峰值和谷值电压检测
电压 峰峰值

电压峰峰值1. 什么是电压峰峰值?电压峰峰值(Peak-to-Peak Voltage)是指在一个周期内,电压波形的最大正值与最大负值之间的差值。
它表示了信号的振幅范围,即信号的最大波动幅度。
2. 如何测量电压峰峰值?要测量电压的峰峰值,需要使用示波器或多用途测试仪器。
下面是一些基本步骤:1.将示波器的探头连接到待测电路上。
2.打开示波器,并调整设置以适应待测信号。
3.确保示波器触发模式正确设置,以获得稳定的波形。
4.观察示波器屏幕上显示的波形。
5.使用示波器的光标功能来测量最大正值和最大负值之间的差异,即电压峰峰值。
3. 为什么需要测量电压峰峰值?测量电压的峰峰值对于许多应用至关重要,包括但不限于以下几个方面:a) 设计和测试电路在设计和测试电路时,了解信号的振幅范围对于确保电路正常运行至关重要。
通过测量电压的峰峰值,可以确定信号是否在所需范围内,并进行必要的调整。
b) 识别故障测量电压峰峰值还可以帮助识别电路中的故障。
如果信号的振幅超出了预期范围,可能意味着存在某种故障或异常情况。
通过测量峰峰值,可以快速定位并解决这些问题。
c) 检查信号质量测量电压峰峰值还可用于评估信号质量。
一个良好的信号应该具有稳定的振幅范围,而不是波动过大。
通过比较不同时间点或不同条件下的峰峰值,可以评估信号质量是否满足要求。
4. 如何优化电压波形?在某些应用中,需要优化电压波形以满足特定需求。
以下是一些常见的方法:a) 滤波使用滤波器可以去除不需要的频率成分,并使波形更加平滑。
根据具体需求,可以选择不同类型的滤波器,如低通滤波器、带通滤波器等。
b) 调整电源电源的稳定性对于信号质量至关重要。
通过使用稳定的电源或采取其他措施来改善电源质量,可以减少电压波动和噪声。
c) 优化传输线路传输线路的设计和布局也会影响信号质量。
通过合理布局、减少干扰源以及使用屏蔽线等方法,可以降低信号损失和干扰。
5. 应用示例:音频信号一个常见的应用示例是音频信号处理。
峰值谷值检测实验

实验四 峰值谷值检测实验实验目的1. 掌握运算放大器性质,用运算放大器搭出峰值、谷值检测电路。
2. 掌握峰值、谷值检测电路的特点及性能。
3. 学会上述电路的测试和分析方法。
二. 实验原理峰值运算电路的基本原理就是利用二极管单向导电性,使电容单向充电,记忆其峰值。
由于二极管的管压降影响峰值运算。
我们采用了线性整流电路。
图 1.4.1为同相端输入情形。
第一片LF356与D1、D2用作半波线性整流器,第二片LF356为射极跟随器。
当U i 为正时,第一片LF356输出为正,D2导通,D1截止,只要U i 略大于U o ,第一片LF356处于开环放大状态,它使电容C 迅速充电。
只有当U o =U i 时,电容C 才停止充电。
因此,U o 达到U i 的最大值。
当U i 减小时,第一片LF356的输出为负,D1导通,第二片LF356为跟随器。
D2截止,电容C 保持原有充电电压U o 。
图1.4.1 正峰值检测电路 图1.4.2为反向端输入电路。
它用于反映U i 的负峰值,输出的U o 值为正。
当U i 为负,并且U o <|U i |时,第一片LF356输出为正,D1截止,D2导通,它使电容C 迅速充电,U o 增大。
当U o 增至|U i |时,电容C 停止充电,U o =|U imin |。
当U i >-U o 时,第一片LF356的输出为负,D1导通,D2截止,U c 保持不变,U o 也保持不变。
图1.4.2 负峰值检测电路 三. 实验内容实验电路如图1.4.1所示(1) 接通±12V 电源。
(2) 测量U i 悬空时的U O 值。
(3) U i 输入500Hz、幅值为2V 的正弦信号,观察U i →U O 波形并记录。
四. 实验元件放大器: LF356 2个电 容: 33p 1个电 阻: 10K 4个二极管: 4148 2个五. 实验记录1. 整理实验数据,画出υI 、υo 波形。
峰值检测(强调)万用表

万用表操作规程
使用前,应认真阅读有关的使用说明书,熟悉电源开关、量程开关、插孔、特殊插口的作用。
熟悉表盘上各符号的意义及各个旋钮和选择开关的主要作用;进行机械调零;根据被测量的种类及大小,选择转换开关的挡位及量程,找出对应的刻度线;选择表笔插孔的位置。
一、根据测量要求,选择适当的测量种类及量程,无法预知被测量的
大小时,应先拨大量程,再逐渐减小至合适位置,调整过程中,不允许带电转动转换开关,防止产生电弧、触点氧化,甚至烧毁。
二、测量叠加有交流电压的直流电压时,要充分考虑转换开关的最高耐压
值,否则会因为幅度过大,使转换开关的绝缘材料被击穿。
三、每次更换电阻档应调零,严禁带电测电阻,同时不能用手分别捏住两
只表笔的金属端,以免引入人体电阻,造成误差。
四、测量晶体管参数时,一般应选R×1K或R×100倍率档。
五、为了保证测量的精确度,测电流与电压时,量程选择应使指针工作在
满刻度三分之二以上区域,测电阻时,使指针在中心刻度值的(1/10~10)之间。
六、万用表欧姆档不能直接测量微安表头,检流计,标准电池等仪器仪表,
在使用间隙中,不要让两测试棒短接,以免浪费电池。
七、万用表使用完毕,一般应将转换开关旋至交流电压的最大量限档,者旋
至“OFF”档。
八、当显示“ ”、“BATT”或“LOW BAT” 时,表示电池电压低于工作电
压。
峰值和谷值电压检测 2

峰值和谷值电压检测史上最实用较深刻的峰值检测电路实例与分析一、前言峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。
二、峰值检测电路原理顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。
通过简单仿真(输入正弦信号5kHz,2V pp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):从仿真结果来看,同等测试条件下,检测误差大大减小。
但我们知道,超级二极管有一个缺点,就是Vi从负电压变成正电压的过程中,为了闭合有二极管的负反馈回路,运放要结束负饱和状态,输出电压要从负饱和电压值一直到(Vi+V二极管)。
电力系统中的电能质量评估

电力系统中的电能质量评估电能质量评估是电力系统中一项重要的工作,它用于确保向用户提供高质量的电力供应。
电能质量的好坏会直接影响到用户的正常用电和电气设备的稳定运行。
因此,电力系统中的电能质量评估变得至关重要。
在电力系统中,电能质量评估是通过对一系列电能质量指标的测量和分析来进行的。
这些指标包括电压波动、频率偏差、谐波含量、电压闪变、电压暂降和电压升高等。
下面将详细介绍这些指标及其评估方法。
1. 电压波动电压波动是指电压在短时间内发生剧烈变化的现象。
它可能对用户的电气设备造成严重损坏。
电压波动通常由瞬时负载突变、大型电动机起动等原因引起。
评估电压波动的方法是通过测量电压曲线的峰值、谷值和波动指标来分析。
电压曲线的峰值和谷值可以直接测量,而波动指标包括短时波动(STF)和长时波动(LTF)等。
2. 频率偏差频率偏差是指电网频率偏离标准值的程度。
频率偏差可能导致电气设备的时钟走快或走慢,从而影响其正常运行。
评估频率偏差的方法是通过与参考频率进行比较来测量频率偏差,并计算偏差的均值和标准差。
3. 谐波含量谐波是电力系统中频率为基波频率的整数倍的电压或电流成分。
谐波可能导致电气设备的过载、干扰或损坏。
评估谐波含量的方法是通过测量电压和电流的谐波分量并计算其总畸变率(THD)来分析。
通常,THD应保持在合理范围内,以确保电能质量良好。
4. 电压闪变电压闪变是指电压在某一时刻内发生短暂降低或增加的现象。
电压闪变可能导致照明设备的闪烁和电动机的抖动。
评估电压闪变的方法是通过测量暂降和暂升事件的持续时间、幅值和数量来分析。
常用的指标有短时闪变(SSF)和长时闪变(LSF)。
5. 电压暂降和电压升高电压暂降是指电网电压短暂降低至低于标准值的现象,而电压升高则相反。
这些变化可能对用户的电气设备造成严重损害。
评估电压暂降和电压升高的方法是通过测量其持续时间和幅值,并计算其频率和占空比来分析。
除了上述指标外,电能质量评估还需要考虑电网的可靠性和稳定性。
电压测量方法

电压测量方法电压是电路中的重要参数,它的准确测量对于电子设备的正常运行至关重要。
在电子工程领域,我们常常需要进行电压的测量,以确保电路的正常运行和性能的稳定。
本文将介绍几种常见的电压测量方法,以帮助大家更好地理解和应用电压测量技术。
1. 直流电压测量。
直流电压是指电压的极性和大小都保持不变的电压。
直流电压的测量通常使用数字万用表或模拟电压表。
在测量直流电压时,需要将测量仪表的电压测量档位设置到与待测电压相匹配的量程,并将红表笔连接到待测电压的正极,黑表笔连接到待测电压的负极,然后读取仪表上的电压数值即可。
2. 交流电压测量。
交流电压是指电压的极性和大小都不断变化的电压。
交流电压的测量通常使用交流电压表或示波器。
在测量交流电压时,需要将测量仪表的电压测量档位设置到交流电压档位,并将红表笔连接到待测电压的正极,黑表笔连接到待测电压的负极,然后读取仪表上的电压数值即可。
3. 峰值电压测量。
峰值电压是交流电压波形的最大幅值,通常用于描述交流电压的峰值大小。
测量峰值电压可以使用示波器或特定的峰值测量仪表。
在测量峰值电压时,需要将测量仪表设置到峰值电压测量档位,并将测量仪表的探头连接到待测电压的正负极,然后读取仪表上的峰值电压数值即可。
4. 均方根电压测量。
均方根电压是交流电压波形的有效值,它是交流电压波形在一个完整周期内的电能平均值的平方根。
测量均方根电压可以使用数字万用表或特定的均方根测量仪表。
在测量均方根电压时,需要将测量仪表的电压测量档位设置到交流电压档位,并将测量仪表的探头连接到待测电压的正负极,然后读取仪表上的均方根电压数值即可。
5. 峰-峰值电压测量。
峰-峰值电压是交流电压波形峰值与谷值之间的差值,它描述了交流电压波形的振幅范围。
测量峰-峰值电压可以使用示波器或特定的峰-峰值测量仪表。
在测量峰-峰值电压时,需要将测量仪表设置到峰-峰值电压测量档位,并将测量仪表的探头连接到待测电压的正负极,然后读取仪表上的峰-峰值电压数值即可。
说明用光标量测功能测量信号的电压峰峰值的操作要点

说明用光标量测功能测量信号的电压峰峰值的操作要点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!用光标量测功能测量信号的电压峰峰值操作要点在电子测量中,使用示波器的光标量测功能可以准确测量信号的电压峰峰值,这对于工程师在调试和分析电路时非常重要。
峰值与谷值电子系统的研究与应用

峰值与谷值电子系统的研究与应用一、引言在电子系统中,峰值与谷值是两个重要的参数,它们在很多应用中都起着至关重要的作用。
本文将探讨峰值与谷值电子系统的研究与应用,包括峰值与谷值的定义、测量方法、以及应用场景等方面。
二、峰值与谷值的定义峰值和谷值是指信号在某一时间段内能够达到的最大值和最小值。
例如交流电压的正半周峰值是指交流电压在正向的最高点,而负半周峰值则是指交流电压在负向的最低点。
峰值和谷值通常用计量单位来表示,例如电压的单位为伏特(V),电流的单位为安培(A)。
峰值和谷值在电子系统中有着广泛的应用,例如在信号处理、音频放大器、视频处理等方面都需要有效的峰值和谷值控制。
三、峰值与谷值的测量方法峰值和谷值的测量方法通常包括以下几种:1. 用数字万用表直接测量电压或电流值来获取峰值和谷值数据。
2. 通过示波器观察波形来获取峰值和谷值数据,示波器通常会为用户提供峰值和谷值测量选项。
3. 借助专业测量工具,例如峰值表(Peak Meter)和均方根表(RMS Meter)等来测量峰值和谷值数据。
四、峰值与谷值电子系统的应用峰值与谷值在电子系统中有着广泛的应用场景,以下列举几个常见的应用:1. 音频放大器:在音频放大器中,峰值和谷值控制可以有效地保护音箱不受过压或过流的损坏。
2. 视频处理:在视频处理中,峰值和谷值控制可以帮助我们获取可以使用的信号值,以便应用在后续的处理中。
3. 信号处理:在信号处理中,峰值和谷值控制可以帮助我们保证信号的稳定性和准确度,以及避免出现过高或过低的异常信号。
4. 电源管理:在电源管理中,峰值和谷值控制可以帮助我们优化电源的效率和稳定性,以便更好地满足电子设备的需求。
五、结语本文综述了峰值与谷值电子系统的研究与应用,包括峰值与谷值的定义、测量方法、以及应用场景等方面。
峰值与谷值作为电子系统中的重要参数之一,在我们的日常工作和生活中都有着广泛的应用。
对于电子工程师来说,掌握峰值与谷值的测量与控制方法,可以帮助我们更好地设计和构建高效、稳定和可靠的电子系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
峰值和谷值电压检测
史上最实用较深刻的峰值检测电路实例与分析
一、前言
峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。
峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。
有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。
当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。
(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-)
二、峰值检测电路原理
顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。
其效果如下如(MS画图工具绘制):
根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。
如下图(TINA TI 7.0绘制):
这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。
通过简单仿真(输入正弦信号5kHz,2V pp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。
而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):
从仿真结果来看,同等测试条件下,检测误差大大减小。
但我们知道,超级二极管有一个缺点,就是Vi从负电压变成正电压的过程中,为了闭合有二极管的负反馈回路,运放要结束负饱和状态,输出电压要从负饱和电压值一直到(Vi+V二极管)。
这个过程需要花费时间,如果在这个过程,输入发生变化,输出就会出现失真。
因此,我们需要在电路中加入防止负饱和的措施,也就是说,我们输入部分的处理环节
要能够尽量跟随输入信号的电压,并提供一个尽可能理想的二极管,同时能够提供有效的输
入缓冲。
一个经典的电路是通过在输入和输出间增加一个二极管,这有点类似于电压钳位(T
INA TI 7.0绘制):
经过以上的简单描述,其实我们已经可以将峰值检测器分成几个模块:(1)模拟峰值存储器,即电容器;(2)单向电流开关,即二极管;(3)输入输出缓冲隔离,即运算放大器;(4)电容放电复位开关(这部分非必须,如:如果电容值选取合适,两次采样时间间隔较大)。
三、几种峰值检测电路
采用二极管和电容器组成的峰值检测电路有多种实现方式和电路形式,在TI等公司的一下文献中,我们可以查到不少。
就自己个人实验的结果而言,二极管、电容、放大器组成的峰值检测器有效工作频率范围在500kHz一下,对100m
Vpp以上的输入信号检测误差可达到3%以内,后文中3.2的曲线图能较有代表性地反映这类峰值检测器的性能。
3.1 分立二极管电容型
TI公司的Difet 静电计级运算放大器OPA128的DATASHEET里提供了一个很好用的峰值
检测器:
TINA TI的仿真结果如下:
值得一提的是,该图有几个用心之处:(1)采用FET运放提高直流特性,减小偏置电流OPA128的偏置电流低至75fA!;(2)将场效应管当二极管用,可以有效减小反向电流同时增加第一个运放的输出驱动力;(3)小电容应该是防止自激的。
实际应用中可以用TL082双运放和1N4148来代替场效应管,性能价格比较高,详见/billyev ans/193257/message.aspx。
3.2无二极管型
无二极管型是利用比较器输出的开集BJT或者开漏MOSFET代替二极管,进一步提高性
价比,TI公司的LM311的DATASHEET提供了一个非常简单的峰值检测器电路:
该图作者使用TINA TI 7.0和Multisim10.1均未仿真成功,但电路应该是没有问题的,只是性能得看实验。
重点一提的是EDN英文版上有篇文章(见参考文献)提供了一种非常棒的PKD:
性能如下:
该图作者用TINA未能仿真成功,Mutisim10.1仿真成功:
性能如下:
3.3集成峰值检测电路
ADI公司有一款集成的PKD——PKD01,本质也是二极管加电容的结构,性能不详。
四、其他结构峰值检测电路
在高速的环境下,二极管和电容结构的电路就无法适应了,作者见过FPGA+DAC+高速比较器组成的峰值检测器,原理很简单,就是将DAC输出和输入信号作比较,FPGA负责DAC
电压输出控制和比较器输出检测。
用两个运算放大器就能完成对非正弦波形的峰值和谷值电压的检测。
在峰值期间,D1导通使C1充电达到峰值,峰值过后由于R1的限流作用,C1放电微乎其微,到下一次峰值再度充电,维持峰值电压输出。
谷值检测与上面相反,谷值期间C2经过D2迅速地放电到谷值电压,而其它时间仅通过D4、R2微量放电,C2上始终保持谷值电压。
C1、C2上串接的1Ω电阻用于防止过冲。