太阳能电池最大功率点跟踪系统
MPPT控制原理

MPPT控制原理MPPT(Maximum Power Point Tracking)是一种太阳能光伏系统中常用的控制原理,主要用于提高光伏系统的能量转换效率。
MPPT控制原理的核心是通过调节光伏阵列的工作点,使其始终工作在最大功率点上,从而最大限度地提取光伏电池的能量。
为了更好地理解MPPT控制原理,我们首先需要了解光伏电池的工作特性。
光伏电池的输出功率与光照强度和电压之间存在着一定的关系,当光照强度不变时,电压越高,输出功率越大。
然而,光照强度是随着时间和环境变化的,因此光伏电池的工作点也会不断变化。
如果光伏电池的工作点偏离了最大功率点,系统将无法充分利用光能,导致能量转换效率降低。
MPPT控制原理的基本思想是通过不断调节光伏电池的输出电压和电流,使光伏电池的工作点始终处于最大功率点。
具体来说,MPPT控制器会对光伏电池的输出电压和电流进行监测,并根据监测结果调节电池的工作点。
当光伏电池的输出功率小于最大功率时,MPPT控制器会逐渐增加电池的负载电流,以提高输出功率。
相反,当光伏电池的输出功率超过最大功率时,MPPT控制器会逐渐减小电池的负载电流,以降低输出功率。
通过这种方式,MPPT控制器能够实时跟踪光伏电池的最大功率点,从而提高系统的能量转换效率。
在实际应用中,MPPT控制器通常采用迭代搜索算法来寻找最大功率点。
常见的迭代搜索算法包括增量调整法、开关法和模拟法等。
这些算法通过不断调节光伏电池的负载电流或电压,以逼近最大功率点。
其中,增量调整法是最常用的一种算法,其基本思想是根据光伏电池的当前输出功率与上一次输出功率的比较结果,调节电池的负载电流或电压,直到找到最大功率点为止。
总之,MPPT控制原理通过实时跟踪光伏电池的最大功率点,调节电池的工作点,从而提高系统的能量转换效率。
这种控制原理在太阳能光伏系统中得到广泛应用,可以有效提高能源利用率,降低光伏系统的成本。
太阳能电池系统中的MPPT算法研究与比较分析

太阳能电池系统中的MPPT算法研究与比较分析太阳能电池系统中的最大功率点跟踪(Maximum Power Point Tracking,MPPT)算法是一种重要的关键技术,用于提高太阳能电池组的发电效率。
在太阳能电池组中,由于存在温度和光照强度等因素的变化,太阳能电池组的输出电压和电流也在不断变化,而太阳能电池的输出功率是电压和电流的乘积,所以需要实时跟踪太阳能电池组的最大输出功率点,以确保太阳能电池组能够以最高效率工作。
目前常用的MPPT算法有众多种类,本文将对几种常见的MPPT算法进行研究与比较分析。
1. 常数加压步进变化(Constant Voltage Incremental Change,CVIC)算法CVIC算法是一种较为简单的MPPT算法,其原理是设定一个初始电压,通过改变电压的大小来搜索最大功率点。
具体步骤如下:首先确定一个初始电压值,在该电压下测量太阳能电池组的输出功率;然后根据当前输出功率与上一次测量功率的比较结果,调整电压值并重新测量功率;不断迭代,直到找到最大功率点。
CVIC算法的优点是实现简单,可以在较短的时间内找到最大功率点,但其缺点是其迭代速度较慢,不适用于功率变化较快的系统。
2. 全局定位(Global Maximum Power Point , GMPP)算法GMPP算法是一种基于搜索的MPPT算法,其原理是基于整个工作范围内最大功率点的特点,通过搜索寻找全局最大功率点。
具体步骤如下:首先检测输入电压和电流,并计算对应的输入功率;然后增加或减少输入功率,再次测量电流和功率,并计算新的输入功率;通过比较两次输入功率的大小,选择功率较大的一侧作为新的搜索方向,不断迭代,直到找到全局最大功率点。
GMPP算法的优点是可以找到全局最大功率点,适用于功率变化较快的系统,但其缺点是速度较慢,对计算资源要求较高。
3. 增量(Incremental Conductance, INC)算法INC算法是一种基于导数变化的MPPT算法,其原理是通过计算导数的变化来确定最大功率点。
什么是MPPT

什么是MPPTMPPT是Maximum Power Point Tracking(最大功率点跟踪)的简称,MPPT控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最高的效率对蓄电池充电。
应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是光伏系统中非常重要的组件。
MPPT的概述最大功点跟踪(Maximum Power Point Tracking,简称MPPT)系统是一种通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系统能够将太阳能电池板发出的直流电有效地贮存在蓄电池中,可有效地解决常规电网不能覆盖的偏远地区及旅游地区的生活和工业用电,不产生环境污染。
光伏电池的输出功率与MPPT控制器的工作电压有关,只有工作在最合适的电压下,它的输出功率才会有个唯一的最大值。
日照强度为1000W/下,U=24V,I=1A;U=30V,I=0.9A;U=36V,I=0.7A;可见30的电压下输出功率最大。
MPPT的原理给蓄电池充电,太阳板的输出电压必须高于电池的当前电压,如果太阳能板的电压低于电池的电压,那么输出电流就会接近0。
所以,为了安全起见,太阳能板在制造出厂时,太阳能板的峰值电压(Vpp)大约在17V左右,这是以环境温度为25°C时的标准设定的。
当天气非常热的时候,太阳能板的峰值电压Vpp会降到15V左右,但是在寒冷的天气里,太阳能的峰值电压Vpp可以达到18V。
现在,我们再回头来对比MPPT太阳能控制器和传统太阳能控制器的区别。
传统的太阳能充放电控制器就有点象手动档的变速箱,当发动机的转速增高的时候,如果变速箱的档位不相应提高的话,势必会影响车速。
但是对于传统控制器来说,充电参数都是在出厂之前就设定好的,就是说,MPPT控制器会实时跟踪太阳能板中的最大的功率点,来发挥出太阳能板的最大功效。
电压越高,通过最大功率跟踪,就可以输出更多的电量,从而提高充电效率。
最大功率点跟踪(MPPT)技术简介

复旦大学
内容
• • • • • MPPT介绍 MPPT工作原理 MPPT优点 MPPT算法简介 我们计划采用的MPPT方案
复旦大学
MPPT优点
MPPT控制器可以智能调节太阳能 发电板的工作电压,使太阳能板始 终工作在V-A特性曲线的最大功率 点。 比较普通太阳能控制器,对太 阳能板发电功率的利用率提高了 10—30%
我们计划采用的MPPT方案
• 调查发现,目前市场上几乎所有高端太阳能路灯控制器都
采用了MPPT技术。目前,人们通常将MPPT控制与DC/DC变换器 连接起来,通过硬件控制来达到最大功率点的跟踪。介于此, 我们计划使用一种内置了MPPT算法的DC/DC升压转换器 -SPV1020 。 • 下面介绍SPV1020的主要特性和在太阳能光伏板上的应用图。
复旦大学
我们计划采用的MPPT方案
• spv1020主要特性:
• • • • • • • • ■PWM模式DC-DC升压转换器 ■精度达到0.2%的MPPT算法 ■工作电压范围0~36 V ■过压,过流,过温保护 ■内置软启动 ■效率可达98% ■在低太阳辐射时自动转换到效率提高模式-brust模式 ■SPI接口
复旦大学
内容
• • • • • MPPT介绍 MPPT工作原理 MPPT优点 MPPT算法简介 我们计划采用的MPPT方案
复旦大学
MPPT工作原理
太阳能光伏阵列的输出特性具有非线性的特点,并且输出受太阳幅 照度,环境温度和负载影响,只有在某一输出电压值时,光伏阵列 的输出功率才能达到最大值,这时光伏阵列的工作点就达到了输出 功率电压曲线的最高点,称之为最大功率点(MPP-maximum power point)。为了提高太阳能转化效率,就必须使系统保持运 行在PV面板最大功率点附近。
光伏发电系统中的最大功率追踪算法研究

光伏发电系统中的最大功率追踪算法研究随着全球环境问题的不断加剧和人们对可再生能源的需求不断增长,光伏发电系统得到了广泛的应用。
在光伏发电系统中,最大功率追踪算法是一项重要的技术,它可以实现光伏电池板的最大输出功率,进而提高光伏发电系统的效率。
本文将介绍光伏发电系统中的最大功率追踪算法,并对其研究现状进行分析和讨论。
一、最大功率追踪算法的原理在光伏发电系统中,光伏电池板是获取太阳能并将其转化为电能的核心设备。
然而,光照强度的变化和光伏电池板本身的特性使得其输出电压和电流随时都在变化。
因此,为了提高光伏发电系统的效率,需要实现光伏电池板的最大输出功率追踪。
最大功率追踪算法是通过对光伏电池板输出电压和电流进行测量和监控,进而计算出光伏电池板的输出功率,并实时调整电池板的工作状态,以保证输出功率达到最大。
最常用的最大功率追踪算法包括模拟算法、传统的启发式算法和基于人工智能的算法。
模拟算法是最早被使用的最大功率追踪算法,它根据光伏电池板的电特性建立模型,通过计算机模拟来获取最大功率点。
传统的启发式算法则是通过试错法逐步调整电压和电流,不断接近最大功率点。
基于人工智能的算法则是采用神经网络、遗传算法等技术,通过自学习来找到最大功率点。
二、最大功率追踪算法的研究现状目前,最大功率追踪算法的研究主要集中在以下几个方向:1. 基于模糊控制的最大功率追踪算法基于模糊控制的最大功率追踪算法是利用模糊控制理论来建立光伏电池板最大功率追踪系统的一种方法。
这种方法的优点是具有较强的适应性和鲁棒性,能够在光照变化频繁、天气复杂的环境下实现高效的最大功率追踪。
2. 基于人工智能的最大功率追踪算法基于人工智能的最大功率追踪算法是通过利用神经网络、遗传算法等技术来实现最大功率追踪。
这种方法能够有效地解决光伏电池板的输出功率经常变化的问题,具有自适应性强、稳定性好的优点。
3. 基于无线传感器网络的最大功率追踪算法基于无线传感器网络的最大功率追踪算法是利用物联网技术来实现光伏电池板最大功率追踪的方法。
mppt原理

mppt原理MPPT(Maximum Power Point Tracking)原理。
MPPT(Maximum Power Point Tracking)是太阳能光伏发电系统中的一个重要技术,它的作用是通过调节光伏电池板的工作点,使得光伏电池板输出功率达到最大值。
在太阳能发电系统中,光照强度和温度的变化会导致光伏电池板的输出电压和电流发生变化,为了充分利用光伏电池板的输出功率,需要采用MPPT技术对光伏电池板进行最大功率点跟踪。
MPPT原理的核心是利用控制算法,根据光伏电池板的输出特性,实时调整光伏电池板的工作点,使得光伏电池板的输出功率达到最大值。
常见的MPPT控制算法有Perturb and Observe(P&O)算法、Incremental Conductance(IC)算法等,它们通过不断调节光伏电池板的工作点,实现对最大功率点的跟踪。
在实际应用中,MPPT控制器通常会采集光伏电池板的电压和电流信号,经过AD转换和数字信号处理,得到光伏电池板的输出功率,并根据MPPT控制算法计算出最佳工作点,控制光伏电池板的工作状态。
通过这种方式,MPPT控制器可以实现对光伏电池板输出功率的最大化,提高太阳能发电系统的整体效率。
MPPT技术的应用可以显著提高太阳能发电系统的发电效率,特别是在光照条件不稳定的情况下,MPPT控制器可以有效应对光伏电池板输出功率的波动,保证光伏电池板始终工作在最佳状态。
因此,MPPT技术已经成为太阳能光伏发电系统中不可或缺的重要部分。
总的来说,MPPT原理是通过控制算法实现对光伏电池板最大功率点的跟踪,从而提高太阳能发电系统的发电效率。
随着太阳能光伏发电技术的不断发展,MPPT技术也在不断完善和应用,为太阳能发电行业的发展注入了新的活力。
希望通过本文的介绍,读者对MPPT原理有了更深入的了解,为太阳能发电系统的设计和应用提供一定的参考价值。
太阳能光伏发电最大功率点跟踪技术
二、MPPT技术的基本原理和性能检测方法
I(mA)
曲线1 曲线2
负载1
A1
A2 B1
负载2 B2
O
U(mV)
➢最大功率点A1→最大功率点B1 (条件:将系统负载特性由负载1改为负载2)
➢最大功率点B1→最大功率点A1
(条件:将系PPT技术的基本原理和性能检测方法
由上述公式推导,可得系统运行点与最大功率点的判据如下:
① G+dG>0,则UPV<UMPP,需要适当增大参考电压来达到最大
功率点;
② G+dG<0,则UPV>UMPP, 300
250
需要适当减小参考电压来达 200
输出功率(W)
到最大功率点;
150
100
③ G+dG=0,则UPV=UMPP, 50
0
由此可得
IPV dIPV G dG 0 UPV dUPV
式中,G为输出特性曲线的电导;dG为电导G的增量。由
于增量dUPV和dIPV可以分别用ΔUPV和ΔIPV来近似代替,可得:
dUPV t2 UPV t2 UPV t2 UPV t1 dIPV t2 IPV t2 IPV t2 IPV t1
dPPV 0 dU PV
最大功率点
dPPV 0 dU PV
dPPV 0 dU PV
此时系统正工作在最大功率 点处;
0 0 10 20 30 40 50 60 70 80 90 输出电压(V)
常用的最大功率点跟踪算法
光伏电池仿真模型设计
仿真结果
由此可见,光伏发电系统中的MPPT控制策略,就是先根 据实时检测光伏电池的输出功率,再经过一定的控制算法预测 当前工况下光伏电池可能的最大功率输出点,最后通过改变当 前的阻抗或电压、电流等电量等方式来满足最大功率输出的要 求。
最大功率点跟踪方法
3.5传统的最大功率点跟踪方法3.5.1 定电压跟踪法通过图3-10a 、3-10b 可知,当辐照度大于一定值并且温度变化不大时,光伏电池的输出P -U 曲线上最大功率点几乎分布于一条垂直直线的两侧附近。
定电压跟踪法正是利用这一特性。
根据实际系统设定一个恒定不变的运行电压,使系统在设定的电压下运行,从而尽可能使系统输出的功率最大。
在外界环境变化不大时,可以近似认为太阳能电池始终工作在最大功率点处[24]。
mpp U 表示光伏阵列的最大功率点电压,oc U 表示光伏阵列的开路电压,经研究发现,mpp U 和oc U 有着近似的线性关系:mpp OC U k U ≈ (3.14)式(3.14)中,k 为比例系数,取决于光伏电池的特性,一般其取值为0.8左右。
该算法结构简单,容易实现,但是由于该算法只是一种近似的MPPT 控制算法,在外界环境发生变化时,很容易偏离最大功率点。
因此,电压跟踪法常用在控制要求低,成本低廉的简易系统中[25]。
3.5.2 电导增量法根据光伏阵列的P-U 输出特性曲线可知,它是一条连续可导的单峰曲线,在最大功率点处,功率对电压的导数为零,也就是说,最大功率点的跟踪实质就是搜索满足0dP dU =条件的工作点。
考虑光伏电池的瞬时输出功率为:P UI = (3.15)将上式两边对光伏电池输出电压U 求导,则dP dI I U dU dU=+ (3.16) 当0dP dU =时,光伏电池的输出功率达到最大。
则可以推导出工作点位于最大功率点时需满足以下关系:dI I dU U=- (3.17) 即当光伏电池阵列工作在最大功率点时,需满足(3.17)式。
电导增量法的优点是与太阳能电池组件特性及参数无关,因而能够适应光照强度快速变化的情况,而且该方法的电压波动小,并具有较高的控制精度;其缺点是该方法实现起来复杂,并且容易受到其他信号的干扰而出现误动作。
一般情况下dI 和dU 值取的很小,那么就需要光伏阵列输出电压、输出电流等参数的采样精度很高,而传感器的采样精度有限,所以必然会存在误差,另外,电导增量法存在振荡问题。
太阳能发电系统中最大功率点跟踪方法
太阳能发电系统中最大功率点跟踪方法
1、诱导MPPT法
MAXPOWER Tracking(MPPT)是一种以电气参数调整输出功率的工作原理。
它是一种自适应参数控制算法,它可以在太阳能发电系统中搜索最大功率点,并在运行过程中跟踪它。
为了实现最大功率点跟踪,MPPT法采用以下技术:
•调节输出阻抗以查找最大功率点;
•外部控制回路,将环境和电气条件内置到发电系统控制中;
•比较不断发生的变化和前一个状态的结果,以确定最大功率点的位置。
2、P&O算法
P&O算法是一种基于实时检测的最大功率点跟踪方法,它主要应用于逆变器的最大功率点跟踪,以及适用于多种发电机,如光伏和风力系统。
主要特点是,P&O算法以易于实现的方式提供了最大功率点跟踪能力,允许简洁的电路设计,主要技术特征是:
•深度实时监测;
•自适应控制算法,用于查找和跟踪最大功率点;
•无需直接测量和估算最大功率点。
光伏发电最大功率点追踪算法
光伏发电最大功率点追踪算法光伏发电是一种利用太阳能将光能转化为电能的技术。
在光伏发电系统中,为了提高系统的能量转换效率,需要对光伏电池阵列进行最大功率点追踪(Maximum Power Point Tracking,简称MPPT)。
光伏发电最大功率点追踪算法可以帮助我们找到电池阵列工作时能够输出最大功率的电压和电流组合。
在本文中,我们将深入探讨光伏发电最大功率点追踪算法的原理、常见的算法类型以及算法的应用。
通过了解这些内容,我们可以更好地理解光伏发电系统的优化以及如何选择合适的MPPT算法。
首先,让我们来了解光伏发电最大功率点追踪算法的原理。
光伏电池的输出特性曲线显示了在不同电压和电流下的功率输出情况。
该曲线通常呈现出一个“倒U”型,即存在一个最大功率点。
光伏发电最大功率点追踪算法的目标就是寻找到这个最大功率点,并调整系统工作点使得光伏电池能够输出最大功率。
常见的光伏发电最大功率点追踪算法可以分为模拟算法和数字算法两种类型。
模拟算法包括传统的开环算法和闭环算法。
开环算法根据光强和温度等环境因素预先设定一个工作点,以此来调整电压和电流。
闭环算法则是根据实时的光强和电压进行反馈调节,以追踪最大功率点。
常见的闭环算法有Perturb and Observe算法和Incremental Conductance算法。
这些算法通过不断调整工作点,使得系统能够在不同光照条件下实现最优的能量转换效率。
除了模拟算法,数字算法也被广泛应用于光伏发电最大功率点追踪。
数字算法通过使用微控制器或数字信号处理器等设备,根据电池阵列当前的电压和电流等参数计算出最大功率点,并调整系统的工作点。
常见的数字算法有P&O算法、IC算法、Hill-Climbing算法等。
这些算法通过快速的运算和调整能够更精确地实现最大功率点追踪。
光伏发电最大功率点追踪算法在实际应用中具有重要意义。
通过采用合适的算法,光伏发电系统可以在不同的光照条件下实现高效的能量转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告
课程
题目
学院
年级专业
班级学号
学生姓名
指导教师
设计时间
目录
一、摘要 (3)
二、绪论 (3)
三、内容 (3)
2.1光伏电池的特性 (3)
2.2 MPPT基本原理 (4)
2.3 MPPT控制的实现 (5)
2.3.1控制算法 (5)
2.3.2硬件实现 (6)
2.3.3 软件实现 (7)
2.4实验结果分析 (7)
四、结论 (8)
五、参考文献 (8)
一、摘要
太阳能光伏阵列的输出特性受外界环境的影响具有强烈的非线性,为了提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,进行最大功率点跟踪(MPPT),使之始终工作在最大功率点附近。
本文通过对太阳能电池伏安特性的分析,采用自适应扰动观察算法,基于TMS320F2812设计了MPPT控制系统。
实验结果表明,在此算法控制下,系统能够准确地跟踪最大功率点。
二、绪论
随着经济全球化进程的不断加速和工业经济的迅猛发展,能源问题已成为人类需要迫切解决的问题,大力发展新的可替代能源已成为当务之急。
太阳能是一种取之不尽用之不竭的绿色能源,太阳能发电具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿性及维护性等其它常规能源所不具备的优点。
光伏发电虽然具有以上的优势,但是实际应用中还存在很多的问题。
光伏发电的主要缺点之一是太阳能电池阵列的光电转换效率太低。
为了解决该问题,一个重要的途径就是实时调整光伏电池的工作点,进行最大功率点跟踪(MPPT),使之始终工作在最大功率点附近。
目前,光伏系统的最大功率点跟踪问题已成为学术界研究的热点。
高性能的数字信号处理芯片(DSP)的出现,使得一些先进的控制策略应用于光伏发电控制系统成为可能。
本论文就是在此背景下,采用TI公司生产的TMS320F2812进行控制,开展了太阳能发电系统的理论和试验研究,具有重要的现实意义。
三、内容
2.1光伏电池的特性
太阳能电池的输出特性是非线性的,它受到光照强度、环境温度等因素的影响。
太阳能电池的等效电路如图1所示,图2是光伏电池在不同温度下的I-V、P-V特性,图3为光伏电池在不同日照强度下的I-V、P-V特性。
[1][4][7]
从图2可以看出,太阳能电池开路电压V0。
主要受电池温度的影响;从图3可以看出,太阳能电池短路电流Is。
主要受日照强度的影响,而且在一定的温度和光照强度下,太阳能电池具有唯一的最大功率输出点。
由于实际应用中不能保证其总是工作在最大功率点上,所以在应用中要用到MPPT装置,以保证太阳能电池的输出功率在最大功率点的附近。
2.2 MPPT基本原理
MPPT的实现实质上是一个动态自寻优过程,通过对阵列当前输出电压与电流的检测,得到当前阵列输出功率,再与已被存储的前一时刻功率相比较,舍小取大,再检测,再比
较,如此周而复始。
MPPT控制系统的DC-DC变换的主电路采用Boost升压电路。
图4为Boost变换器的主电路,电路由开关管T、二极管D、电感L、电容C组成。
工作的原理为在开关T导通时,二极管D反偏,太阳能电池阵列向电感L存储电能;当开关T断开时,二极管导通,由电感L和电池阵列共同向负载充电,同时还给电容C充电,电感两端的电压与输入电源的电压叠加,使输出端产生高于输入端的电压。
Boost电路输入输出的电压关系为:V0=VI/(1-D) (1)
当Boost变换器工作在电流连续条件下时,从式(1)可以得到其变压比仅与占空比D有关而与负载无关,所以只要有合适的开路电压,通过改变.Boost变换器的占空比D就能找到与太阳能电池最大功率点相对应的VI。
2.3 MPPT控制的实现
2.3.1控制算法
目前实现太阳能MPPT常用的算法有扰动观察法(P&O)和电导增量法(INC)。
[3][6]前者的算法结构简单、检测参数少,应用较普遍,但在最大功率点附近,其波动较大;后者的算法波动较小,但较为复杂,跟踪过程需花费相当长的时间去执行A/D转换。
系统采用自适应扰动观察法,通过对扰动观察法的改进,引进一个变步长参数λ(k)来解决在最大功率点附近波动大的问题,其中λ(k)=ε|△P|式中ε是一个恒定的常数,自适应扰动观察法的程序流程图如图5所示。
图中e决定了跟踪精度,λ(k)为占空比步长,决定功率变化的步长,η为扰动方向控制系数,取值为1。
当|△P|<e时,认为系统已经达到最大功率点附近,λ(k)的值将自动调节变小来满足动态调节步长的要求。
2.3.2硬件实现
控制电路使用TI公司的TMS320F2812 DSP作为主控制芯片,其快速的运算能力、丰富的外设资源能为整个控制系统提供一个良好的平台。
DSP是整个控制系统的核心,它接受采样电路送来的模拟信号,按照控制算法对采样信号进行处理,然后产生所需要的PWM 波形,经驱动放大后控制主电路功率开关管的通断,从而实现MPPT。
TMS320F2812在时钟频率150MHz下,其时钟周期仅为6.67ns,8通道16位PWM脉宽调制,2×8通道12位A/D转换模块,一次A/D转换最快转换周期仅为200ns。
TMS320F2812 DSP芯片的这些特点能够满足MPPT控制精度和速度的要求。
采用其中两路A/D转换输入通道作为太阳能电池的输出电流和电压的采集通道,经过MPPT控制产生驱动PWM波形控制DC-DC开关管的导通时间,其控制的框图如图6所示。
2.3.3 软件实现
MPPT的控制流程图如图5所示,其功能是在中断服务模块中完成的。
在主程序中主要是完成对寄存器,定时器以及PWM的初始化,其流程图如7所示。
2.4实验结果分析
为验证MPPT系统的有效性,设计了MPPT实验系统,并与无此装置下光伏电池的发电状态进行比较。
实验系统的太阳能电池采用大禾科技有限公司的多晶硅电池组件DH-20,其性能参数为:开路电压V oc=21.5v;短路电流Isc=1.30A;标称功率PM=20W,蓄电池为24V/12Ah铅酸蓄电池。
实验结果见表1。
由实验数据可知,接入MPPT装置后,光
伏电池的输出功率有了显著提高。
四、结论
本文提出了一种利用DSP控制的,以Boost变换器为核心,以铅酸蓄电池为负载的MPPL系统。
详细分析了MPPT的原理,并对该系统进行了实验研究。
实验结果表明,采用TMS320F2812 DSP芯片控制的MPPT系统实现了光伏电池最大功率跟踪,电路结构简单、可靠性好、效率高,且具有针对蓄电池过充、过放、逆变输出过流等异常情况的多种保护作用,因而具有一定的实用价值。
五、参考文献
[1] 赵宏;潘俊民基于Boost 电路的光伏电池最大功率点跟踪系统[期刊论文] -电力电子技术2004(06)
[2] 李玲;谢建;杨祚宝光伏系统最大功率点跟踪方法[期刊论文] -可再牛能源2007(04
[3] 侯聪玲;吴捷太阳能最大功率跟踪技术的研究[期刊论文] -河南科学报2008(03)
[4] 崔岩太阳能光伏系统MIPPT控制算法的对比研究[期刊论文] -太阳能学报2006(06)
[5] 李慧慧.孙志毅基于模糊控制的光伏发电最大功率点跟踪[期刊论文] -科技资讯2010(7)
[6] 任苗苗基于模糊控制的MPPT方法的研究[期刊论文] -中国西部科技2011(35)
[7] 刘建设.申涛光伏电池最大功率点的分析与研究[期刊论文] -机械研究与应用2010(4)。