北师大版八年级数学上册一次函数的应用导学案

合集下载

4.4.1一次函数的应用导学案北师大版数学八年级上册

4.4.1一次函数的应用导学案北师大版数学八年级上册

后“茶馆式”《一次函数的应用》教学设计学科 数学 课题 课型 新授 主备人xxx上课人xxx上课时间xxx教材分析 《一次函数的应用第一课时》是义务教育课程标准北师大版实验教科书八年级上册第四章第四节的内容。

本课时主要是利用图象、表格等信息,确定一次函数的表达式.本节内容特别注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法.第一次 学情分析 八年级学生已初步认识了变量之间的相依关系,积累了研究变量之间关系以及图象的一些方法和初步经验.在此基础上,学生能在“引导——探究——发现”式的课堂教学中积极参与讨论问题,大胆发表自己的见解和看法.但由于初中学生的年龄特点,他们借助直观、具体的图象更容易理解抽象的一次函数图象的变化规律及其性质。

第二次 学情分析 学生先学后,能学会的:能根据所给信息利用待定系数法确定一次函数的表达式. 学生先学后可能不会的:进一步利用所学知识解决实际问题. 教学目标 1.了解两个条件可以确定一个一次函数,一个条件可以确定一个正比例函数,并求出表达式. 2.会用待定系数法解决简单的实际问题.3.能根据函数的图象确定一次函数的表达式. 教学重点 利用一次函数解决复杂的实际问题. 教学难点 根据两个一次函数图象去分析解决问题.教学过程二次备课一、回顾旧知,探究新知前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?23=-+y x31=-y x思考:反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗? 活动一某物体沿一个斜坡下滑,它的速度v (m/s )与其下滑时间t(s)的关系如右图所示: (1)请写出v 与t 的关系式.(2)下滑3 s 时物体的速度是多少? 练一练 例1. 在弹性限度内,弹簧的长度 y (cm )是所挂物体质量 x (kg )的一次函数,某弹簧不挂物体时长14.5cm ,当所挂物体的质量为3kg 时,弹簧长16cm 。

北师大版数学八年级上册 4.4.1 一次函数的应用学案

北师大版数学八年级上册 4.4.1 一次函数的应用学案

成都市中和中学“三阶四环”高阶思维导学案 4.4.1 一次函数的应用(第1课时)班级: 姓名: 〖学习目标〗1.能利用函数图象解决简单的实际问题.2.通过函数图象获取信息,培养数形结合的意识.3.理解一次函数与一元一次方程的关系.〖重点难点〗重点:利用函数图象解决简单的实际问题.难点:通过函数图象获取信息,一次函数与一元一次方程的关系.〖导学流程〗浅层加工一、知识回顾一次函数y =kx +b 的图象与y 轴的交点坐标为__________,与x 轴的交点坐标为__________.二、问题发现一次函数图象还可以获得哪些信息?深度建构一、问题情境由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少.蓄水量V (万米3)与干旱持续时间t (天)的关系如图所示,回答下列问题:(1)图象反映得是什么类型的函数?(2)水库干旱前的蓄水量是多少?(3)干旱持续10天,蓄水量为多少?连续干旱23天呢?(4)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报?(5)按照这个规律,预计大约持续多少天水库将干涸?二、问题探究【探究活动一】一次函数的图象例1.为了提高某种农作物的产量,农场通常采用喷施药物的方法控制其高度.已知该农作物的平均高度y (米)与每公顷所喷施学海拾贝 总结纠错药物的质量x (千克)之间的关系如图所示,经验表明,该农作物高度在1.25米左右时,它的产量最高,那么每公顷应喷施药物多少千克?即学即练1:1.某植物t 天后的高度为y 厘米,下图中l 反映了y 与t 之间的关系,根据图象回答下列问题:(1)3天后该植物的高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10厘米?【探究活动二】一次函数与一元一次方程的关系做一做:如图是某一次函数的图象,根据图象填空:(1)当y =0时,x =_________;(2)这个函数的表达式是____________.议一议:一元一次方程0.5x +1=0与一次函数y =0.5x +1有什么联系?一次函数和一元一次方程的联系:例2.一个冷冻室开始的温度是12 ℃,开机降温后室温每小时下降6 ℃,设T (℃)表示开机降温t h 时的温度.(1)写出T (℃)与t (h)之间的函数关系式,并画出其图象.(2)利用图象说明:经过几小时,冷冻室温度降至0 ℃?何时降至-9 ℃?即学即练2:1.已知一次函数y =2x +n 的图象如图所示,则方程2x +n =0的解是( )A .x =1B .x =23 C .x =21 D .x =-1例3.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100千米消耗多少升汽油?(4)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?即学即练3:某汽车离开某城市的距离y (千米)与行驶时间t (时)之间的关系式为y =kt +30,其图象如图所示:(1)在1时至3时之间,汽车行驶的路程是多少?(2)你能确定k 的值吗?这里k 的具体含义是什么?三、融合应用1.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区x/km y/L 10500 O。

八年级数学上册 4.4 一次函数的应用(3)导学案(无答案)(新版)北师大版

八年级数学上册 4.4 一次函数的应用(3)导学案(无答案)(新版)北师大版

4.4 一次函数的应用课题4.4 一次函数的应用(3)活动安排 想一想:你还能用其他方法解决(1)~(5)吗? 归纳小结: 两直线交点的意义(1)几何意义:两直线交点是它们的公共点;(2)代数意义:两直线交点的坐标同时满足两个解析式。

探究任务二:最佳方案问题某电视机厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费. (1)分别写出两厂的收费y (元)与印制数量x (份)之间的关系式; (2)在同一直角坐标系内作出它们的图象; (3)根据图象回答下列问题:① 印制800份宣传材料时,选择哪家印刷厂比较合算?② 电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷宣传材料能多一些? 归纳小结: 函数图象交点规律:两函数图象在同一坐标系中,当取相同的自变量时,上方图象对应的函数的函数值大;交点处的函数值相等。

【总结升华】1、本节课知识上你有哪些收获?2、在学法和解题方法上你有什么经验与大家分享?3、本节课是否还有疑惑? 【达标反馈】如图,A l 与 B l 分别表示A 步行与B 骑车同一路上行驶的路程S 与时间t 的关系。

(1)B 出发时与A 相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B 出发后经过多少小时与A 相遇? 若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A相遇?相遇点离B 的出发点多远?你能用哪些方法解决这个问题?在图中表示出这个相遇点。

学习目标1、能通过两个一次函数图象获取信息,解决实际问题;2、认识理解函数表达式中某些字母表示的实际意义。

探究任务三: 独学3分钟 组学2分钟 抽展或抢答2分钟 评价归纳 2分钟新知拓展: 独立探索3分钟;小组交流、展台展示讲解3分钟;讲评总结2分钟总结升华 3分钟 达标反馈 (展台) 5分钟活动安排 【情境引入】小张准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元,小张的同学小王以前没有存零用钱,他准备从小张存款当月起每个月存22元,争取超过小张。

新版北师大版八年级数学上册第四章第四节《一次函数的应用》第一课时导学案

新版北师大版八年级数学上册第四章第四节《一次函数的应用》第一课时导学案

D、y=2(x+2)
,它的解 自我挑战 3、一次函数的图象经过点 A(-2,1)和点 B(1,-1) 析式是_______________。 4、已知一次函数 y=(m-3)x+2m+4 的图象过直线 轴的交点 M,求此一次函数的解析式。 1、函数 y=5x-10,当 x=2 时,y=_________。当 x=0 时,y=__________。 2、函数 y=mx-(m-2)的图象经过点(0,3),则 m=_________。 堂清试题 3、当 b=_________时,直线 y=x+b 与直线 y=2x+3 的交点在 y 轴上。 4、已知直线 的面积为( 自我总结 预留作业
1、 直线 y=kx+b 经过点 A(-3,0)
和点 B(0,2), 求这条直线的表达式。 合作探究 2、已知某个一次函数的图象如 图所示,则该函数的解析式为
_________。
先确定题的 类型,再选择解 题的思路,最后 完整答题。 )
1、将直线 y=2x 向上平移两个单位长度,所得的直线是( A、y=2x+2 B、y=2x-2 C、y=2(x-2) 2、求一次函数 y=(m-2)xm2-3-m+3 的关系式。
如何确定一次函数的表达式 ①定义型:若两个量 y 与 x 成正比例,可设为正比 例函数形式:y=kx(其中 k 是常数,k≠0),再用待定 系数法求比例系数 k。 ②两(或一)点型:把点的坐标代入所设的关系式中, 根据点的坐标求解。 独 立 尝 试 认真阅读课 本第 89、90 页
③图象型:解决看图获取信息的问题,不仅要注意 ①看懂例 1 的解 坐标轴所表示的量是什么,还要抓住图中一些关键 题过程。 的点(如:起点、终点、折线中的折点)所反映出的信 息.通过观察图象,发掘图象经过坐标轴上的两点, 根据两点的坐标构造待定系数的方程组,求出 k,b; 定一次函数关 它体现了数与形的完美结合,是解题的重要思想方 系式的方法。 法之一。点在函数图象上,就是说点的坐标满足该 图象的函数解析式.只需把 点的坐标代入函数解析 式,然后求方程(组)的解即可。 ④平移型:平移不改变 k 的大小,只改变 b 的大小。 ②尝试总结确

【最新】北师大版八年级数学《一次函数的应用》导学案

【最新】北师大版八年级数学《一次函数的应用》导学案

新北师大版八年级数学《一次函数的应用》导学案我的疑问【合作探究】【学习目标:】1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,发展学生的分析问题、解决问题的能力和数学应用意识.【学习重点:】一次函数图象的应用【学习难点:】从函数图象中正确读取信息【预习.导学:】一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系[来源:](3)由表达式你能求出降价前每千克的土豆价格是多少?[来源:Z#xx#](4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?(6)两条直线对应的函数中,k与b 1例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?2:深入探究例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?[来源:学科网ZXXK](5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?(3)B出发后经过多少小时与A相遇?海岸公海ABS (千米)t (时) O 1022.5 7.5 0.5 31.5 l B l A的实际意义是什么?【总结归纳】本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。

北师大版八年级数学《一次函数的应用》导学案

北师大版八年级数学《一次函数的应用》导学案

3、预习自测 当得知周边地区的干旱情况后, 育才学校的小明意识到节约用水的 重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的 积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数 量相同,最后全校师生都参加了活动,并且参加该活动的家庭数 S (户)与宣传时间 t (天)的函数关系如图所示.根据图象回答下 列问题: (1)活动开始当天,全校有多少户家庭参加了该活动? (2)全校师生共有多少户?该活动持续了几天? (3)你知道平均每天增加了多少户? ( 4 )活动第几天时,参加 该 活 动 的 家 庭 数 达到 800 S(户) 户? 1000 · ( 5 )写出参加活动的家庭 0 数 S 与活动时间 t 之间的函 数关系式
200 0 20 t(天)
4、我的疑惑: (请你将预习中未能解决的问题和有疑惑的问题写下 来,与老师和同学探究解决。 )
探 究 案
.
2:王大强和张小勇两人比赛跑步,路程和
时间的关系如图: 根据图象回答下列问题: ⑴王大强和张小勇谁跑的快? ⑵出发几秒后两人相遇? ⑶相遇前谁在前面?相遇后谁在前面? ⑷你还能读出什么信息?
本的基础知识和例题,完成预习自测及我的疑惑栏目。
预 习 案
知识回顾 确定正比例函数的表达式需要几个条件?确定一次函数的表达式 呢? 2、教材助读 由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减 少.干旱持续时间 t (天)与蓄水量 V (万米 3)的关系如下图所示,回 答下列问题: (1)干旱持续 10 天后蓄水量为多少?连续干旱 23 天后呢?于 400 万 米 3 时, 将发生严重干旱警报. 干旱多少天后将发出严重干旱警报? (3)按照这个规律,预计持续干旱多少天水库将干涸? (根据图象回答问题,有困难的可以互 (2)蓄水量小相交流. )

北师大版八年级数学上册一次函数的应用导学案1

北师大版八年级数学上册一次函数的应用导学案1

神木县第五中学导学案年级八班级学科数学课题4.4一次函数的图象第2课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1、能通过函数图象获取信息,解决简单的实际问题.(重难点)2、在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。

3、通过对函数图象的观察与分析,培养自己数形结合的意识,发展形象思维。

学法指导温故知新确定一次函数的表达式时可以用待定系数法,即先设出表达式,再根据题目条件(根据图象、表格或具体问题)求出k,b的值,从而确定函数表达式.其步骤如下:(1)设函数表达式;(2) ;(3) ;(4)把k,b代回表达式中,写出表达式.(5分钟)先独立思考,学生个别回答教学一、创设情境,导入新课。

二、思考探究,获取新知(感知)。

(15分钟)自主学习课本P91,完成以下(一)和(二)中的问题。

(一)知识探究1.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万米3) 与干旱持续时间t(天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?(二)自学反馈1.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示,当1≤x≤2时,y关于x的函数表达式为y=100x-40;那么当0≤x≤1时,y关于x的函数表达式为.学生独立完成小组代表展示讲解。

流程2.某公司销售人员的个人月收入与其每月的销售量成一次函数关系,图象如图所示,则此销售人员的销售量为3千件时的月收入是元.3.一次函数y=kx+b的图象与y轴相交于点(0,-3),且方程kx+b=0的解为x=2,试求这个一次函数的表达式.三、合作探究(理解)(7分钟)例某种摩托车的油箱加满油后,油箱中剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?四、运用新知,深化理解(拓展提高)。

北师大版八年级数学上册4.4一次函数的应用(1)导学案

北师大版八年级数学上册4.4一次函数的应用(1)导学案

八年级数学(上) 4.4一次函数的应用 (1) 新授课 主备: 副备: 审核:时间:课前演练:某物体沿一个斜坡下滑。

它的速度v(m/s)与其下滑时间t(s)的关系如图所示。

(1)写出v 与t 之间的关系式。

(2)下滑3s 时物体的速度是多少?学习目标:能够根据已知条件或图像中点的坐标求出相应的一次函数关系式。

自学提示:1.已知一次函数y=kx+b 的图像经过点(0,-1)与(1,2),求这个一次函数的解析式。

分析:求一次函数y=kx+b 的解析式,关键是求出k ,b 的值,从已知条件可以列出关于k ,b 的方程,并求出k ,b 。

解: ∵一次函数y=kx+b 经过点(0,-1)与(1,2),∴⎩⎨⎧______________________ 解得⎩⎨⎧==__________b k∴一次函数的解析式为_______________2.在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,某弹簧不挂物体时长,当所挂物体质量为3kg 时,弹簧长16cm.写出y 与x 之间的关系式,并求当所挂物体的质量为4kg 时弹簧的长度.解: 设y=kx+b ,根据题意得⎩⎨⎧______________________ 解得⎩⎨⎧==__________b k ∴在弹性限度内,y=_______________。

当x=4时,y=_______________=_______。

即物体的质量为4kg 时弹簧的长度为_______。

3.确定正比例函数表达式需要______个条件,确定一次函数表达式需要______个条件。

课堂小结:-32o yx夯实基础:已知一次函数y=kx+2,当x = 5时,y = 4,(1)求这个一次函数。

(2)求当x = -2时,函数y的值。

2、已知直线y=kx+b经过点(9,0)和点(24,20),求这条直线的函数解析式。

检测题:1、一个正比例函数的图像经过(-2,3)和(a,-3),则这个正比例函数是,a=_____ ,该图像________点(4,-6)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神木县第五中学导学案
年级八班级学科数学课题4.4一次函数的图

第3课时
编制人审核人使用时间第周
星期
使用者课堂流程具体内容
学习目标1.会通过函数图象获取信息.(重点)
2.会运用函数图象解决简单的实际问题,培养应用数学的能力.(难点)
学法指导
温故知新回忆:方程与函数的关系(3分钟)
先独立思考,
学生个别回答
教学
一、创设情境,导入新课。

二、思考探究,获取新知(感知)。

(15分钟)
自主学习课本P93,并完成以下1,2题。

1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所
跑的路程s(米)与时间t(分)之间的关系,则他们跑的速度关系是( )
A.甲跑的速度比乙跑的速度快
B.乙跑的速度比甲跑的速度快
C.甲、乙两人跑的速度一样快
D.图中提供的信息不足,无法判断
2.如图,l1反映了某公司的销售收入与销售量的关系,
l2反映了该公司产品的销售成本与销售量的关系,当
该公司盈利(收入大于成本)时,销售量( )
A.小于3 t B.大于3 t
C.小于4 t D.大于4 t
学生独立完

小组代表展
示讲解。

流程
三、合作探究(理解)(15分钟)
例我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅
速派出快艇B追赶(如图1),图2中l1, l2分别表示两船相对于海岸的距离s(n
mile)与追赶时间t(min)之间的关系.
根据图象回答下列问题:
图1 图2
(1)哪条线表示B到海岸的距离与时间之间的关系?
(2)A,B哪个速度快?
(3)15 min内B能否追上A?
(4)如果一直追下去,那么B能否追上A?
(5)当A逃到离海岸12 n mile海里的公海时,B将无法对其进行检查.照此速
度,B能否在A逃到公海前将其拦截?
(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义
各是什么?可疑船只A与快艇B的速度各是多少?
四、运用新知,深化理解(拓展提高)。

(5分钟)
你能用其他方法解决以上(1)~(5)吗?
五、收获盘点(升华)。

(2分钟)
六、布置作业(巩固):习题4.7第1、2题.
独立完成,
再小组讨论
交流。

小组讨论
教师点拨
课堂检测如图,已知A地在B地的正南方3千米处,甲、
乙两人同时分别从A、B两地向正北方向匀速行
驶,他们与A地的距离(千米)与所行时间(时)
之间的函数关系如图中AC和BD所示,当他们行
驶了4小时后,他们之间的距离为多少千米?
(5分钟)
独立完成
教后反思。

相关文档
最新文档