初三成比例线段典型例题及练习题
比例线段中考试题及答案

比例线段中考试题及答案【正文】考试题一:已知线段AB与线段CD的比例为3:4,AB的长度为12cm,求CD的长度。
解答:根据比例的定义可得:AB/CD = 3/4将已知条件代入,得:12/CD = 3/4交叉相乘,得:4 * 12 = 3 * CD48 = 3 * CDCD = 48/3CD = 16cm所以,CD的长度为16cm。
考试题二:已知线段EF与线段GH的比例为5:2,EF的长度为15cm,求GH的长度。
解答:根据比例的定义可得:EF/GH = 5/2将已知条件代入,得:15/GH = 5/2交叉相乘,得:2 * 15 = 5 * GH30 = 5 * GHGH = 30/5GH = 6cm所以,GH的长度为6cm。
考试题三:已知线段IJ与线段KL的比例为7:9,IJ的长度为21cm,求KL的长度。
解答:根据比例的定义可得:IJ/KL = 7/9将已知条件代入,得:21/KL = 7/9交叉相乘,得:9 * 21 = 7 * KL189 = 7 * KLKL = 189/7KL = 27cm所以,KL的长度为27cm。
考试题四:已知线段MN与线段OP的比例为4:11,MN的长度为8cm,求OP的长度。
解答:根据比例的定义可得:MN/OP = 4/11将已知条件代入,得:8/OP = 4/11交叉相乘,得:11 * 8 = 4 * OP88 = 4 * OPOP = 88/4OP = 22cm所以,OP的长度为22cm。
考试题五:已知线段QR与线段ST的比例为2:5,QR的长度为10cm,求ST的长度。
解答:根据比例的定义可得:QR/ST = 2/5将已知条件代入,得:10/ST = 2/5交叉相乘,得:5 * 10 = 2 * ST50 = 2 * STST = 50/2ST = 25cm所以,ST的长度为25cm。
总结:通过以上五道考试题,我们可以发现,计算比例线段的长度只需要将已知条件代入比例的定义中,通过交叉相乘求得未知线段的长度。
九年级数学上成比例线段练习题

九年级数学上成比例线段练习题九年级数学上---3.1成比例线段练题概念复:1、对于四条线段a、b、c、d,若有ab=cd,则称这四条线段是成比例线段。
其中a、d是比例内项,b、c是比例外项,ad=bc是第四比例项,ab×cd=bc×ad是内项积外项积。
2、对于三条线段a、b、c,若有b是线段a、c的比例中项。
3、对于成比例线段的四条线段a、b、c、d,若有ab=cd,则有a:b=c:d;反之也成立。
4、比例线段的合比性质是:若a:b=c:d,b:c=e:f,则a:d=e:f。
5、比例线段的等比性质是:若a:b=b:c=c:d,则a:d=a²:b²=b²:c²=c²:d²。
练1:1.如图,格点图中有2个三角形,若相邻两个格点的横向距离和纵向距离都为1,则AB=1,BC=2,DE=3,EF=6,计算AB:BC=1:2,DE:EF=1:2,那么这四条线段叫做成比例线段,简称比例线段。
2.已知四条线段a、b、c、d的长度,试判断它们是否成比例?①a=16 cm,b=8 cm,c=5 cm,d=10 cm;不成比例。
②a=8 cm,b=5 cm,c=6 cm,d=10 cm;成比例。
3、已知a、b、c、d是成比例线段,且a=3 cm,b=2 cm,c=6 cm,则线段d=4 cm。
4、已知5,在比例尺为1∶8000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,矩形运动场的实际尺寸是40 m×80 m。
选择题:1.下列各组中的四条线段成比例的是(。
)A.a=2,b=3,c=2,d=3B.a=4,b=6,c=5,d=10.C.a=2,b=5,c=23,d=15D.a=2,b=3,c=4,d=12.答案:B。
2.若ac=bd,则下列各式一定成立的是(。
)A。
a/c=b/dB。
a²/c²=b²/d²C。
初三数学之 成比例线段(解析版)

3.1.2 成比例线段建议用时:45分钟 总分50分一 选择题(每小题3分,共18分)1.已知线段a =2,b =4,如果线段b 是线段a 和c 的比例中项,那么线段c 的长度是( )A .8B .6C .2√2D .2【答案】A【解析】若b 是a 、c 的比例中项,即b 2=ac .42=2c ,解得c =8,故选:A .2.在比例尺为1:1000000的地图上量得A ,B 两地的距离是20cm ,那么A 、B 两地的实际距离是( )A .2000000cmB .2000mC .200kmD .2000km 【答案】C【解析】根据比例尺=图上距离:实际距离,得A 、B 两地的实际距离为20×1000000=20000000(cm ),25000000cm =200km .故A 、B 两地的实际距离是200km .故选:C .3.下列线段的长度成比例的是( )A .2cm 、3cm 、4cm 、5cmB .1.5cm 、2.5cm 、4cm 、5cmC .1.1cm 、2.2cm 、3.3cm 、4.4cmD .1cm 、2cm 、3cm 、6cm【答案】D【解析】A 、3×4≠2×5,故本选项错误B 、2.5×4≠5×1.5,故选项错误;C 、1.1×4.4≠2.2×3.3,故选项错误;D 、3×2=1×6,故本选项正确.故选:D .4.已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .√5−12B .3−√52C .√5+12D .3+√52【答案】A【解析】设AB 为1,AP 为x ,则BP 为1﹣x ,∵AP 2=BP •AB ,∴x 2=(1﹣x )×1解得x 1=√5−12,x 2=−1−√52(舍去).∴AP :AB =√5−12.故选:A . 5.如图,C 为线段AB 的黄金分割点(AC <BC ),且BC =4,则AB 的长为( )A.2√5+2B.2√5−2C.√5+3D.√5−3【答案】A【解析】∵C为线段AB的黄金分割点(AC<BC),∴BC=√5−12AB,∴AB=2√5−1×4=2√5+2.故选:A.6.已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是()A.ABAP =APBPB.ABAP=BPABC.BPAP=ABBPD.ABAP=√5−12【答案】A【解析】根据黄金分割定义可知:AP是AB和BP的比例中项,即AP2=AB•BP,∴ABAP =APBP.故选:A.二、填空题(每小题3分,共9分)7. 已知四条线段a,2,6,a+1成比例,则a的值为.【答案】3【解析】∵四条线段a,2,6,a+1成比例,∴a2=6a+1,解得:a1=3,a2=﹣4(舍去),所以a=3,故答案为:38.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是2√3.【答案】2√3.【解析】由比例中项的定义可得,“钻石菱形”的边长=√6×2=2√3.故答案为:2√3.9.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加美感,按此比例,如果雕像的身高为3米,设雕像的上部为x米,根据其比例关系可得其方程为_____.【答案】x2﹣9x+9=0【解析】根据题意得x:(3﹣x)=(3﹣x):3整理得x2﹣9x+9=0.三、解答题(7+7+8=23分)10. 如图所示,在线段AB上有C、D两点,已知AB=7,AC=1,且线段CD是线段AC和BD的比例中项,求线段CD的长.解:∵AB =7,AC =1,∴BD =AB ﹣AC ﹣CD =6﹣CD ,∵线段CD 是线段AC 和BD 的比例中项,∴CD 2=AC •BD ,即CD 2=1×(6﹣CD ),解得:CD =2.11.已知P 为线段AB 上一点,且AB 被点P 分为AP :PB =2:3.(1)求AB :BP ;(2)如果AB =100cm ,试求PB 的长.解:(1)设AP =2x ,则PB =2x ,AB =5x ,所以AB PB =5x 3x =53;(2)当AB =100时,100PB =53, 所以PB =60(cm ).12. 如图1,点C 把线段AB 分成两条线段AC 和BC ,如果AC =√5−12AB ,则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金“右割“点,根据图形不难发现,线段AB 上另有一点D 把线段AB 分成两条线段AD 和BD ,若BD =√5−12AB ,则称点D 是线段AB 的黄金“左割”点.请根据以上材科.回答问题如图2,若AB =8,点C 和点D 分别是线段AB 的黄金“右割”点、黄金“左割”点,则BC = ,DC = .解:(1)∵点C 和点D 分别是线段AB 的黄金“右割”点、黄金“左割”点,∴AC =BD =√5−12AB =√5−12×8=4√5−4,∴BC =8﹣(4√5−4)=12﹣4√5;∴DC =BD ﹣BC =(4√5−4)﹣(12﹣4√5)=8√5−16;故答案为12﹣4√5;8√5−16;。
比例线段的练习题

比例线段的练习题在几何学中,比例线段是一种重要的概念,它常常出现在各种几何问题和计算中。
通过练习比例线段的计算和应用,我们可以更好地理解和运用这一概念。
本文将提供一些关于比例线段的练习题,帮助读者加深对比例线段的理解。
练习题一:已知线段AB长为12cm,线段CD长为8cm,且线段AB与线段CD成比例。
请计算线段EF的长度,使得线段EF与线段CD的比例与线段AB与线段CD的比例相同。
解答:设线段EF的长度为x,则根据线段比例的定义可得:AB/CD = EF/CD将已知条件代入上式,得到:12/8 = x/8通过求解方程,可得x = 12/2 = 6因此,线段EF的长度为6cm。
练习题二:已知线段PQ的长度为8cm,线段RS的长度为16cm,且线段PQ 与线段RS成比例。
如果线段ST的长度为12cm,且线段ST与线段RS 的比例与线段PQ与线段RS的比例相同,求线段UV的长度,并画出线段PQ、RS、ST、UV的关系示意图。
解答:设线段UV的长度为y。
根据线段比例的定义,可得到以下两个比例关系:PQ/RS = ST/RSRS/ST = UV/ST将已知条件代入上述比例关系,得到:8/16 = 12/1616/12 = y/12通过求解方程,可得y = 16/3因此,线段UV的长度为16/3 cm。
下面是线段PQ、RS、ST、UV的关系示意图(图中标注的长度并非按比例绘制):[图示]通过上述练习题,我们可以加深对比例线段的理解和应用。
通过计算和推导,我们能够更好地掌握比例线段的概念和运用方法。
希望读者通过这些练习题能够提高对比例线段的认识,并在实际问题中能够灵活运用。
九年级数学上册25.1比例线段典型例题素材冀教版(new)

《成比例线段》典型例题例题1. 已知四条线段a 、b 、c 、d 的长度,试判断它们是否是成比例线段? (1)cm 10,cm 5,cm 8,cm 16====d c b a ;(2)cm 10,m 6.0,cm 5.0,cm 8====d d c b a .例题2. 如图,)()()(2,3,1,2,2,0C B A --.(1)求出AB 、BC 、AC 的长.(2)把上述三个点的横坐标、纵坐标都乘以2,得到C B A '''、、的坐标,求出C A C B B A '''''',,的长.(3)这些线段成比例吗?例题3.已知811=+x y x ,求y x例题4.已知432zyx ==,求y x zyx -+-33的值例题5.若3753=+b ba ,则b a的值是__________例题6.设k y x zx z yz y x=+=+=+,求k 的值例题7.如果0432≠==c b a ,求:bc a c b a 24235-++-的值 例题8.线段x ,y 满足1:4:)4(22=+xy y x ,求y x :的值例题9.如图,已知,在ABC ∆中,D 、E 分别是AB 、AC 上的点,并且23===AE AC DE BC AD AB ,ABC ∆的周长为12cm,求:ADE ∆的周长参考答案例题1 分析 观察四条线段是否成比例时,首先要把四条线段的单位都化成一致的单位,再把它们按从小到大的顺序排列,由比例线段的基本性质知bc ab =,即如果第一、四两个数的积等于第二四两个数的积,则四条线段成比例,否则不成比例.解答 (1)cm 16,cm 10,cm 8,cm 5====a d b c ,ac bd c a d b ==⨯=⨯,80,80 , ∴dc a b =, ∴四条线段成比例.(2)10cm 8cm,6cm,0.6dm cm,5.0=====d a c b ,ca bd ca bd ≠==,48,5,∴这四条线段不成比例.例题2 分析 利用勾股定理可以求出这些线段的长.解答 (1)133222=+=AB ,543,26152222=+==+=AC BC .(2))4,6(),2,4(),4,0(C B A '-'-',132134526422=⨯==+=''B A ,26226410421022=⨯==+=''C B ,108622=+=''C A .(3)21,21,2113213=''=''==''C A AC C B BC B A AB, ∴CA AC CB BC B A AB ''=''='', 这些线段成比例.例题3.解答:由比例的基本性质得x y x 11)(8=+∴y x 83=∴38=y x 说明 本题考查比例的基本性质,易错点是由y x 83=化成比例式时错成83=y x ,解题关键是运用比例的基本性质,本题还可以运用合比性质求解。
成比例线段练习题及答案

成比例线段练习题及答案一、选择题1. 若线段AB与线段CD成比例,且AB=10cm,CD=8cm,则线段AB与线段CD的比例系数为:A. 0.8B. 1.25C. 1.5D. 2.52. 在比例线段中,若a:b = c:d,且a=6cm,b=3cm,c=4cm,则d的值是:A. 2cmB. 6cmC. 8cmD. 12cm3. 若线段EF与线段GH成比例,且EF=15cm,GH=20cm,求EF:GH的比例系数:A. 0.75B. 3/4C. 4/5D. 5/4二、填空题4. 若线段XY与线段PQ的比例系数为2,且XY=4cm,则PQ的长度是______。
5. 在比例线段中,若x:y = 3:5,且x=9cm,则y的长度是______。
6. 若线段MN与线段RS的比例系数为4/3,且RS=12cm,则MN的长度是______。
三、解答题7. 已知线段AB与线段CD的比例系数为3/2,求证线段AB与线段CD的乘积等于线段AB的平方。
8. 若线段EF与线段GH的比值为4:7,线段EF的长度为16cm,求线段GH的长度。
9. 线段IJ与线段KL成比例,比例系数为5/6,若线段IJ的长度为20cm,求线段KL的长度。
四、证明题10. 已知线段MN与线段OP成比例,比例系数为k,求证线段MN与线段OP的长度之和等于线段MN的长度加上k倍的线段OP的长度。
五、应用题11. 在一个矩形ABCD中,AB=6cm,BC=8cm,若将矩形ABCD按比例放大,使得AB变为12cm,求放大后的矩形的对角线AC的长度。
12. 某工厂生产零件,原设计零件长度为10cm,现需按比例缩小至5cm,求缩小后零件的面积与原零件面积的比例。
六、综合题13. 在三角形ABC中,AB=5cm,AC=7cm,BC=6cm,若三角形DEF与三角形ABC相似,且DE=10cm,求三角形DEF的边长DF和EF。
14. 已知线段GH与线段IJ的比例系数为3,若线段GH的长度为9cm,求线段IJ的长度,并计算线段GH与线段IJ的面积比。
初三成比例线段典型例题及练习题
【典型例题】类型一、比例线段例题1. (1)求证:如果,那么.(2)已知线段a、b、c、d,满足a cb d=,求证:a c ab d b+=+.类型二、相似图形例题 2.(1)如果两个四边形的对应边成比例,能不能得出这两个四边形相似?为什么?(2)下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()类型三、相似多边形例题 3.(1)已知四边形与四边形相似,且.四边形的周长为26.求四边形的各边长.(2)等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.例题4. 某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.考点集训图形的相似和比例线段(提高)一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为( )A.3 km B.30 km C.300 km D.3 000 km2. 已知线段a、b、c、d满足=ab cd把它改写成比例式,其中错误的是()A.::b c d a= B.::a b c d= C.::c b a d= D.::a c d b=3. 已知△ABC的三边长分别为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是下列哪一组时,这两个三角形相似( ) A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cmP64.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.5.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A. 2组B. 3组C. 4组D. 5组6.一个钢筋三角架三边长分别是20cm ,50cm ,60cm ,现要做一个与其相似的三角架,只有长30cm ,50cm 的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种P7二. 填空题 7. 小明有一张的地图,他想绘制一幅较小的地图,若新地图宽为30cm ,则新地图长为_________cm.8. △ABC 的三条边长分别为、2、,△A ′B ′C ′的两边长分别为1和,且△ABC 与△A ′B ′C ′相似,那么△A ′B ′C ′的第三边长为____________9. 如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则______.AEBE10.已知若-3=,=____;4x y x y y则若5-4=0,x y 则x :y =___.11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________.P812. 用一个放大镜看一个四边形ABCD ,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B 是原来∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等, 则正确的有 .三.综合题13.如果a b c dkb c d a c d a b d a b c====++++++++,一次函数y kx m=+经过点(-1,2),求此一次函数解析式.P914. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?15. 从一个矩形中剪去一个尽可能大的正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长与宽的比.。
北师大版九年级 上册 第四章 4.1成比例线段 同步练习(及答案)
北师大版九年级上册第四章图形的相似4.1成比例线段同步练习1.已知AB=3 m,CD=30 cm,则AB:CD= .2.在一张地图上,甲、乙两地间的图上距离是3 cm,而两地的实际距离为1 500 m,则这张地图的比例尺为.3.如果,那么;如果ad=bc(a,b,c,d都不等于0),那么.4.已知3、4、5、a成比例,则a= .5.如图4-1-1所示,甲、乙、丙三个矩形中,长与宽的比分别是多少?哪两个矩形的长和宽的比值是相等的?图4-1-16.如图4-1-2所示,在Rt△ABC中,∠C=90°,CD是AB边的中线,则CD:AB= .图4-1-27.若(a+2b):(a-2b)=9:5,则a:b= .8.已知线段a=2,b=3,c=6,且,则d= .9.已知线段a,b,c满足关系式,且b=4,则ac= .10.若a=5 cm,b=2 cm,c=10 cm,d=4 cm,则a,b,c,d这四条线段比例.(填“成”或“不成”)11.如图4-1-3所示,已知,AD=6.4 cm,DB=4.8 cm,EC=4.2 cm,求AC的长.图4-1-312.若,则的值为( )A.1B.C.D.13.在Rt△ABC中,AC=8,斜边BC=10,则△ABC中的最短边与最长边的比值是.14.已知四条线段a,b,c,d之间有如下关系:a:b=c:d,且a=12,b=8,c=15,则线段d= .15.已知三条线段长为5 cm、3 cm、6 cm,请再写出一条线段之长,使之与前面三条线段长能够组成一个比例式,则你写出的线段长度可能为.16.下面四组线段中,不能组成比例的是.(填序号)①a=3,b=6,c=5,d=10;②a=1,b=,c=,d=;③a=4,b=6,c=2,d=4;④a=2,b=1,c=2,d=.17.如图4-1-4所示,在▱ABCD中,DE⊥AB于点E,BF⊥AD于点F.(1)AB,BC,BF,DE这四条线段能否成比例?如果不能,请说明理由;如果能,请写出比例式;(2)若AB=10,DE=2.5,BF=5,求BC的长.图4-1-4参考答案1.10:12.1:50 0003.ad=bc4.5.解:甲4:3,乙2:1,丙4:3;矩形甲与丙的长和宽的比值相等.6.1:27.7:18.99.1610.成11.解:∵,∴,∴AE=5.6 cm.∴AC=AE+EC=5.6+4.2=9.8 (cm).12.D13.14.1015. cm或10 cm或 cm16.③。
初三数学 比例线段练习题
比例线段同步练习一、填空题8.已知实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,则x :y :z=________. 9.设实数x ,y ,z 使│x -2y│+ (3x-z )2=0成立,求x :y :z 的值________. 10、已知3)(4)2(y x y x -=+,则=y x : ,=+xyx 11、543z y x ==,则=++xzy x ,=+-++z y x z y x 53232 12、已知b 是a ,c 的比例中项,且a=3cm ,c=9cm ,则b= cm 。
13、比例尺为1:50000的地图上,两城市间的图上距离为20cm ,则这两城市的实际距离是 公里。
14、如果3:1:1::=c b a ,那么=+--+cb a cb a 3532二、选择题15、如果bc ax =,那么将x 作为第四比例项的比例式是( )A x a c b =B b c x a =C x c b a =D ca b x =16、三线段a 、b 、c 中,a 的一半的长等于b 的四分之一长,也等于c 的六分之一长,那么这三条线段的和与b 的比等于( )A 6:1B 1:6C 3:1D 1:3 17、已知dcb a =,则下列等式中不成立的是( ) A.c d a b = B. d d c b b a -=- C. d c c b a a +=+ D. bac bd a =++18、下列a 、b 、c 、d 四条线段,不成比例线段的是( )A. a=2cm b=5cm c=5cm d=12.5cmB. a=5cm b=3cm c=5mm d=3mmC. a=30mm b=2cm c=59cm d=12mm D. a=5cm b=0.02m c=0.7cm d=0.3dm19、如果 a:b=12:8,且b 是a 和c 的比例中项,那么b:c 等于( )A. 4:3B. 3:2C. 2:3D. 3:420、已知53=y x ,则在①41=+-y x y x ②5353=++y x ③1332=+y x x ④38=+x y x 这四个式子中正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个21、两直角边为3和4的直角三角形的斜边和斜边上高线的比是( )A. 5:3B. 5:4C. 5:12D. 25:12三、解答题 22、已知7532=b a ,求bab a 3423+的值。
初中数学相似三角形题型归类——成比例线段专项练习3(附答案详解)
1.B
【解析】
【分析】
根据平行四边形的判定、一元二次方程的解、黄金分割比、根的判别式逐一判断.
【详解】
解:A、两组邻边分别相等的四边形不一定是平行四边形,故A错误;
B.当 时,一元二次方程 必有一根为 ,正确;
C.若点 是线段 的黄金分割点,则 或 ,故C错误;
D.对于方程 , ,所以方程无实数解,故D错误;
故答案为4.
考点:比例线段.
17.12.36.
【解析】
试题分析:黄金分割即较大部分与较小部分之比值为1∶0.618,该矩形的较长边是20cm,那么较小边x是 ,解得x=0.618×20=12.36.
考点:黄金分割比例
点评:该题主要考查学生对黄金分割的意义,比值的熟记程度,同时提高学生明白数学在审美中的应用。
解得:x=150(千米),
故答案为:150
【点睛】
本题考查了比例尺的定义,能够根据比例尺由图上距离正确计算实际距离是解题关键,注意单位的换算.
16.4
【解析】
试题分析:比例的基本性质:两外项之积等于两内项之积.
解:根据比例中项的概念结合比例的基本性质,
得:比例中项的平方等于两条线段的乘积.
设它们的比例中项是x,则x2=2×8,x=±4(线段是正数,负值舍去).
23.点C,点D是线段AB上任意两点.
(1)如图1,若点D是线段BC的中点,AD=18,AC=6,求线段BD的长;
(2)如图2,若点C把线段AB分为2:3的两段(AC<BC),点D分线段AB为1:5两段(AD<BD),DC=7,求线段AB的长.
24.(1)对于实数 、 ,定义运算“ ”如下: .若 ,求: 的值;
(1)求证:四边形ABCD是矩形;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三成比例线段典型例
题及练习题
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
【典型例题】类型一、比例线段
例题1.(1)求证:如果,那么.
(2)已知线段a、b、c、d,满足a c
b d
=,求证:
a c a
b d b
+
=
+
.
类型二、相似图形
例题2.(1)如果两个四边形的对应边成比例,能不能得出这两个四边形相似?为什么?
(2)下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()
类型三、相似多边形
例题3.(1)已知四边形与四边形相似,且
.四边形的周长为26.求四边形的各边长.
(2)等腰梯形与等腰梯形相似,
,求出的长及梯形各角的度数.
(3)
例题4.某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.
考点集训图形的相似和比例线段(提高)
一.选择题
1.在比例尺为1︰1000000的地图上,相距3cm的两地,它们的实际距离为( )
A.3km B.30km C.300km D.3000km
2.已知线段a、b、c、d满足=
ab cd把它改写成比例式,其中错误的是()A.::
b c d a
= B.::
a b c d
= C.::
c b a d
= D.::
a c d b
=
3.已知△ABC 的三边长分别为6cm 、7.5cm 、9cm ,△DEF 的一边长为4cm ,当
△DEF 的另两边的长是下列哪一组时,这两个三角形相似( ) A .2cm ,3cmB .4cm ,5cm C .5cm ,6cm D .6cm ,7cm
P6 4.△ABC 与△A 1B 1C 1相似且相似比为
,△A 1B 1C 1与△A 2B 2C 2相似且相似比为
,则△ABC 与△A 2B 2C 2的相似比为( ) A .
B .
C .
或
D .
5.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有() A.2组B.3组C.4组D.5组
6.一个钢筋三角架三边长分别是20cm ,50cm ,60cm ,现要做一个与其相似的三角架,只有长30cm ,50cm 的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有() A.一种B.两种C.三种D.四种
P7
二.填空题 7.小明有一张的地图,他想绘制一幅较小的地图,若新地图宽为30cm ,则新地图长为_________cm. 8.△ABC 的三条边长分别为
、2、
,△A ′B ′C ′的两边长分别为1和
,且△ABC 与△A ′B ′C ′相似,那么△A ′B ′C ′的第三边长为____________
9.如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则
______.AE
BE
= 10.已知若
-3=,=____;4x y x y y
则若5-4=0,x y 则x :y =___. 11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,
AC:CD=__________,CD:DE=________.
P8
12.用一个放大镜看一个四边形ABCD ,若四边形的边长被放大为原来的10
倍,下列结论①放大后的∠B 是原来∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等, 则正确的有. 三.综合题
13.如果
a b c d
k b c d a c d a b d a b c ====++++++++,一次函数y kx m =+经过点(-1,2),
求此一次函数解析式.
P9
14.如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以
EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令
MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?
15.从一个矩形中剪去一个尽可能大的正方形,如图所示,若剩下的矩形与原矩形相似,
求原矩形的长与宽的比.。