 无意义;(2)若A=0且B ≠0,则A B =0 。
对于化简求值的题型,代入的值要使分母有意义.....。
10、分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数a 就叫做x 的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.12.算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,0的算术平方根是0.13.二次根式:(1)最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.如2222,23,5b a y x a ++是最简二次根式,而()x ab b a ba5.0,48,,22+则不是最简二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式 如①3与()332727化简得 ②若最简二次根式⎪⎪⎭⎫ ⎝⎛3331.331化简为=是同类二次根式,则与x x (3).二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. (4)二次根式化简:注意a a =2的运用 例如 ⑴()2222-=-=-x x x (x ≥2)()322323)2(2-=-=- ()0)3(23≤--=-=⋅-=-a a a a a a a a 隐含条件易错点:平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8;33a a -=-,5125,464,864,41633====,16的算术平方根是2;16的平方根是±2;14.一元二次方程:一.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程. 一般形式:ax 2+bx+c=0(a .≠.0.) 一元二次方程ax 2+bx+c=0;ax 2+bx+c=0是一元二次方程;方程ax 2+bx+c=0有两个解均说明a .≠.0.。
.只说方程ax 2+bx+c=0可能一元一次方程也可能一元二次方程 二.一元二次方程的解法: (1)直接开平方法(2) 配方法:步骤是①化二次项系数为1,方程两边同除以二次项系数;②移项,使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的平方;④化原方程为(x+m )2=n 的形式;⑤如果n ≥0就可以用两边开平方来求出方程的解;如果n <0,则原方程无解.(3)公式法:公式法是用求根公式求出一元二次方程的解的方法.一元二次方程的求根公式是 (b 2-4ac ≥aacb b x 242-±-=0)(4)因式分解法:步骤是①将方程右边化为0;②将方程左边分解为两个一次因式的乘积③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 三.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调..a .≠.0..因当a=0时,不含有二次项,即不是一元二次方程.如关于x 的方程(k 2-1)x 2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵ 应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac ≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4ac <0,则方程无解. ⑶ 方程两边不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4),得-2(x+4)=3或x+4=0 ⑷ 注意解一元二次方程时一般不使用配方法(除特别要求外),x 2-8x=…适合配方解,x 2-7x=…不适合配方解,应用题中较大数据如x 2-6x-7912=0适合配方解,配方方法很重要,对二次三项式的配方可求最值。
应用题中增长率a(1±x)2=b 直接开平方。
解一元二次方程的一般顺序是:直接开平方法→因式分解法→公式法→配方法. 四.根的判别式为△=ac b 42-⎪⎩⎪⎨⎧⇔<∆⇔∆⇔>∆无实数根有两个相等的实数根=有两个不相等的实数根000 (注意a .≠.0)..五、根与系数的关系: 六、一元二次方程的应用:面积问题; 增长率a(1±x)2=b; 销售问题15.分式方程:分母中含有未知数的方程叫做分式方程.解分式方程的步骤:①去分母,化为整式方程;②解整式方程;③验根;④下结论.因为解分式方程可能出现增根,所以解分式方程必须检验...分式方程无解是指①去分母后整式方程无解②使分式方程分母为零;分式方程有增跟是指①去分母后整式方程有解②使分式方程分母为零. 应用题中的分式方程检验的格式:经检验,a x =是原方程的解且符合题意。
16.不等式:两边都乘以或除以同一个负数,不等号要改变方向.(等式的性质:两边同乘以或除以一个不为零的数,等式成立) 例⑴由63216321->>-<>-x x x x ,得-;由,得 例⑵解不等式组并把解集表示在数轴上②①⎪⎩⎪⎨⎧≥-+<231432xx x x∴原不等式的解集为-4<x ≤52注:若又要求整数解,请务必注意看清要求....,得整数解为-3,-2,-1,0 解应用题设、列、解、验(明验如分式方程,人数为负数;暗验是否符合题目中范围等)、答。
最后一定要写答(一般1分);17.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x 轴)上的点,纵坐标是0;纵轴(y 轴)上的点,横坐标是0. ③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数); 关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);例:x 2-2x +2=0 因为△<0所以不存在 x 1+x 2,x 1·x 2解:由①得 -x <4 ∴x >-4由②得 2-2x ≥3x ∴x ≤52 ⎪⎭⎫ ⎝⎛∆=-=+•••验检注意a c x x a b x x 2121,有两个实数根⇔≥∆022122122212212211)()()()(),(),(y y x x PQ y y x x PQ y x Q y x P -+-=-+-=常用则,12122211,),(),(x x y y k Q P y x Q y x P PQ --=两点的直线则过,交代平行四边形对角线互相平分后 可用此公式确定平行四边形的的顶点。