【全国百强校】四川省绵阳市东辰国际学校2017届高三上学期第三次月考数学试题

合集下载

四川省绵阳市2017届高三数学3月月考试题 理

四川省绵阳市2017届高三数学3月月考试题 理

四川省绵阳市2017届高三数学3月月考试题 理一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设U R , A {3, 2, 1, 0,1, 2} , B {x | x 1} ,则 A ∩C U BA .{1, 2} B.{1, 0,1, 2} C 。

{3, 2, 1, 0} D 。

{2}2.在复平面中,复数421(1)1i i +++对应的点在( ) A .第一象限 B. 第二象限 C 。

第三象限 D. 第四象限3.在 ABC 中,角 A , B , C 的对边分别为 a , b , c ,则“ sin A sin B "是“ a b ” 的( )条件A 。

充分不必要 B. 必要不充分 C 。

充要 D. 既不充分又不必要 4.若 sin ()13,且2π,则sin429-229-C.229D.4295.执行右图的程序框图,则输出 k 的值为( ) A 。

98 B. 99C. 100 D 。

1016.李冶(1192~1279),真定栾城(今属河北石家庄市)人,金元时期的数学 家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要 研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方 田一块,内部有圆形水池,其中水池的边缘与方田四边之间的面积为 13。

75 亩.若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240 平方步为 1 亩,圆周率按 3 近似计算)( )A.10 步,50 步B. 20 步,60 步C. 30 步,70 步D. 40 步,80 步7.某几何体三视图如右图,则该几何体体积是( ) A. 16 B. 20 C 。

52 D 。

60 8。

若332()a x x dx -=+⎰,则在31()ax x-的展开式中 x 的幂指数不是整数的项共有( )A. 13 项B. 14 项C. 15 项D 。

2017届四川省绵阳市东辰国际学校高三第三次考理科综合试题

2017届四川省绵阳市东辰国际学校高三第三次考理科综合试题

2017届四川省绵阳市东辰国际学校高三第三次考理科综合试题以下数据可供解题时参考:可能用到的相对原子质量:原子量:H—1 O—16 B—11 N—14 Fe—56 Cu—64一.选择题(本题共13小题,每题6分.每小题给出的四个选项中,只有一项是符合题目要求的,共78分)1.如图表示从鸡的血液中制备核糖体的大致过程,对该过程的叙述,不正确的是A.该过程中应用了渗透作用的原理、同位素示踪法、离心法B.步骤①加入14C氨基酸的目的是为了在步骤⑤中检测核糖体C.步骤②的目的是维持细胞正常的形态D.步骤③、④的目的是分离细胞器和其他细胞结构2.精子内的顶体由溶酶体特化而来。

精卵识别后,顶体膜与精子细胞膜融合,释放溶酶体酶使卵子外层形成孔洞,以利于精卵融合形成受精卵。

下列叙述正确的是A顶体内储存的溶酶体酶是在精子的溶酶体中合成的B精子游向卵子所需的能量来自线粒体和细胞质基质C顶体膜和精子细胞膜融合体现生物膜的选择透过性D受精卵中的遗传物质一半来自父方,另一半来自母方3.人体中血浆、组织液和淋巴等构成了细胞赖以生存的内环境,下列叙述错误的是A血浆和组织液都有运输激素的作用B血浆和淋巴都是免疫细胞的生存环境C血红蛋白主要存在于血浆和组织液中D组织液中的蛋白质浓度低于血浆中的蛋白质浓度4.某种物质可插入DNA分子两条链的碱基对之间,使DNA双链不能解开。

若在细胞正常生长的培养液中加入适量的该物质,下列相关叙述错误的是A 随后细胞中的DNA复制发生障碍B 随后细胞中的RNA转录发生障碍C 该物质可将细胞周期阻断在分裂中期D 可推测该物质对癌细胞的增殖有抑制作用5下列有关实验操作或方法所导致结果的描述,不正确的是A用纸层析法分离色素时,若滤液细线画得过粗可能会导致色素带出现重叠B用葡萄制作果醋时,若先通入空气再密封发酵可以增加醋酸含量提高品质C提取胡萝卜素时,若用酒精代替石油醚萃取将会导致胡萝卜素提取率降低D调查人群中色盲发病率时,若只在患者家系中调查将会导致所得结果偏高6切开的苹果不马上食用,果肉很快变成棕褐色,这是因为细胞被破坏后,其中的酚氧化酶与酚类物质接触,使其被氧化成棕褐色的物质。

2017届四川省绵阳市高三第三次诊断性考试数学(理)试题(解析版)

2017届四川省绵阳市高三第三次诊断性考试数学(理)试题(解析版)

2017届四川省绵阳市高三第三次诊断性考试数学(理)试题一、选择题1.已知全集,,,则 ( )A. B. C. D. (0,1)【答案】C【解析】由题意得,集合,,所以,所以,故选C.2.已知是虚数单位,则 ( )A. 1B.C. 2D.【答案】D【解析】由题意得,故选D.3.某路口的红绿灯,红灯时间为30秒,黄灯时间为5秒,绿灯时间为40秒,假设你在任何时间到达该路口是等可能的,则当你到达该路口时,看见不是..黄灯的概率是( )A. B. C. D.【答案】A【解析】由题意得,看见不是黄灯的时间为秒,所以不是黄灯的概率为,故选A.4.等比数列的各项均为正数,且,,则 ( )A. B. C. 20 D. 40【答案】B【解析】设等比数列的公比为,由,则,所以,又因为数列的各项均为正数,所以,又因为,所以,解得,所以,故选B.5.已知正方形的边长为6,在边上且,为的中点,则 ( )A. -6B. 12C. 6D. -12【答案】A【解析】由题意得,建立如图所示的直角坐标系,因为为的中点,则,所以,所以,故选A.6.在如图所示的程序框图中,若函数则输出的结果是( )A. 16B. 8C.D.【答案】A【解析】由题意得,当时,第1次循环得:,,第2次循环:,,第3次循环:,,第4次循环:,,故选A.7.已知函数为奇函数,,是其图像上两点,若的最小值是1,则 ( )A. 2B. -2C.D.【答案】B【解析】由题意得为奇函数,所以,所以,所以,又,是其图像上两点,若的最小值是,所以,解得,所以,所以,即,所以,故选B.8.已知函数,其中.若函数的最大值记为,则的最小值为( )A. B. 1 C. D.【答案】D【解析】由题意得设,即,所以二次函数开口向下,对称轴为,所以函数的最大值为,因为,所以,所以的最小值为.9.已知是双曲线:的右焦点,,分别为的左、右顶点. 为坐标原点,为上一点,轴.过点的直线与线段交于点,与轴交于点,直线与轴交于点,若,则双曲线的离心率为( )A. 3B. 4C. 5D. 6【答案】C【解析】由题意得,因为轴,设,则在中,,所以,又中,,所以,又由,即,解得,所以.10.三棱锥中,,,互相垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球表面积是( )A. B. C. D.【答案】B【解析】如图所示,过点作,连接,则为直线与平面所成最大角,设,则中,,所以,解得,此时可把该三棱锥补成一个长方体,所以长方体的对角线长等于球的直径,即,所以球的表面积为,故选B.点睛:本题主要考查了的直线与平面所成的角的应用和组合体的性质等知识点,解答此类问题的关键在于正确作出几何体的结构图,找到线面角的最大值,确定的长,进而利用组合体得到球的直径,计算球的表面积.11.已知函数,若存在实数满足时,成立,则实数的最大值为( )A. B. C. D.【答案】B【解析】由题意得,定义域为,则,当时,恒成立,不符合要求,当时,由,得,因为存在时,成立,所以,此时在上递增,在单调递减,由于,①当,即是,只需,即,所以;②当,即时,只需,即,所以综上所述,所以实数的最大值为.点睛:本题主要考查了导数在函数中的综合应用问题,解答的关键在于正确的理解题设条件,转化为函数的单调性与极值(最值)的应用,其中根据值之间的关系是解答本题的难点.二、填空题12.《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是 ( )A. 50B. 75C. 25.5D. 37.5【答案】D【解析】由题意得,根据给定的三视图可知,原几何体是在直三棱柱的基础上,截去一个四棱锥,所得的几何体,所以截去后剩余的几何体的体积为,故选D.13.若实数满足则的最小值是__________.【答案】2【解析】由题意得,画出约束条件所表示的平面区域,如图所示,设,则,当直线过原点时,目标函数取得最小值,此时最小值为.14.过定点的直线:与圆:相切于点,则________.【答案】4【解析】由直线,即,直线经过点,又圆,则圆心坐标,半径为所以,所以.15.已知的展开式中各项系数的和为32,则展开式中的系数为__________.(用数字作答)【答案】120【解析】由题意得,令,则,解得,即展开式的通项为,令,则,又二项式的展开式中项为,所以展开式中的系数为.点睛:本题主要二项展开式的通项的应用,本题解答的关键在于把三项式转化为二项式,再利用二项式的展开式的通项,找到的系数,其中合理转化为二项式问题时解答的难点.16.设公差不为0的等差数列的前项和为,若,,成等比数列,且,则的值是__________.【答案】9【解析】由题意得,因为成等比数列,得,即,解得,又,所以,整理得,因为且为整数,所以且,所以点睛:本题主要考查了等差、等比数列的通项公式以及数列的求和问题,其中利用题设条件,利用等差数列的求和公式得出是解答的关键,再根据且为整数进行整体赋值和代换是解答的难点.三、解答题17.在中,,,分别是内角,,的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,且,求的面积.【答案】(1)(2)【解析】试题分析:(Ⅰ)由余弦定理有,即可得到.(Ⅱ)在中,利用两角和与差的三角函数,得到,再由正弦定理,得,即可求得,进而,利用三角形的面积公式求解三角形的面积.试题解析:(Ⅰ)把整理得,,由余弦定理有,∴.(Ⅱ)中,,即,故,由已知可得,∴,整理得.若,则,于是由,可得,此时的面积为.若,则,由正弦定理可知,,代入整理可得,解得,进而,此时的面积.∴综上所述,的面为.18.共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2016年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有是“年轻人”.(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量,求的分布与期望.(参考数据:其中,,)【答案】(1)有85%的把握(2)【解析】试题分析:(Ⅰ)补全的列联表,利用公式求得,即可得到结论;(Ⅱ)由(Ⅰ)的列联表可知,经常使用单车的“非年轻人”的概率,即可利用独立重复试验求解随机变量取每个数值的概率,列出分布列,求解数学期望.于是,,,,∴,即有85%的把握可以认为经常使用共享单车与年龄有关.(Ⅱ)由(Ⅰ)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为,即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1,∵,∴,,∴的分布列为∴的数学期望.19.已知矩形和菱形所在平面互相垂直,如图,其中,,,点是线段的中点.(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值;若不存在,请说明理由;(Ⅱ)求二面角的正弦值.【答案】(1)见解析(2)【解析】试题分析:(Ⅰ)连接,得,进而得到直线平面,利用平行线的性质.(Ⅱ)由(Ⅰ)知,进而得到面,得到,,以为空间原点,,,分别为,,轴建立空间直角坐标系,求得平面的一个法向量,平面的一个法向量,利用向量的夹角公式,即可求解二面角的大小.试题分析:(Ⅰ)作的中点,连接交于点,点即为所求的点.证明:连接,∵是的中点,是的中点,∴,又平面,平面,∴直线平面.∵,,∴,∴.(Ⅱ)由(Ⅰ)知,又面面,面面,面,所以面.故,.以为空间原点,,,分别为,,轴建立空间直角坐标系,∵,,∴为正三角形,,∴,,,,∴,,,,设平面的一个法向量,则由,可得令,则.设平面的一个法向量,则由,可得令,则.则,设二面角的平面角为,则,∴二面角的正弦值为.20.已知点,点是椭圆:上任意一点,线段的垂直平分线交于点,点的轨迹记为曲线.(Ⅰ)求曲线的方程;(Ⅱ)过的直线交曲线于不同的,两点,交轴于点,已知,,求的值.【答案】(1)(2)【解析】试题分析:(Ⅰ)由题意知,,利用椭圆的定义,即可得到椭圆的标准方程.(Ⅱ)由题意知,当直线恰好过原点,可求得.当直线不过原点,设直线:,得到,联立方程组,利用根与系数的关系和韦达定理,得到.试题解析:(Ⅰ)由题意知,,故由椭圆定义知,点的轨迹是以点,为焦点,长轴为6,焦距为4的椭圆,从而长半轴长为,短半轴长为,∴曲线的方程为:.(Ⅱ)由题意知,若直线恰好过原点,则,,,∴,,则,,,则,∴.若直线不过原点,设直线:,,,,.则,,,,由,得,从而;由,得,从而;故.联立方程组得:整理得,∴,,∴.综上所述,.21.函数,.(Ⅰ)若,设,试证明存在唯一零点,并求的最大值;(Ⅱ)若关于的不等式的解集中有且只有两个整数,求实数的取值范围.【答案】(1)(2).【解析】试题分析:(Ⅰ)由题意知,求得,令,,进而判定出函数的单调性,求得函数的最大值.(Ⅱ)由题意等价于,令,求得,令,则,即在上单调递增,求得,,的值,进而得到实数的取值范围.试题解析:(Ⅰ)证明:由题意知,于是令,,∴在上单调递减.又,,所以存在,使得,综上存在唯一零点.解:当,,于是,在单调递增;当,,于是,在单调递减;故,又,,,故.(Ⅱ)解:等价于.,令,则,令,则,即在上单调递增.又,,∴存在,使得.∴当,在单调递增;当,在单调递减.∵,,,且当时,,又,,,故要使不等式解集中有且只有两个整数,的取值范围应为.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程是(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)分别写出的极坐标方程和的直角坐标方程;(Ⅱ)若射线的极坐标方程,且分别交曲线、于、两点,求.【答案】(1)(2)1【解析】试题分析:(Ⅰ)将参数方程化为普通方程为,进而得到的极坐标方程,再得极坐标方程化为直角坐标方程为.(Ⅱ)将代入解得,即,进而得到,即可求得的值.试题解析:(Ⅰ)将参数方程化为普通方程为,即,∴的极坐标方程为.将极坐标方程化为直角坐标方程为.(Ⅱ)将代入:整理得,解得,即.∵曲线是圆心在原点,半径为1的圆,∴射线与相交,即,即.故.23.选修4-5:不等式选讲已知函数,.(Ⅰ)时,解不等式;(Ⅱ)若对任意都有,使得成立,求实数的取值范围.【答案】(1)(2),或.【解析】试题分析:(Ⅰ)去掉绝对值号,分类讨论,解求解不等式的解集;(Ⅱ)由绝对值不等式得,,得,即可求解实数的取值范围.试题解析:(Ⅰ)当时,,由解得,综合得,当时,,显然不成立,当时,,由解得,综合得,所以的解集是.(Ⅱ),,∴根据题意,解得,或.。

四川省绵阳市东辰国际学校2017届高三第三次周考理科综合试题 Word版含答案

四川省绵阳市东辰国际学校2017届高三第三次周考理科综合试题 Word版含答案

绵阳东辰国际学校高三第三次周考理综试卷以下数据可供解题时参考:可能用到的相对原子质量:原子量:H—1 O—16 B—11 N—14 Fe—56 Cu—64 一.选择题(本题共13小题,每题6分.每小题给出的四个选项中,只有一项是符合题目要求的,共78分)1.如图表示从鸡的血液中制备核糖体的大致过程,对该过程的叙述,不正确的是A.该过程中应用了渗透作用的原理、同位素示踪法、离心法B.步骤①加入14C氨基酸的目的是为了在步骤⑤中检测核糖体C.步骤②的目的是维持细胞正常的形态D.步骤③、④的目的是分离细胞器和其他细胞结构2.精子内的顶体由溶酶体特化而来。

精卵识别后,顶体膜与精子细胞膜融合,释放溶酶体酶使卵子外层形成孔洞,以利于精卵融合形成受精卵。

下列叙述正确的是A顶体内储存的溶酶体酶是在精子的溶酶体中合成的B精子游向卵子所需的能量来自线粒体和细胞质基质C顶体膜和精子细胞膜融合体现生物膜的选择透过性D受精卵中的遗传物质一半来自父方,另一半来自母方3.人体中血浆、组织液和淋巴等构成了细胞赖以生存的内环境,下列叙述错误的是A血浆和组织液都有运输激素的作用B血浆和淋巴都是免疫细胞的生存环境C血红蛋白主要存在于血浆和组织液中D组织液中的蛋白质浓度低于血浆中的蛋白质浓度4.某种物质可插入DNA分子两条链的碱基对之间,使DNA双链不能解开。

若在细胞正常生长的培养液中加入适量的该物质,下列相关叙述错误的是A 随后细胞中的DNA复制发生障碍B 随后细胞中的RNA转录发生障碍C 该物质可将细胞周期阻断在分裂中期D 可推测该物质对癌细胞的增殖有抑制作用5下列有关实验操作或方法所导致结果的描述,不正确的是A用纸层析法分离色素时,若滤液细线画得过粗可能会导致色素带出现重叠B用葡萄制作果醋时,若先通入空气再密封发酵可以增加醋酸含量提高品质C提取胡萝卜素时,若用酒精代替石油醚萃取将会导致胡萝卜素提取率降低D调查人群中色盲发病率时,若只在患者家系中调查将会导致所得结果偏高6切开的苹果不马上食用,果肉很快变成棕褐色,这是因为细胞被破坏后,其中的酚氧化酶与酚类物质接触,使其被氧化成棕褐色的物质。

四川省绵阳市东辰国际学校2017届高三上学期第三次月考数学试题 含答案

四川省绵阳市东辰国际学校2017届高三上学期第三次月考数学试题 含答案

绵阳东辰学校高三第三次考试《数学试题》本试卷分第I 卷和第Ⅱ卷两部分,共5页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、考生号、科类填写在答题卡规定位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.第Ⅱ卷必须用0。

5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(非选择题,共90分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )A 。

{1} B.{12}, C 。

{0123},,, D 。

{10123}-,,,,2为虚数单位)的虚部为( )A.-2B.iC.-2i D 。

13.已知向量a =(1,2),b =(3,1),则b -a = ( )A 。

(-2,1)B 。

(2,-1)C 。

(2,0)D 。

(4,3)4.已知132a -=,21211log,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>5.下列有关命题的叙述,错误的个数为 ( )① 若p ∨q 为真命题,则p ∧q 为真命题。

② “5x >”是“2450x x -->”的充分不必要条件。

③ 命题P :∃x∈R,使得x 2+x -1〈0,则⌝p :∀x∈R,使得x 2+x -1≥0。

④ 命题“若,0232=+-x x则1=x ”的否命题为假命题A .1B .2C .3D .46.已知直线1+=x y 与曲线y ln()x a =+相切,则a的值为( )A 。

四川省高三数学三诊试卷理(含解析)

四川省高三数学三诊试卷理(含解析)
14.二项式(x+y)5的展开式中,含x2y3的项的系数是a,若m,n满足 ,则u=m﹣2n的取值范围是.
15.成都七中112岁生日当天在操场开展学生社团活动选课超市,5名远端学生从全部六十多个社团中根据爱好初选了3个不同社团准备参加.若要求这5个远端学生每人选一个社团,而且这3 个社团每个社团都有远端学生参加,则不同的选择方案有种.(用数字作答)
8.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若 • <0,则x0的取值范围是( )
A.(﹣ , )B.(﹣ , )C.(﹣ , )D.(﹣ , )
9.等差数列{an}中的a2、a4032是函数 的两个极值点,则log2(a2•a2017•a4032)=( )
A. B.4C. D.
18.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
故选:C.
5.某几何B.36+16πC.40+12πD.40+16π
【考点】L!:由三视图求面积、体积.
【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.
【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,
作出几何体的直观图如图所示:
【分析】可先画出图形,根据条件及向量加法、减法和数乘的几何意义即可得出
【解答】解:∵D为△ABC中BC边上的中点,
∴ = ( + ),

高2017届绵阳三诊 理数试题(含答案)

高2017届绵阳三诊 理数试题(含答案)

参考答案一、选择题:本大题共12小题,每小题5分,共60分.CDABA ABDDC BB二、填空题:本大题共4小题,每小题5分,共20分.13.214.415.120 16.9三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)把(a +c )2=b 2+3ac 整理得,a 2+c 2-b 2=ac ,由余弦定理有cos B =2122222==-+ac ac ac b c a ,∴ B =3π. ………………………………………………………………………4分 (Ⅱ)△ABC 中,A +B +C =π,即B =π-(A +C ),故sin B =sin(A +C ), 由已知sin B +sin(C -A )=2sin2A 可得sin(A +C )+sin(C -A )=2sin2A , ∴ sin A cos C +cos A sin C +sin C cos A -cos C sin A =4sin A cos A ,整理得cos A sin C =2sin A cos A . ………………………………………………7分 若cos A =0,则A =2π, 于是由b =2,可得c =332tan 2=B , 此时△ABC 的面积为S =bc 21=332. ………………………………………9分 若cos A ≠0,则sin C =2sin A , 由正弦定理可知,c =2a ,代入a 2+c 2-b 2=ac 整理可得3a 2=4,解得a =332,进而c =334, 此时△ABC 的面积为S =B ac sin 21=332. ∴ 综上所述,△ABC 的面积为332. ……………………………………12分 18.解:(Ⅰ)补全的列联表如下:∴ 083.24016080120)206020100(20022≈⨯⨯⨯⨯-⨯⨯=K >2.072,即有85%的把握可以认为经常使用共享单车与年龄有关. ………………6分 (Ⅱ) 由(Ⅰ)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为=⨯%1002002010%,即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1, ∵ X ~B (3,0.1),X =0,1,2,3, ∴729.0)1.01()0(3=-==X P ,243.0)1.01(1.0)1(213=-⨯⨯==C X P ,027.0)1.01(1.0)2(223=-⨯⨯==C X P ,001.01.0)3(3===X P ,∴ X 的分布列为∴ X 的数学期望(E 12分 19.解:(Ⅰ) 作FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点.………………………………………………………2分证明:连接PN ,∵ N 是AD 的中点,P 是FE 的中点, ∴ PN //AF ,又PN ⊂平面MNC ,AF ⊄平面MNC , ∴ 直线AF //平面MNC .………………5分 ∵ PE //AD ,AD //BC , ∴ PE //BC , ∴2BM BCME PE==.………………………………………………………………6分 (Ⅱ)由(Ⅰ)知PN ⊥AD ,又面ADEF ⊥面ABCD ,面ADEF ∩面ABCD =AD ,PN ⊂面ADEF ,所以PN ⊥面ABCD . …………………………………………………………8分 故PN ⊥ND ,PN ⊥NC .………………………………………………………9分 以N 为空间坐标原点,ND ,NC ,NP 分别为x ,y ,z 轴建立空间直角坐标系N -xyz ,∵ ∠ADC=3π,AD =DC =2, ∴ △ADC 为正三角形,NC =3,∴ N (0,0,0),C (3,0,0),D (0,1,0),E (0,1,1),∴ =(0,1,1),=(3,0,0) ,DE =(0,0,1),=(3,-1,0) , 设平面NEC 的一个法向量n 1=(x ,y ,z ),则由n 1•NE =0,n 1•NC =0可得⎪⎩⎪⎨⎧==+,,030x z y 令y =1,则n 1=(0,1,-1) . 设平面CDE 的一个法向量n 2=(x 1,y 1,z 1),则由n 2•DE =0,n 2•=0可得⎪⎩⎪⎨⎧=-=,,030111y x z 令x 1=1,则n 2=(1,3,0) . 则cos< n 1,n 2>=2121n n n n ⋅=46223=,设二面角N -CE -D 的平面角为θ,则sin θ=2)46(1-=410,∴ 二面角N -CE -D 的正弦值为410.………………………………………12分 20.解:(Ⅰ)由题意知,|ME |+|MF |=|MP |+|MF |=r =6>|EF |=4,故由椭圆定义知,点M 的轨迹是以点E ,F 为焦点,长轴为6,焦距为4的椭圆,从而长半轴长为a =3,短半轴长为b =52322=-,∴ 曲线C 的方程为:15922=+y x . …………………………………………4分(Ⅱ)由题知F (2,0),若直线AB 恰好过原点,则A (-3,0),B (3,0),N (0,0), ∴ =(-3,0),=(5,0),则m =53-, =(3,0),BF =(-1,0),则n =-3,∴ m +n =518-. ………………………………………………………………2分 若直线AB 不过原点,设直线AB :x =ty +2,t ≠0, A (ty 1+2,y 1),B (ty 2+2,y 2),N (0,-t2). 则NA =(ty 1+2,y 1+t2),=(-ty 1,-y 1),=(ty 2+2,y 2+t2),=(-ty 2,-y 2), 由NA mAF =,得y 1+t 2=m (-y 1),从而m =121ty --;由NB nBF =,得y 2+t2=n (-y 2),从而n =221ty --;故m +n =121ty --+(221ty --)=21212122)11(22y y y y t y y t +⨯--=+--. ……8分联立方程组得:⎪⎩⎪⎨⎧=++=,,159222y x ty x 整理得(5t 2+9)y 2+20ty -25=0,∴ y 1+y 2=95202+-t t ,y 1y 2=95252+-t , ∴ m +n =212122y y y y t +⨯--=252022t t ⨯--=-2-58=518-. 综上所述,m +n =518-.………………………………………………………12分 21.(Ⅰ)证明:由题知x x x x x f e e 4ln )(--+=,于是xx x x x x x x x f x xx )e e 1)(1(e )1(e 1e )1(e 11)(-+=+-+=+-+=', 令x x x e e 1)(-=μ,则0e )1(e )(<+-='x x x μ(x >0), ∴ )(x μ在(0,+∞)上单调递减. 又)0(μ=1>0,)e1(μ=1e 1e -<0, 所以存在x 0∈(0,e1),使得)(0x μ=0, 综上f (x )存在唯一零点x 0∈(0,e1). ………………………………………3分 解:当x ∈(0,x 0),0)(>x μ,于是0)(>'x f ,)(x f 在(0,x 0)单调递增; 当x ∈(x 0,+∞),0)(<x μ,于是0)(<'x f ,)(x f 在(x 0,+∞)单调递减. 故00000max 4ln )()(x e ex x x x f x f --+==,又000()1e e 0x x x =-=μ,001e e x x =,0x =1ln e x =0ln 1x --, 故max )(x f 4)ln 1(ln 00---+=x x -01e e x x ⋅=-5-1=-6.……………………6分(Ⅱ) 解:()p x >()q x 等价于ln 4e xx x ax +->.ln 4ln 4ln 4e e e x xxx x x x x x ax a x x +-+-+->⇔<=,…………………………7分令ln 4()e x x x h x x +-=,则2(1)(ln 5)()e xx x x h x x ++-'=-,令5ln )(-+=x x x ϕ,则011)(>+='xx ϕ,即)(x ϕ在(0,+∞)上单调递增. 又023ln )3(<-=ϕ,04ln )4(>=ϕ,∴ 存在t ∈(3,4),使得0)(=t ϕ.……………………………………………9分∴ 当x ∈(0,t ),0)(<x ϕ0()()h x h x '⇒>⇒在(0,t )单调递增; 当x ∈(t ,+∞), 0)(>x ϕ0()()h x h x '⇒<⇒在(t ,+∞)单调递减. ∵ 3(1)0e h =-<,2ln 22(2)02e h -=<,3ln31(3)03e h -=>, 且当x >3时,0)(>x h , 又3(1)e h =,22ln 2(2)2e h -=>3ln31(3)3e h -=,42ln 2(4)4e h =,故要使不等式()p x >()q x 解集中有且只有两个整数,a 的取值范围应为3ln313e -≤22ln 22e a -<.…………………………………………………………12分 22.解:(Ⅰ) 将C 1的参数方程化为普通方程为(x -1)2+y 2=3,即x 2+y 2-2x -2=0∴ C 1的极坐标方程为22cos 20ρρθ--=. …………………………………2分将C 2的极坐标方程化为直角坐标方程为221x y +=. ……………………5分(Ⅱ)将3πθ=代入C 1:22cos 20ρρθ--=整理得220ρρ--=,解得:12ρ=,即|OA |=12ρ=.∵ 曲线C 2是圆心在原点,半径为1的圆, ∴ 射线θ=3π(ρ≥0)与C 2相交,则21ρ=,即|OB |=21ρ=. 故12AB ρρ=-=2-1=1. ……………………………………………………10分23.解:(Ⅰ)当x ≤13时,f (x )=7-6x ,由f (x )≥8解得x ≤16-,综合得x ≤16-,当13<x <2时,f (x )=5,显然f (x )≥8不成立, 当x ≥2时,f (x )=6x -7,由f (x )≥8解得x ≥52,综合得x ≥52,所以f (x )≥8的解集是15(][)62,,-∞-+∞. ………………………………5分 (Ⅱ)()336f x x a x =-+-≥(3)(36)6x a x a ---=-,()21g x x =-+≥1,∴ 根据题意|6-a |≥1,解得a ≥7,或a ≤5. ……………………………………………………10分。

四川省绵阳市东辰国际学校2017-2018学年高考数学模拟试卷(理科)(12) Word版含解析

四川省绵阳市东辰国际学校2017-2018学年高考数学模拟试卷(理科)(12) Word版含解析

2017-2018学年四川省绵阳市东辰国际学校高考数学模拟试卷(理科)(12)一、选择题:共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=的定义域为()A.(2,+∞)B.(1,2)C.(0,2)D.[1,2]2.已知复数(i为虚数单位),z的共轭复数为,则=()A.2i B.﹣2i C.﹣2 D.23.设a=(),b=(),c=log2,则a,b,c的大小顺序是()A.b<a<c B.c<b<a C.c<a<b D.b<c<a4.某四棱锥的三视图如图所示,则该四棱锥的体积是()A.36 B.30 C.27 D.125.实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,]C.[﹣1,1)D.[﹣,1)6.执行如图所示的程序框图,则输出的k值为()A .5B .6C .7D .87.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,可求得该女子第4天所织布的尺数为”( )A .B .C .D .8.“五•一”期间某志愿者服务队准备从甲、乙等7名志愿者中选派4人参加A 、B 、C 、D 四个旅游景点的志愿服务,每个旅游景点安排1名志愿者,若要求甲、乙两志愿者至少有1人参加,那么这4名志愿者去四个旅游景点的安排方法共有( )种. A .30 B .600 C .720 D .8409.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( ) A .(﹣2,+∞) B .(0,+∞) C .(1,+∞) D .(4,+∞)10.点A 、B 、C 是抛物线y 2=4x 上不同的三点,若点F (1,0)满足++=,则△ABF 面积的最大值为( )A .B .C .D .2二、填空题(本大题共5小题,每小题5分,共25分,请把正确的答案填写在答题卡相应的横线上. 11.已知向量=(,1),=(0,﹣1),=(t ,),若﹣2与共线,则t= . 12.(x 2﹣2x ﹣2)4的展开式中,x 3的系数为 .(用数字填写答案).13.在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=2AD ,若将△ABD 沿直线BD 折成△A ′BD ,使得A ′D ⊥BC ,则直线A ′B 与平面BCD 所成角的正弦值是 .14.经过双曲线﹣=1(a >b >0)的右焦点为F 作该双曲线一条渐近线的垂线与两条渐近线相较于M ,N 两点,若O 为坐标原点,△OMN 的面积是a 2,则该双曲线的离心率是 .15.在四边形ABCD 中,AB=7,AC=6,,CD=6sin ∠DAC ,则BD 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.16.已知函数.(1)求函数f(x)的最小正周期和单调减区间;(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足,且,求△ABC的面积.17.某人租用一块土地种植一种瓜类作物,租期5年,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg.当年产量低于450kg时,单位售价为12元/kg,当年产量不低于450kg时,单位售价为10元/kg.(Ⅰ)求图中a的值;(Ⅱ)以各区间中点值作为该区间的年产量,并以年产量落入该区间的频率作为年产量取该区间中点值的概率,求年销售额X(单位:元)的分布列;(Ⅲ)求在租期5年中,至少有2年的年销售额不低于5000元的概率.18.已知数列{a n}的前n项和为S n,向量=(S n,1),=(2n﹣1,),满足条件∥,(1)求数列{a n}的通项公式,(2)设函数f(x)=()x,数列{b n}满足条件b1=1,f(b n+1)=.①求数列{b n}的通项公式,②设c n=,求数列{c n}的前n项和T n.19.如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.20.已知椭圆+=1(a>b>0)的左右焦点F1,F2其离心率为e=,点P为椭圆上的一个动点,△PF1F2内切圆面积的最大值为.(1)求a,b的值(2)若A、B、C、D是椭圆上不重合的四个点,且满足∥,∥,•=0,求||+||的取值范围.21.已知a∈R,函数f(x)=e x+ax2,g(x)是f(x)的导函数,(Ⅰ)当a>0时,求证:存在唯一的x0∈(﹣,0),使得g(x0)=0;(Ⅱ)若存在实数a,b,使得f(x)≥b恒成立,求a﹣b的最小值.2017-2018学年四川省绵阳市东辰国际学校高考数学模拟试卷(理科)(12)参考答案与试题解析一、选择题:共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=的定义域为()A.(2,+∞)B.(1,2)C.(0,2)D.[1,2]【考点】函数的定义域及其求法.【分析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解.【解答】解:要使原函数有意义,则,解得:1<x<2.∴函数f(x)=的定义域为(1,2).故选:B.2.已知复数(i为虚数单位),z的共轭复数为,则=()A.2i B.﹣2i C.﹣2 D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:复数==i﹣1,z的共轭复数为=﹣1﹣i,则=﹣1+i﹣1﹣i=﹣2.故选:C.3.设a=(),b=(),c=log2,则a,b,c的大小顺序是()A.b<a<c B.c<b<a C.c<a<b D.b<c<a【考点】对数值大小的比较.【分析】利用指数函数的单调性即可得出.【解答】解:∵a=()=>b=()>1,c=log2<0,∴a>b>c.故选:B.4.某四棱锥的三视图如图所示,则该四棱锥的体积是()A.36 B.30 C.27 D.12【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个四棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个四棱锥,且底面向左,底面是一个边长为3正方形,且四棱锥的高为4,∴几何体的体积V==12,故选:D.5.实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,]C.[﹣1,1)D.[﹣,1)【考点】简单线性规划.【分析】根据已知的约束条件,画出满足约束条件的可行域,分析表示的几何意义,结合图象即可给出的取值范围.【解答】解:约束条件对应的平面区域如下图示:表示可行域内的点(x,y)与点(﹣1,1)连线的斜率,由图可知的取值范围是,故选D.6.执行如图所示的程序框图,则输出的k值为()A.5 B.6 C.7 D.8【考点】程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,输出结果.【解答】解:模拟执行程序,可得:k=1,s=1,第1次执行循环体,s=1,不满足条件s>31,第2次执行循环体,k=2,s=2,不满足条件s>31,第3次执行循环体,k=3,s=6,不满足条件s>31,第4次执行循环体,k=4;s=15,不满足条件s>31,第5次执行循环体,k=5;s=31,不满足条件s>31,第6次执行循环体,k=6;s=56,满足条件s>31,退出循环,此时k=6.故选:B.7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,可求得该女子第4天所织布的尺数为”()A.B.C.D.【考点】等比数列的通项公式. 【分析】由题意可得每天的织布数量构成公比为2的等比数列,由等比数列的求和公式可得首项,进而由通项公式可得.【解答】解:设该女第n 天织布为a n 尺,且数列为公比q=2的等比数列,则由题意可得=5,解得a 1=,故该女子第4天所织布的尺数为a 4=a 1q 3=,故选:D .8.“五•一”期间某志愿者服务队准备从甲、乙等7名志愿者中选派4人参加A 、B 、C 、D 四个旅游景点的志愿服务,每个旅游景点安排1名志愿者,若要求甲、乙两志愿者至少有1人参加,那么这4名志愿者去四个旅游景点的安排方法共有( )种. A .30 B .600 C .720 D .840 【考点】计数原理的应用.【分析】通过分类讨论,第一种是,当甲、乙两志愿者中只有1人参加,有=480种;第二种是,当甲、乙两志愿者都参加有=240种,再根据加法原理,可得总共的方法有720种,即可选出答案.【解答】解:①当甲、乙两志愿者中只有1人参加,有=480种;②当甲、乙两志愿者都参加有=240种,∴共有480+240=720种, 故选:C .9.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( ) A .(﹣2,+∞) B .(0,+∞) C .(1,+∞) D .(4,+∞) 【考点】利用导数研究函数的单调性;奇偶性与单调性的综合. 【分析】构造函数g (x )=(x ∈R ),研究g (x )的单调性,结合原函数的性质和函数值,即可求解【解答】解:∵y=f (x +2)为偶函数,∴y=f (x +2)的图象关于x=0对称 ∴y=f (x )的图象关于x=2对称 ∴f (4)=f (0)又∵f (4)=1,∴f (0)=1设g (x )=(x ∈R ),则g ′(x )==又∵f ′(x )<f (x ),∴f ′(x )﹣f (x )<0∴g ′(x )<0,∴y=g (x )在定义域上单调递减∵f(x)<e x∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选B.10.点A、B、C是抛物线y2=4x上不同的三点,若点F(1,0)满足++=,则△ABF面积的最大值为()A.B.C.D.2【考点】抛物线的简单性质.【分析】设出A,B,C点的坐标,再设出直线AB与x轴交于点D(m,0),进一步求出m,根据几何位置关系表示出三角形的面积,再根据导数知识求出最值,则答案可求.【解答】解:抛物线焦点坐标F(1,0),准线方程:x=﹣1设A(x1,y1),B(x2,y2),C(x3,y3),直线AB与x轴交于点D(m,0),∵,∴m=﹣∵点F(1,0)满足++=,∴点F是△ABC重心,∴x1+x2+x3=3,y1+y2+y3=0,∴y12+y22=12﹣y32,y1+y2=﹣y3,∴2y1y2=(y1+y2)2﹣(y12+y22)=2y32﹣12∴S△ABF2=(1+)2(y1﹣y2)2=(﹣+y32)2(24﹣3y32)令y32=t≥0,y=(﹣2+t)2(8﹣t)令y′=0,则t1=2,t2=6.当t∈(0,2)时函数单调递减,当t∈(2,6)时函数单调递增,t∈(6,+∞)时函数单调递减且当t=0时y=,当t=6时y=,∴y max=.∴△ABF面积的最大值为.故选:A.二、填空题(本大题共5小题,每小题5分,共25分,请把正确的答案填写在答题卡相应的横线上.11.已知向量=(,1),=(0,﹣1),=(t,),若﹣2与共线,则t=1.【考点】平面向量共线(平行)的坐标表示.【分析】由向量减法的坐标运算及数乘运算求得若﹣2的坐标,再由向量共线的坐标表示列式求得t的值.【解答】解:∵=(,1),=(0,﹣1),∴﹣2=,又=(t,),且﹣2与共线,则,解得:t=1.故答案为:1.12.(x2﹣2x﹣2)4的展开式中,x3的系数为﹣32.(用数字填写答案).【考点】二项式系数的性质.【分析】根据(x2﹣2x﹣2)4=[x2+(﹣2x﹣2)]4,利用展开式的通项公式T r+1,求出r=3和r=4时含x3的系数,从而求出结果.【解答】解:(x2﹣2x﹣2)4=[x2+(﹣2x﹣2)]4,其展开式的通项公式为T r+1=•x2(4﹣r)•(﹣2x﹣2)r,r=0、1、2、3、4;当r=3时,T4=•x2•(﹣2x﹣2)3,其中含x3的系数为••(﹣2)•(﹣2)2=﹣96;当r=4时,T5=•(﹣2x﹣2)4,其中含x3的系数为••(﹣2)3•(﹣2)=64;所以(x2﹣2x﹣2)4的展开式中,x3的系数为﹣96+64=﹣32.故答案为:﹣32.13.在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是.【考点】直线与平面所成的角.【分析】过D作DE⊥BC于E,连结A′E,过A′作A′O⊥DE,连结A′O.则可证明A′O⊥平面BCD,于是∠A′BO为直线A′B与平面BCD所成的角.设AD=1,在直角梯形中根据平面几何知识解出DO,从而得出A′O,得出线面角的正弦值.【解答】解:过D作DE⊥BC于E,连结A′E,过A′作A′O⊥DE,连结A′O.∵BC⊥A′D,BC⊥DE,A′D∩A′O=A′,∴BC⊥平面A′DE,∵A′O⊂平面A′DE,∴BC⊥A′O,又A′O⊥DE,BC∩DE=E,∴A′O⊥平面BCD.∴∠A′BO为直线A′B与平面BCD所成的角.在直角梯形ABCD中,过A作AO⊥BD,交BD于M,交DE于O,设AD=1,则AB=2,∴BD=,∴AM==,∴DM==.由△AMD∽△DMO得,即,∴DO=.∴A′O==.∴sin∠A′BO==.故答案为.14.经过双曲线﹣=1(a>b>0)的右焦点为F作该双曲线一条渐近线的垂线与两条渐近线相较于M,N两点,若O为坐标原点,△OMN的面积是a2,则该双曲线的离心率是.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,设两条渐近线的夹角为θ,由两直线的夹角公式,可得tanθ=tan∠MON,求出F到渐近线y=x的距离为b,即有|ON|=a,△OMN的面积可以表示为•a•atanθ,结合条件可得a,b的关系,再由离心率公式即可计算得到.【解答】解:双曲线=1(a>b>0)的渐近线方程为y=±x,设两条渐近线的夹角为θ,则tanθ=tan∠MON==,设FN⊥ON,则F到渐近线y=x的距离为d==b,即有|ON|==a,则△OMN的面积可以表示为•a•atanθ==,解得a=2b,则e====.故答案为:.15.在四边形ABCD中,AB=7,AC=6,,CD=6sin∠DAC,则BD的最大值为8.【考点】正弦定理.【分析】由CD=6sin∠DAC,可得CD⊥AD.点D在以AC为直径的圆上(去掉A,B,C).可得:当BD经过AC的中点O时取最大值,利用余弦定理可得:OB,可得BD的最大值=OB+AC.【解答】解:由CD=6sin∠DAC,可得CD⊥AD.∴点D在以AC为直径的圆上(去掉A,B,C).∴当BD经过AC的中点O时取最大值,OB2=32+72﹣2×3×7cos∠BAC=25,解得OB=5,∴BD的最大值=5+AC=8.故答案为:8.三、解答题:解答应写出文字说明,证明过程或演算步骤.16.已知函数.(1)求函数f(x)的最小正周期和单调减区间;(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足,且,求△ABC的面积.【考点】余弦定理的应用;三角函数中的恒等变换应用.【分析】(1)运用二倍角的正弦公式和余弦公式,以及两角和的正弦公式,由正弦函数的周期公式及单调递减区间,解不等式可得;(2)由条件,可得角A,再运用正弦定理可得b+c=13,由余弦定理,可得bc=40,由三角形的面积公式计算即可得到所求.【解答】解:(1)=,因此f(x)的最小正周期为.由,可得kπ+≤x≤kπ+,k∈Z,即f(x)的单调递减区间为(k∈Z);(2)由,又A为锐角,则.由正弦定理可得,,则,由余弦定理可知,,可求得bc=40,故.17.某人租用一块土地种植一种瓜类作物,租期5年,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg.当年产量低于450kg时,单位售价为12元/kg,当年产量不低于450kg时,单位售价为10元/kg.(Ⅰ)求图中a的值;(Ⅱ)以各区间中点值作为该区间的年产量,并以年产量落入该区间的频率作为年产量取该区间中点值的概率,求年销售额X(单位:元)的分布列;(Ⅲ)求在租期5年中,至少有2年的年销售额不低于5000元的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由频率分布直方图的性质得100(a+0.0015+b+0.004)=1,300×100a+400×0.4+500×100b+600×0.15=455,由此能求出a.(Ⅱ)依题意知X的可能取值为3600、4800、5000、6000,分别求出相应的概率,由此能求出X的分布列.(Ⅲ)由已知得5年中年销售额不低于5000元的年数ξ~B(5,),由此能求出5年中至少有2年的年销售额不低于5000元的概率.【解答】解:(Ⅰ)由频率分布直方图的性质得100(a+0.0015+b+0.004)=1,得100(a+b)=0.45,由300×100a+400×0.4+500×100b+600×0.15=455,得300a+500b=2.05,解得a=0.0010.(Ⅱ)依题意知X的可能取值为3600、4800、5000、6000,∵P(X=3600)=0.1,P(X=4800)=0.4,P(X=5000)=0.35,P(X=3600)=0.15,∴X的分布列为:0.35+0.15=0.5,5年中年销售额不低于5000元的年数ξ~B(5,),∴5年中至少有2年的年销售额不低于5000元的概率为:.18.已知数列{a n}的前n项和为S n,向量=(S n,1),=(2n﹣1,),满足条件∥,(1)求数列{a n}的通项公式,(2)设函数f(x)=()x,数列{b n}满足条件b1=1,f(b n+1)=.①求数列{b n}的通项公式,②设c n=,求数列{c n}的前n项和T n.【考点】数列的求和;数列递推式;平面向量共线(平行)的坐标表示.,【分析】(1)运用向量共线的坐标表示,可得S n=2n+1﹣2,再由当n>1时,a n=S n﹣S n﹣1n=1时,a1=S1,即可得到所求通项公式;(2)①运用指数的运算性质和等差数列的定义,即可得到所求通项公式;②求得C n==,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.【解答】解:(1)由向量=(S n,1),=(2n﹣1,),∥,可得S n=2n﹣1,即S n=2n+1﹣2,=(2n+1﹣2)﹣(2n﹣2)=2n,当n>1时,a n=S n﹣S n﹣1当n=1时,a1=S1=2,满足上式.则有数列{a n}的通项公式为a n=2n,n∈N*;(2)①f(x)=()x,b1=1,f(b n+1)=.可得()==(),即有b n+1=b n+1,可得{b n}为首项和公差均为1的等差数列,即有b n=n;②C n==,前n项和T n=1•+2•()2+…+(n﹣1)•()n﹣1+n•()n,T n=1•()2+2•()3+…+(n﹣1)•()n+n•()n+1,相减可得,T n=+()2+…+()n﹣1+()n﹣n•()n+1=﹣n•()n+1,化简可得,前n项和T n=2﹣.19.如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(I)取AB中点O,连结PO、CO,由PA=PB可得PO⊥AB,利用特殊三角形的性质计算PO,OC,PC,可证PO⊥OC,于是PO⊥平面ABCD,故平面PAB⊥平面ABCD;(II)由面面垂直的性质可知∠CHO为CH与平面PAB所成的角,故当OH最小值,tan∠CHO=取得最大值.【解答】(Ⅰ)证明:取AB中点O,连结PO、CO,∵PA=PB=,AB=2,∴△PAB为等腰直角三角形,∴PO=1,PO⊥AB,∵AB=BC=2,∠ABC=60°,∴△ABC为等边三角形,∴,又PC=2,∴PO2+CO2=PC2,∴PO⊥CO,又AB∩CO=O,AB⊂平面ABCD,CO⊂平面ABCD,∴PO⊥平面ABC,又PO⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)解:∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,OC⊥AB,OC⊂平面ABCD,∴OC⊥平面PAB,∴∠CHO为CH与平面PAB所成的角.∵tan∠CHO=,∴当OH⊥PB时,OH取得最小值,此时tan∠CHO取得最大值.当OH⊥PB时,OH==.∴tan∠CHO==.20.已知椭圆+=1(a>b>0)的左右焦点F1,F2其离心率为e=,点P为椭圆上的一个动点,△PF1F2内切圆面积的最大值为.(1)求a,b的值(2)若A、B、C、D是椭圆上不重合的四个点,且满足∥,∥,•=0,求||+||的取值范围.【考点】直线与圆锥曲线的关系;直线与圆锥曲线的综合问题.【分析】(1)当P为椭圆上下顶点时,△PF1F2内切圆面积取得最大值,设△PF1F2内切圆半径为r,利用==bc=r,化为,又,a2=b2+c2,联立解得a,c,b即可得出.(2)由满足∥,∥,•=0,可得直线AC,BD垂直相交于点F1,由(1)椭圆方程,F1(﹣2,0).①直线AC,BD有一条斜率不存在时,||+||=14.②当AC斜率存在且不为0时,设方程y=k(x+2),A(x1,y1),C(x2,y2),与椭圆方程联立化为(3+4k2)x2+16k2x+16k2﹣48=0.利用根与系数的关系可得:==,把﹣代入上述可得:可得=,可得||+||=,设t=k2+1(k≠0),t>1.即可得出.【解答】解:(1)设△PF1F2内切圆半径为r,由△PF1F2的面积为S=r(PF1+PF2+F1F2)=r(2a+2c),S最大,则r最大,当P为椭圆上下顶点时,△PF1F2的面积最大,其内切圆面积取得最大值,∵,∴.==bc=r=,化为,又,a2=b2+c2,联立解得a=4,c=2,b=2.(2)∵满足∥,∥,•=0,∴直线AC,BD垂直相交于点F1,由(1)椭圆方程,F1(﹣2,0).①直线AC,BD有一条斜率不存在时,||+||=6+8=14.②当AC斜率存在且不为0时,设方程y=k(x+2),A(x1,y1),C(x2,y2),联立,化为(3+4k2)x2+16k2x+16k2﹣48=0.∴x1+x2=,x1x2=,∴==,把﹣代入上述可得:可得=,∴||+||=,设t=k2+1(k≠0),t>1.∴||+||=,∵t>1,∴,∴||+||∈.综上可得:||+||的取值范围是.21.已知a∈R,函数f(x)=e x+ax2,g(x)是f(x)的导函数,(Ⅰ)当a>0时,求证:存在唯一的x0∈(﹣,0),使得g(x0)=0;(Ⅱ)若存在实数a,b,使得f(x)≥b恒成立,求a﹣b的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求函数的导数,利用函数零点的判定定理进行判断即可.(Ⅱ)利用不等式恒成立,转化为求函数的最值,求函数的导数,判断函数的单调性求函数的最值进行求解.【解答】(Ⅰ)证明:∵g(x)=f′(x)=e x+2ax,g′(x)=e x+2a,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a>0时,g′(x)>0,∴函数g(x)在(﹣∞,+∞)上的单调递增,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又g(﹣)=﹣1<0,g(0)=1>0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴存在唯一的x0∈(﹣,0),使得g(x0)=0;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解:(1)当a<0时,则当x<0时,g(x)>0,即函数f(x)在(﹣∞,0)上单调递增,且当x→﹣∞时,f(x)→﹣∞,这与f(x)≥b 矛盾;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当a=0,由e x≥b,得b≤0,∴a﹣b≥0;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)当a>0,由(Ⅰ)知当x∈(﹣∞,x0)时,g(x)<0;当x∈(x0,+∞)时,g(x)>0;即f(x)在(﹣∞,x0)上单调递减,在(x0,+∞)上单调递增,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴f(x)的最小值为f(x0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣其中x0满足+2ax0=0,故a=﹣且x0<0,∵f(x)≥b恒成立,∴b≤f(x0),即﹣b≥﹣﹣ax02,于是a﹣b≥﹣﹣ax02=﹣(1+﹣),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣记h(x)=﹣e x(1+﹣),x<0,则h′(x)=e x(x﹣1)2(x+1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由h′(x)<0得x<﹣1,即函数h(x)在(﹣∞,﹣1)上单调时递减,由h′(x)>0得﹣1<x<0,即函数h(x)在(﹣1,0)上单调递增,∴h(x)min=h(﹣1)=﹣,综上得a﹣b的最小值为﹣,此时x0=﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2017-2018学年9月4日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵阳东辰学校高三第三次考试《数学试题》本试卷分第I 卷和第Ⅱ卷两部分,共5页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、考生号、科类填写在答题卡规定位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置; 如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I 卷(非选择题,共90分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ( )A.{1}B.{12},C.{0123},,,D.{10123}-,,,,2为虚数单位)的虚部为 ( )A.-2B.iC.-2iD.13.已知向量a =(1,2),b =(3,1),则b -a = ( ) A. (-2,1) B. (2,-1) C. (2,0) D. (4,3) 4.已知132a -=,21211log ,log 33b c ==,则 ( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>5.下列有关命题的叙述,错误的个数为 ( ) ① 若p ∨q 为真命题,则p ∧q 为真命题。

② “5x >”是“2450x x -->”的充分不必要条件。

③ 命题P :∃x ∈R ,使得x 2+x -1<0,则⌝p :∀x ∈R ,使得x 2+x -1≥0。

④ 命题“若,0232=+-x x 则1=x ”的否命题为假命题 A .1 B .2 C .3 D .46.已知直线1+=x y 与曲线y ln()x a =+相切,则a 的值为 ( ) A. 1 B. -2 C. -1 D. 27.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( )A.π8B. 3π8C.3π4D.π48.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为 ( )A.8B.7C.2D.19.已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) A.2 B.1 C.0 D.-210.如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客x 之间的关系图象,由于目前该条公路亏损,公司有关人员提出了两种调整的建议如图(2)(3)所示.以下说法:①图(2)的建议是:提高成本,并提高票价; ②图(2)的建议是:降低成本,并保持票价不变;③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本. 其中正确的序号是( )A .②③B .①④C .①③D .②④11.在实数集R 中定义一种运算“*”,对任意a ,b ∈R ,a *b 为唯一确定的实数,且具有性质: (1) 对任意a ∈R ,a *0=a ;(2) 对任意a ,b ∈R ,a *b =ab +(a *0)+(b *0).关于函数f (x )=(e x )*1e x 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为(-∞,0].其中所有正确说法的个数为 ( ) A .0 B .3 C .1 D .212.直角△ABC 的三个顶点都在单位圆221x y +=上,点11(,)22M ,则||MA MB MC ++ 的最大值是 ( )A.2+2 B. 2 C.l D.2+1第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

第13题 ~ 第21题为必考题,每个试题考生都必须作答。

第22题 ~ 第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.计算:sincos1212ππ-= .14.设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.15.设,x y R ∈,1,1a b >>,若3x ya b ==,a b +=11x y+的最大值为 16.设函数()f x =(21)xe x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <, 则a 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本题满分12分)已知等差数列{a n }中,a 1=1,公差d >0,且a 2,a 5,a 14分别是等比数列{b n }的第二项、第三项、第四项.(1) 求数列{a n }和{b n }的通项公式; (2) 求数列{}n n b a +的前n 项和n S 。

18.(本小题满分12分)已知向量)sin ,(sin B A =,)cos ,(cos A B =,C 2sin =⋅,且A 、B 、C 分别为ABC ∆的三边a 、b 、c 所对的角. (1)求角C 的大小;(2)若2=+b a ,设D 为AB 边上中点,求||的最小值。

19.(本小题满分12分)已知函数的图象如图所示·(1) 求)(x f 在R 上的单调递增区间; (2) 设是函数)(x f y =的一个零点,求的值.20.(本小题满分12分)已知函数11()212x f x =+-。

(Ⅰ)判断函数()f x 的奇偶性,并证明; (Ⅱ)若对于任意[2,4]x ∈,不等式21()()1(1)(7)x mf f x x x +<---恒成立,求正实数m 的取值范围。

21.(本小题满分12分)己知函数()ln(1)(1)f x x x x =+->-· (1)求()f x 的单调区间;(2)若k Z ∈,且3(1)(1)f x x k x-+>-对任意1x >恒成立,求k 的最大值; (3)对于任意给定常数)1,0(∈a ,是否存在正数x 0,使得20)(210x a e x f -<成立?请说明理由.请考生在第(22)、(23)、(24)三题中任选一题作答。

注意:只能做所选定的题目。

如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。

22.(本小题满分10分)选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。

(Ⅰ)证明:DB=DC ;(Ⅱ)设圆的半径为1,BC=错误!未找到引用源。

,延长CE 交AB 于点F ,求△BCF 外接圆的半径。

23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a |,g(x )=x +3. (Ⅰ)当a =-2时,求不等式f (x )<g(x )的解集;(Ⅱ)设a >-1,且当x ∈[-错误!未找到引用源。

,错误!未找到引用源。

)时,f (x )≤g(x ),求a 的取值范围.绵阳东辰学校高2014级高三第三次考试理科试题答案答案CABCB,DBBAA,DD. 13. 22-,14.21,15,1,16[错误!未找到引用源。

,1)17.解析:(1)∵等差数列{a n }的a 2,a 5,a 14分别是等比数列{b n }的第二、三、四项,且a 1=1,即(1+d )(1+13d )=(1+4d )2,∴d =2,a n =2n -1,∵公比q =a 5a 2=3,a 2=b 2=3,∴b n =b 2·q n -2=3·3n -2=3n -1,故b n =3n -1.(2)n S =2132-+n n 18.解:(1)sin cos cos sin sin()m n A B A B A B ⋅=⋅+⋅=+1分对于,,0sin()sin ,ABC A B C C A B C ππ∆+=-<<∴+=sin ,m n C ∴⋅=3分又sin 2m n C ⋅=,1sin 2sin ,cos ,.23C C C C π∴===2分 (2)32)()(,3cos 22222222=⎪⎭⎫⎝⎛+-+≥-+=++=⋅++==b a b a ab b a ab b a ab a b π,2224336,36,6c c c c ∴=-⨯=∴=1分19.解:(Ⅰ) 由图象知,2126561=-=A ,故312161-=-=b ,26322πππ=-=T ,即π=T ,于是由πωπ=2,解得2=ω. ∵ 6131)62sin(21=-+⨯ϕπ,且)22(ππϕ,-∈,解得6πϕ=. ∴31)62sin(21)(-+=πx x f .…………………………………………………4分由22ππ-k ≤62π+x ≤22ππ+k ,Z ∈k ,解得3ππ-k ≤x ≤6ππ+k ,Z ∈k ,即)(x f 在R 上的单调递增区间为Z∈+-k k k ,,]63[ππππ.………………6分(Ⅱ)由条件得:31)62sin(21)(00=-+=πx x f ,即32)62sin(0=+πx .∵0)0()6(<⋅f f π且)(x f 在)60(π,上是增函数,61)6(=πf >0,3143)4(-=πf >0,)(x f 在)46(ππ,上是减函数,∴)60(0π,∈x ,∴ )26(620πππ,∈+x ,……………………………………9分∴35)62(sin 1)62cos(020=+-=+ππx x ,…………………………………10分∴]6)62cos[(2cos 00ππ-+=x x6sin)62sin(6cos )62cos(00ππππ+++=x x6215+=. …………………………………………………………12分20 .解:(Ⅰ)由210x -≠,得x R Î且0x ¹,∴函数的定义域为(,0)(0,)-∞+∞, ··· 1分当(,0)(0,)x ∈-∞+∞时,()11212212(21)x x x f x +=+=--, ······················· 2分 ()21122(21)2(12)x xx x f x --++-==--, ······················································ 3分所以()()f x f x -=-, ································································· 4分 ∴f (x )在定义域上是奇函数; ······················································· 5分(Ⅱ) 由于()22ln 2(21)x x f x '=--,当(,0)x ∈-∞或(0,)x ∈+∞时,()22ln 20(21)x xf x '=-<-恒成立, 所以()f x 在(,0),(0,)-∞+∞上是减函数, ········································ 6分 因为x ∈[2,4]且m >0,所以210,01(1)(7)x mx x x +>>---, ······················ 7分 由21()()1(1)(7)x mf f x x x +<---及()f x 在(0,)+∞上是减函数, 所以211(1)(7)x mx x x +>---, ·························································· 8分 因为x ∈[2,4],所以m <(x +1)(x -1)(7-x )在[2,4]x ∈恒成立. ············· 9分 设g (x )=(x +1)(x -1)(7-x ),[2,4]x ∈,则g (x )=-x 3+7x 2+x -7, ···· 10分 所以g ′(x )=-3x 2+14x +1=-373x ⎛⎫- ⎪⎝⎭2+523,所以当[2,4]x ∈时,g ′(x )>0 .所以y =g (x )在[2,4]上是增函数,g (x )min =g (2)=15 . ····················· 11分 综上知符合条件的m 的取值范围是(0,15). ··································· 12分21.解:(1)1111)(+=-+='x xx x f , ∴当x ∈(-1,0)时,0)(>'x f ,即f (x )在(-1,0)上是增函数, 当x ∈(0,+∞)时,0)(<'x f ,即f (x )在(0,+∞)上是减函数.∴ f (x )的单调递增区间为(-1,0),单调递减函数区间为(0,+∞).………3分(2)由f (x -1)+x >k )31(x -变形得)31()1(ln xk x x x ->+--,整理得x ln x +x -kx +3k >0,令g (x )=x ln x +x -kx +3k ,则.2ln )(k x x g -+=' ∵ x >1,∴ ln x >0若k ≤2时,0)(>'x g 恒成立,即g (x )在(1,+∞)上递增, ∴ 由g (1)>0即1+2k >0解得21->k ,∴ .221≤<-k 又∵ k ∈Z ,∴ k 的最大值为2. 若k >2时,由ln x +2-k >0解得x >2-k e ,由ln x +2-k <0,解得1<x <2-k e . 即g (x )在(1,2-k e )上单调递减,在(2-k e ,+∞)上单调递增. ∴ g (x )在(1,+∞)上有最小值g (2-k e )=3k -2-k e , 于是转化为3k -2-k e >0(k >2)恒成立,求k 的最大值. 令h (x )=3x -2-x e ,于是23)(--='x e x h .∵ 当x >2+ln3时,0)(<'x h ,h (x )单调递减,当x <2+ln3时0)(>'x h ,h (x )单调递增. ∴ h (x )在x =2+ln3处取得最大值.∵ 1<ln3<2,∴ 3<2+ln3<4, ∵ 013)1(>-=eh ,h (2+ln3)=3+3ln3>0,h (4)=12-e 2>0,h (5)=15-e 3<0, ∴ k ≤4.∴ k 的最大取值为4.…………………………………………………9分 (3)假设存在这样的x 0满足题意,则 由20)(210x a e x f -<等价于01120020<-++x e x x a (*). 要找一个x 0>0,使(*)式成立,只需找到当x >0时,函数h (x )=1122-++x ex x a 的最小值h (x )min 满足h (x )min <0即可.∵ )1()(e a x x h -=',令)(x h '=0,得e x =a1,则x =-ln a ,取x 0=-ln a , 在0<x <x 0时,)(x h '<0,在x >x 0时,)(x h '>0,∴ h (x )min =h (x 0)=h (-ln a )=1ln )(ln 22-++a a a a a, 下面只需证明:在0<a <1时,1ln )(ln 22-++a a a a a<0成立即可. 又令p (a )=1ln )(ln 22-++a a a a a,a ∈(0,1), 则2)(ln 21)(a a p ='≥0,从而p (a )在a ∈(0,1)时为增函数. ∴ p (a )<p (1)=0,因此x 0=-ln a 符合条件,即存在正数x 0满足条件.………14分22.【答案】(1)连接DE ,交BC 为G ,由弦切角定理得,ABE BCE ∠=∠,BE CE =,又因为DB BE ⊥,所以DE 为直径,由勾股顶底得DB=DC.(2)由(1),C D E B D E ∠=∠,DB DC =,故DG 是BC 的中垂线,故2BG =,圆心为O ,连接BO ,则060BOG ∠=,030ABE BCE CBE ∠=∠=∠=,所以CF BF ⊥,故外接圆半径为2.24.当2a =-时,令15,21212232,1236,1x x y x x x x x x x ⎧-≤⎪⎪⎪=-+---=--≤≤⎨⎪->⎪⎪⎩,,做出函数图像可知,当(0,2)x ∈时,0y <,故原不等式的解集为}{02x x <<;(2)依题意,原不等式化为13a x +≤+,故2x a ≥-对1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22a a -≥-,故43a ≤,故a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

相关文档
最新文档