21.2.1 配方法2教案

合集下载

数学人教版九年级上册21.2.1配方法(第2课时)教学设计

数学人教版九年级上册21.2.1配方法(第2课时)教学设计
a2+ 2·a·b+b2= (a+b)2
3、用直接开平方法解方程:(1) 9x2=1, (2)
第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。
二、自主学习:
探究怎样解方程x2+6x+4=0?
1、仔细观察方程,用直接开平方法能解吗?
2、能把方程转化为(x+m)2=n(n≧0)的形式吗?看课件(或教材)框图,能理解框图中的每一步吗?(教师启发学生思考,同学之间可以交流、师生间也可交流。)
21.2.1配方法(第2课时)教学设计




1、能说出用配方法解一元二次方程的基本步骤;知道“配方法”是一种常用的数学方法。
2、会用配方法解数字系数的一元二次方程。
教学重点
用配方法解数字系数的一元二次方程。
教学难点
对方方法的探索,正确理解把x2+px形的代数式配成完全平方式的方法。
教学过程
问题与情景
3、讨论:在框图中第三步为什么方程两边加9?加其它数行吗?
4、什么叫配方法?配方法的目的是什么?
5、配方的关键是什么?(把配方法定义和重要结论板书在黑板上)。
交流与点拨:
重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。注意9=( )2,而6是方程一次项系数。所以得出配方是:方程两边加上一次项系数一半的平方,从而配成完全平方式。
(x+n)2=p①的形式,那么就有:
(1)当p>0时,方程①有两个不等的实数根
(2)当p=0时,方程①有两个相等的实数根x1=x2=-n;

人教版九年级上册数学 21.2.1 第2课时 配方法 优秀教案

人教版九年级上册数学 21.2.1  第2课时  配方法 优秀教案

第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x -5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x2-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计握完全平方式的形式.。

21.2.1配方法第二课时教案

21.2.1配方法第二课时教案

21.2.1配方法第二课时教案篇一:21.2.1配方法教案教学过程设计篇二:21.2.1配方法(第2课时)第8页篇三:21.2(2)配方法第二课时22.2.2配方法第2课时运用配方法解一元二次方程教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,?两边加上的常数是一次项系数一半的平方.教学过程一、复习引入(学生活动)解下列方程:22(1)x-8x+7=0(2)x+4x+1=0老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,?右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.2222解:(1)x-8x+(-4)+7-(-4)=0(x-4)=9x-4=±3即x1=7,x2=1 2222(2)x+4x=-1x+4x+2=-1+2(x+2)=3即x+2=2x1,x2二、探索新知像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.解下列方程222(1)x+6x+5=0(2)2x+6x-2=0(3)(1+x)+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.2解:(1)移项,得:x+6x=-52222配方:x+6x+3=-5+3(x+3)=4由此可得:x+3=±2,即x1=-1,x2=-52(2)移项,得:2x+6x=-22二次项系数化为1,得:x+3x=-1配方x+3x+(23232325)=-1+()(x+)=2224由此可得x+333=±,即x1=,x2=--2222222(3)去括号,整理得:x+4x-1=02移项,得x+4x=12配方,得(x+2)=5x+2=x1,x2三、巩固练习教材P39练习2.(3)、(4)、(5)、(6).四、应用拓展2例2.用配方法解方程(6x+7)(3x+4)(x+1)=62分析:因为如果展开(6x+7),那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)=y,其它的3x+4=221111(6x+7)+,x+1=(6x+7)-,因此,方程就2266转化为y?的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=1111y+,x+1=y-226611112依题意,得:y(y+)(y-)=62266去分母,得:y(y+1)(y-1)=722242y(y-1)=72,y-y=72212289)=241721y-=±22(y-2y=9或y=-8(舍)∴y=±3当y=3时,6x+7=36x=-4x=-222353当y=-3时,6x+7=-36x=-10x=-所以,原方程的根为x1=-25,x2=-33五、归纳小结本节课应掌握:配方法的概念及用配方法解一元二次方程的步骤.六、布置作业:1.教材P45复习巩固3.2.作业设计一、选择题4x-2=0应把它先变形为().312822a.(x-)=B.(x-)=03931281210c.(x-)=d.(x-)=39391.配方法解方程2x-22.下列方程中,一定有实数解的是().22a.x+1=0B.(2x+1)=0c.(2x+1)+3=0d.(222212x-a)=a23.已知x+y+z-2x+4y-6z+14=0,则x+y+z的值是().a.1B.2c.-1d.-2二、填空题21.如果x+4x-5=0,则x=_______.222.无论x、y取任何实数,多项式x+y-2x-4y+16的值总是_______数.23.如果16(x-y)+40(x-y)+25=0,那么x与y的关系是________.三、综合提高题1.用配方法解方程.(1)9y-18y-4=0(2)x222.已知:x+4x+y-6y+13=0,求22x?2y的值.22x?y3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,?为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,?如(:21.2.1配方法第二课时教案)果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.篇四:21.2.1配方法(第2课时)盈江县第一初级中学九年级上数学学案21.2.1配方法(2)设计人:尹兴成班级:_______姓名:_____________学号:____________【学习目标】1.知道什么叫配方法?2.会用配方法解简单的数字系数的一元二次方程;3.把已知方程通过配方化成x2?p或(x?p)2?q(q?0)的形式。

部编版人教初中数学九年级上册《21.2.1 配方法(2) 教学设计》最新精品优秀完美教案

部编版人教初中数学九年级上册《21.2.1 配方法(2) 教学设计》最新精品优秀完美教案

加以鼓励表扬.并集 方.
A.x2+1=0 2=a
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( 1 x-a)体进行交流评价,体
2
会方法,形成规律.
4.解决课本练习 2(2)到(6) 5.已知 x2+y2+z2-2x+4y-6z+14=0,则 x+y+z 的值是( ).
A.1 B.2 C.-1
结构,尝试解方程 探究,发现二次 ○2 ,探讨二次项系 项系数不是 1 数不是 1 的一元二 的一元二次方 次方程的解法,教 程的解法,培养 师组织学生讨论, 学生发现问题 师生交流看法,肯 的能力 定其可行性,总结 出一般步骤. 让学生运用总结出
项系数不为 1 的一元二次方程的一般步骤:
的一般步骤解方程
A.(x- 1 )2= 8 B.(x- 2 )2=0 C.(x- 1 )2= 8
39
3
39
).
作交流,总结经验,
完成.教师巡视指 D.(x- 1 )
3 导,了解学生掌握情
使学生自主探 究,进一步领 会配方思想,
2=错误!不能通过编辑域代码创建对象。
况,对于好的做法, 并熟练进行配
3.下列方程中,一定有实数解的是( ).
2.掌握运用配方法解一元二次方程的步骤.
3.会利用配方法熟练灵活地解二次项系数不是 1 的一元二次方程.
通过对比用配方法解二次项系数是 1 的一元二次方程,解二次项系数不是 1 的
一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
1. 通过对配方法的探究活动,培养学生勇于探索的学习精神.
2. 感受数学的严谨性和数学结论的确定性.

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。

学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。

二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。

但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。

2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 教学重难点1.重点:配方法的原理和步骤。

2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。

六. 教学准备1.准备相关教案和教学资料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。

例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。

教学课例 21.2.1 配方法(2)

教学课例  21.2.1 配方法(2)

教学课例21.2.1 配方法(2)学习目标:1.会用直接开平方法解一元二次方程,理解配方的基本过程,会用配方法解一元二次方程;2.在探究如何对比完全平方公式进行配方的过程中,进一步加深对化归的数学思想的理解.学习重点:理解配方法及用配方法解一元二次方程.学习过程:一:温故而知新找学生说说直接开平方法。

二:创设情境,提出问题问题2:要使矩形花坛的长比宽多6m,并且面积为16m2,花坛的长和宽应各是多少?思考1:你能用方程解这个问题吗?若能,请设出未知数并列出方程(不解答,鼓励用多种方法解)思考2:你能用上一节课所学的直接开平方法解这个方程吗?三:自主探究,学会转化自学指导:1、自学课本第6页的探究;2、怎样解方程x2+6x+4=0 ?看教材框图,理解框图中的每一步;3、讨论:在框图中第二步为什么方程两边加9?加其他数行吗?4、什么叫配方法?配方的目的是什么?5、配方的关键是什么?四:尝试运用,总结步骤师生共同完成课本第7页的例1第1题,学生板演,学生点评,老师点评。

第2题,老师讲解,总结归纳。

五:初步应用,巩固知识课本第9页的练习题。

第1题,学生口答。

第2题,三个学生板演,学生点评,老师点评。

六:小结和作业1、配方法:通过配成完全平方形式来解一元二次方程的方法.2、用配方法解ax2+bx+c=0(a≠0) 的步骤。

3、课本第17页的2,3题。

教学反思本节课引导学生通过转化得到解一元二次方程的配方法及利用配方法解一元二次方程,通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,有一定的困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:1、在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

初中数学21.2.1配方法第2课时电子教案

初中数学21.2.1配方法第2课时电子教案

2、解方程时变形的依据是什么?
练一练 (1)x2 10 x 9 0
(2)3x2 6x 4 0
(3)x2 4x 9 2x 11
(4)x2 2x p 0
用配方法解一元二次方程应注意: ①明确算理,按步骤操作解题; ②不要忘记在等式的两边同时加一次项系数的一半的平方; ③开平方时若结果是二次根式要化简; ④如果最终结果想由“和或差的形式”写成“商的形式”,符号问题要当心.
挑战自我 1.用配方法说明,代数式 x2 2x 7 无论 x 取何值时都是一个正数.再求当 x 取何值
时,代数式的值最小 ,最小值是多少?
变式 1:用配方法求代数式 2x2 4x 9 的最小值. 变式 2:求代数式 - 1 x2 20x 的最大值.
2
五、课堂小结:请你尝试从知识、方法和感受等方面来谈谈自己本节课的收获,与 大家一起分享。
(1)当 p>0 时,方程有两个________的实数根:x1=
, x2=

(2)当 p=0 时,方程 有两个_______的实数根:x1=x2=_____;
(3)当 p<0 时,因为对任意实数 x,都有
,所以方程 ______实数根.
四、提炼与升华:
1、解一元二次方程的基本思路是什么?体现了什么数学思想?
教具准备
多媒体及课件
教学内容及过程
一、复习引入: 练一练: 1. 用直接开平方法解下列方程:
(1) 9x2=1 ;
(2) (x-2)2=2.
想一想:
2.下列方程能用直接开平方法来解吗?
(1) x2+6x+9 =5;
(2)x2+6x+4=0.
二、探究交流
问题 1.你还记得吗?填一填下列完全平方公式.

21.2.1用配方法解一元二次方程(教案)

21.2.1用配方法解一元二次方程(教案)
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过配方法解一元二次方程的过程,使学生理解数学逻辑推理的重要性,提高他们在解决问题时的逻辑思维能力。
2.增强学生的数学建模素养:让学生在实际问题中运用配方法求解一元二次方程,培养他们将现实问题转化为数学模型的能力,从而提高解决实际问题的数学素养。
其次,在新课讲授环节,我发现学生们在理解配方法的原理和步骤上存在一定困难。虽然我通过详细的解释和举例来说明,但仍有部分学生感到困惑。在以后的教学中,我需要更加关注学生的反馈,针对他们的疑难点进行有针对性的讲解和练习。同时,可以增加一些互动环节,让学生在课堂上及时提问,以便于我了解他们的掌握情况。
在实践活动和小组讨论环节,学生们表现得相当积极。他们能够将所学知识应用到实际问题中,并通过小组合作解决问题。这一点让我感到很欣慰。但同时我也注意到,有些小组在讨论过程中出现了偏离主题的现象,导致讨论效果不佳。针对这个问题,我需要在今后的教学中加强对学生讨论方向的引导,确保讨论能够紧紧围绕主题进行。
21.2.1用配方法解一元二次方程(教案)
一、教学内容
本节课选自九年级数学教材《代数与方程》第21章第2节,主题为“21.2.1用配方法解一元二次方程”。教学内容主要包括以下两个方面:
1.掌握配方法解一元二次方程的步骤,并能熟练运用该方法解决实际问题。
2.了解配方法的原理,理解为何配方法可以求解一元二次方程。
a.将一元二次方程的一般形式ax^2 + bx + c = 0转换为完全平方形式。
b.利用完全平方公式解出方程的根。
c.分析解的实际情况,如重根、无解等。
(2)运用配方法解决实际问题:学生需学会将实际问题抽象为一元二次方程,然后运用配方法求解,例如以下例题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开心练一练
1、用直接开平方法解下列方程:
(1)、
(2)、
静心想一想:
2、下列方程能用直接开平方法来解吗?
(1)、
(2)、x2+6x+9=2
自主探究
填上适当的数与式,使下列各等式成立。
(1)、x2+6x+_=(x+3)2
(2)、x2+8x+_=(x+4)2
(3)、x2-4x+_=(x-2)2
观察(1)(2)看所填的常数与一次项系数之间有什么关系?
例1:用配方法解方程
解:移项得,
配方得,

开平方得:
∴原方程的解为:
范例研讨运用新知
例2:你能用配方法解方程吗
2x2+x-6=0
提问:二次项系数不为1时又怎么办?
解:二次项系数化为1得,
移项得,
配方得,

开平方得,
∴原方程的解为:
想一想,用配方法解一元二次方程一般有哪些步骤?
反馈练习巩固新知
用配方法解下列方程:
让学生运用总结出的一般步骤解方程
学生先自主,再合作交流,总结经验,完成.教师巡视指导,了解学生掌握情况,对于好的做法,加以鼓励表扬.并集体进行交流评价,体会方法,形成规律.
板书设计
课后反思
(1)x2+8x-15=0
(2)x2-5x-6=0
(3)2x2-5x-6=0
(4)x2+px+q=0(p2-4q>0)
巩固练习
P34练习1、2
让学生独立完成 ,复习巩固上节课内容.
通过对比方程 结构,尝试解方程 ,探讨二次项系数不是1的一元二次方程的解法,教师组织学生讨论,师生交流看法,肯定其可行性,总结出一般步骤.
教学重点
用配方法解一元二次方程
教学难点
用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型.
教学方法
小组合作探究
教学准备
多媒体课件
教学流程
教师活动
学生活动
再次备课
创设情境,温研讨运用新知
反馈练习巩固新知
创设情境,温故探新
共同点:
左边:所填常数等于一次项系数一半的平方
合作交流探究新知
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?
(1)解:设场地宽为X米,则长为(x+6)米,根据题意得:
X(X+6)= 16
整理得:X2+6X-16 = 0
提问:怎样解这个方程?
移项得,

X1=2,x2=-8
课题
21.2.1配方法(2)
课时
1
授课时间
年月日
教学目标
知识技能:1.进一步理解配方法和配方的目的.
2.掌握运用配方法解一元二次方程的步骤.
过程方法:通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
情感态度:通过对配方法的探究活动,培养学生勇于探索的学习精神.
相关文档
最新文档