利用Hopfield神经网络求解如下非线性规划问题

合集下载

Hopfield神经网络模型与学习算法

Hopfield神经网络模型与学习算法
2015/8/11 15
2.9.3 Hopfield 神经网络的MATLAB实 现

MATLAB中与Hopfield网络有关的重要函数和功能
satlins( ) 功能 对称饱和线性传递函数 格式 A = satlins(N) A输出向量矩阵; N是由网络的输入向量组成的 S*Q矩阵,返回的矩阵 A与N的维数大小一致,A 的元素取值位于区间[0,1]内。当N中的元素介 于-1和1之间时,其输出等于输入;当输入值小 于-1时返回-1;当输入值大于1时返回1。
N N u dv d E d E dvi wij v j i I i i dt dvi dt Rj dt i 1 j 1
将下式代入得:
N dui u Ci wij v j I i i dt Ri j 1 N dE du dv Ci ( i ) i dt dt dt i 1
•在任一时刻,部分神经元或全部神经元的状 态同时改变。
2015/8/11
7
2.9.1离散Hopfield 神经网络

串行(异步)工作方式运行步骤 第一步 对网络进行初始化; 第二步 从网络中随机选取一个神经元; 第三步 按式(2-5)求出该神经元i的输出; 第四步 按式 (2-6) 求出该神经元经激活函数 处理后的输出,此时网络中的其他神经元的输 出保持不变; 第五步 判断网络是否达到稳定状态,若达 到稳定状态或满足给定条件则结束;否则转到 第二步继续运行。
2015/8/11
16
2.9.3 Hopfield 神经网络的MATLAB实 现 例2-8 设印刷体数字由10 10点阵构成,就

是将数字分成很多小方块,每个方块就对应数 字的一部分,构成数字本部分的方块用 1 表示, 空白处用-1表示。试设计一个Hopfield网络, 能够正确识别印刷体的数字。

利用Hopfield神经网络解决TSP问题

利用Hopfield神经网络解决TSP问题

神经元个数 h 输入向量维数 , 出向量维数 , 输
m。 三= h m , 三= , 三 , > 7 三l z l 。
神经元 : 入 、 出、 输 输 隐藏 状 态变 化 : 同步 、 非 同步

收稿 日期 :0 9 l 月 3 修 回日期 :0 9 1 月 2 20 年 1 11 5, 20 年 2 8日
神 经 网络 ;Ho f l ; S pid网 T P问 题 e
T 13 P 8
说明了算法 的有效性 。
关键词
中图 分 类 号
Usng Ho fed Ne wo k t o v P o l m i p i l t r o S l e TS Pr b e
S n z e , o gYu h n Li a u Lin Qu F y n u o g’
e a p es o t e a alb l y o h s ag rt m. x m l h w h v i i t ft i l o i a i h K y W o d n u a ewo k,Ho f l e wo k,TS r b e e rs e rl t r n pidnt r e P p o lm
总第 1 0 9 期 2 1 年第 4 00 期
舰 船 电 子 工 程
S i e to i n i e rn h p Elc r n c E g n e
利 用 Ho f l 经 网 络 解 决 T P 问题 p i d神 e S
宋玉珍 刘 ’’ '
加 而发 生指数 性“ 炸” 因而对 于 优化 问题 的高速 爆 , 计算 特别 有效 。
联接 : 经元之 间都 是互 联 的 " 每个 神 经元 神 都 没有 到 自身 的联接 'i 。  ̄i J—O

第7-1Hopfield网络的训练及其应用

第7-1Hopfield网络的训练及其应用
Hopfield网络的训练及其应用
山东轻工业学院 数理学院 李彬
Introduction
利用神经网络解决组合优化问题是神经网络应用的一个 重要方面. 将Hopfield 网络应用于求解组合优化问题,把目标函数 转化为网络的能量函数,把问题的变量对应到网络的状态,这 样,当网络的能量函数收敛于极小值时,问题的最优解也随之 求出. 由于神经网络是并行计算的,其计算量不随维数的增加 而发生指数性“爆炸”,因而对于优化问题的高速计算特别 有效.
1 离散Hopfield 神经网络
串行(异步)工作方式运行步骤
Step1 对网络进行初始化;
Step2 从网络中随机选取一个神经元; Step3 求出该神经元i的输入; Step4 求出该神经元经激活函数处理后的输出,此时网 络中的其他神经元的输出保持不变; Step5 判断网络是否达到稳定状态,若达到稳定状态或 满足给定条件则结束;否则转到第二步继续运行.
1 离散Hopfield 神经网络
网络模型表示法
W x2 x1 o1
o2
… … xn
on
图1 最基本的Hopfield网( n = m = h)
1 离散Hopfield 神经网络
联接:神经元之间都是互联的wij,每个神经元都没有 到自身的联接wii=0. 神经元个数h,输入向量维数n,输出向量维数m. h≥n, h≥m,n≥1,m≥1. 神经元:输入、输出、隐藏. 状态变化:非同步、同步. 输入向量:X=(x1,x2,…,xn). 输出向量:O=(o1,o2,…,om).
3.Hopfield模型与组合优化求解
在组合优化问题中,让神经元的某状态表示某命题 的真假,而神经元之间的连接则表示两命题的关联程度,
正为相互支持,负为相互否定.

第五章霍普菲尔德(Hopfield)神经网络

第五章霍普菲尔德(Hopfield)神经网络
Hopfield模型属于反馈型神经网络,从计算的角度上讲,它 具有很强的计算能力。这样的系统着重关心的是系统的稳定 性问题。稳定性是这类具有联想记忆功能神经网络模型的核 心,学习记忆的过程就是系统向稳定状态发展的过程。 Hopfield网络可用于解决联想记忆和约束优化问题的求解。
反馈网络(Recurrent Network),又称自联 想记忆网络,如下图所示:
x1
x2
x3
y1
y2
y3
图 3 离散 Hopfield 网络
考虑DHNN的节点状态,用yj(t)表示第j个神经元,即节点j在时 刻t的状态,则节点的下一个时刻t+1的状态可以求出如下:
1, u j (t) 0 y j (t 1) f[u j (t)] 0, u j (t) 0 u j (t) w i, j y i (t) x j θ j
在不考虑外部输入时,则有
j 1,2,..., n
n y j (t 1) f w i, j yi (t) θ j i 1
•通常网络从某一初始状态开始经过多次更新后才可 能达到某一稳态。使用异步状态更新策略有以下优点: (1)算法实现容易,每个神经元节点有自己的状态 更新时刻.不需要同步机制; (2)以串行方式更新网络的状态可以限制网络的输 出状态,避免不同稳态以等概率出现。 一旦给出HNN的权值和神经元的阈值,网络的状态转 移序列就确定了。
5.2 离散Hopfield网络
• Hopfield最早提出的网络是神经元的输出为 0-1二值的NN,所以,也称离散的HNN (简称为 DHNN).
–下面分别讨论DHNN的
• • • • 结构 动力学稳定性(网络收敛性) 联想存储中的应用 记忆容量问题

霍普菲尔德(Hopfield)神经网络概述

霍普菲尔德(Hopfield)神经网络概述

Hopfield网络的提出
1982年,美国加州理工学院物理学家 J .J.Hopfield教授提出一种单层反馈神经网 络,后来人们将这种反馈网络称为Hopfield 网络。 1985年,J.J.Hopfield和D.W.Tank用模拟电 子线路实现了Hopfield网络,并用它成功地 求解了旅行商问题(TSP)的求解方法。
Hopfield网络的特点
单层反馈式网络
x1 o1 W x2 o2 … … xn
on
Hopfield网络的特点
灌输式学习方式 灌输式学习中网络权值不是通过训练逐渐 形成的,而是通过某种设计方法得到的。 权值一旦设计好就一次灌输给网络,不再 变动, 这种学习是死记硬背式的,而不是训练式 的。
Hopfield网络的特点
权值一旦设计好就一次灌输给网络不再变动考虑了输入与输出的延迟因素hopfield网络的分类离散型hopfield神经网络dhnn连续型hopfield神经网络chnnnetnetnetnet组合优化tsp问题组合优化问题就是在给定约束条件下求出使目标函数极小或极大的变量组合问题
霍普菲尔德(Βιβλιοθήκη opfield Hopfield) Hopfield 神经网络概述
旅行商问题(TSP)
旅行商问题(Traveling Saleman Problem, TSP)又译为旅行推销员问题、货郎担问题, 简称为TSP问题,是最基本的路线问题。
是指一名推销员要拜访多个地点时,如何 找到在拜访每个地 TSP问题点一次后再回 到起点的最短路径。
旅行商问题(TSP)
旅行商问题(TSP)
Hopfield网络的应用
分类、模式识别
联想记忆
各神经元的状态在运行中不断更新

Python利用神经网络解决非线性回归问题实例详解

Python利用神经网络解决非线性回归问题实例详解

Python利⽤神经⽹络解决⾮线性回归问题实例详解本⽂实例讲述了Python利⽤神经⽹络解决⾮线性回归问题。

分享给⼤家供⼤家参考,具体如下:问题描述现在我们通常使⽤神经⽹络进⾏分类,但是有时我们也会进⾏回归分析。

如本⽂的问题:我们知道⼀个⽣物体内的原始有毒物质的量,然后对这个⽣物体进⾏治疗,向其体内注射⼀个物质,过⼀段时间后重新测量这个⽣物体内有毒物质量的多少。

因此,问题中有两个输⼊,都是标量数据,分别为有毒物质的量和注射物质的量,⼀个输出,也就是注射治疗物质后⼀段时间⽣物体的有毒物质的量。

数据如下图:其中Dose of Mycotoxins 就是有毒物质,Dose of QCT就是治疗的药物。

其中蓝⾊底纹的数字就是输出结果。

⼀些说明由于本⽂是进⾏回归分析,所以最后⼀层不进⾏激活,⽽直接输出。

本⽂程序使⽤sigmoid函数进⾏激活。

本⽂程序要求程序有⼀定的可重复性,隐含层可以指定。

另外,注意到本⽂将使⽤数据预处理,也就是将数据减去均值再除以⽅差,否则使⽤sigmoid将会导致梯度消失。

因为数据⽐较⼤,⽐如200,这时输⼊200,当sigmoid函数的梯度就是接近于0了。

与此同时,我们在每⼀次激活前都进⾏BN处理,也就是batch normalize,中⽂可以翻译成规范化。

否则也会导致梯度消失的问题。

与预处理情况相同。

程序程序包括两部分,⼀部分是模型框架,⼀个是训练模型第⼀部分:# coding=utf-8import numpy as npdef basic_forard(x, w, b):x = x.reshape(x.shape[0], -1)out = np.dot(x, w) + bcache = (x, w, b)return out, cachedef basic_backward(dout, cache):x, w, b = cachedout = np.array(dout)dx = np.dot(dout, w.T)# dx = np.reshape(dx, x.shape)# x = x.reshape(x.shape[0], -1)dw = np.dot(x.T, dout)db = np.reshape(np.sum(dout, axis=0), b.shape)return dx, dw, dbdef batchnorm_forward(x, gamma, beta, bn_param):mode = bn_param['mode']eps = bn_param.get('eps', 1e-5)momentum = bn_param.get('momentum', 0.9)N, D = x.shaperunning_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))out, cache = None, Noneif mode == 'train':sample_mean = np.mean(x, axis=0)sample_var = np.var(x, axis=0)x_hat = (x - sample_mean) / (np.sqrt(sample_var + eps))out = gamma * x_hat + betacache = (gamma, x, sample_mean, sample_var, eps, x_hat)running_mean = momentum * running_mean + (1 - momentum) * sample_meanrunning_var = momentum * running_var + (1 - momentum) * sample_varelif mode == 'test':scale = gamma / (np.sqrt(running_var + eps))out = x * scale + (beta - running_mean * scale)else:raise ValueError('Invalid forward batchnorm mode "%s"' % mode)bn_param['running_mean'] = running_meanbn_param['running_var'] = running_varreturn out, cachedef batchnorm_backward(dout, cache):gamma, x, u_b, sigma_squared_b, eps, x_hat = cacheN = x.shape[0]dx_1 = gamma * doutdx_2_b = np.sum((x - u_b) * dx_1, axis=0)dx_2_a = ((sigma_squared_b + eps) ** -0.5) * dx_1dx_3_b = (-0.5) * ((sigma_squared_b + eps) ** -1.5) * dx_2_bdx_4_b = dx_3_b * 1dx_5_b = np.ones_like(x) / N * dx_4_bdx_6_b = 2 * (x - u_b) * dx_5_bdx_7_a = dx_6_b * 1 + dx_2_a * 1dx_7_b = dx_6_b * 1 + dx_2_a * 1dx_8_b = -1 * np.sum(dx_7_b, axis=0)dx_9_b = np.ones_like(x) / N * dx_8_bdx_10 = dx_9_b + dx_7_adgamma = np.sum(x_hat * dout, axis=0)dbeta = np.sum(dout, axis=0)dx = dx_10return dx, dgamma, dbeta# def relu_forward(x):# out = None# out = np.maximum(0,x)# cache = x# return out, cache### def relu_backward(dout, cache):# dx, x = None, cache# dx = (x >= 0) * dout# return dxdef sigmoid_forward(x):x = x.reshape(x.shape[0], -1)out = 1 / (1 + np.exp(-1 * x))cache = outreturn out, cachedef sigmoid_backward(dout, cache):out = cachedx = out * (1 - out)dx *= doutreturn dxdef basic_sigmoid_forward(x, w, b):basic_out, basic_cache = basic_forard(x, w, b)sigmoid_out, sigmoid_cache = sigmoid_forward(basic_out)cache = (basic_cache, sigmoid_cache)return sigmoid_out, cache# def basic_relu_forward(x, w, b):# basic_out, basic_cache = basic_forard(x, w, b)# relu_out, relu_cache = relu_forward(basic_out)# cache = (basic_cache, relu_cache)## return relu_out, cachedef basic_sigmoid_backward(dout, cache):basic_cache, sigmoid_cache = cachedx_sigmoid = sigmoid_backward(dout, sigmoid_cache)dx, dw, db = basic_backward(dx_sigmoid, basic_cache)return dx, dw, db# def basic_relu_backward(dout, cache):# basic_cache, relu_cache = cache# dx_relu = relu_backward(dout, relu_cache)# dx, dw, db = basic_backward(dx_relu, basic_cache)## return dx, dw, dbdef mean_square_error(x, y):x = np.ravel(x)loss = 0.5 * np.sum(np.square(y - x)) / x.shape[0]dx = (x - y).reshape(-1, 1)return loss, dxclass muliti_layer_net(object):def __init__(self, hidden_dim, input_dim=2, num_classes=2, weight_scale=0.01, dtype=np.float32, seed=None, reg=0.0, use_batchnorm=True): self.num_layers = 1 + len(hidden_dim)self.dtype = dtypeself.reg = regself.params = {}self.weight_scale = weight_scalee_batchnorm = use_batchnorm# init all parameterslayers_dims = [input_dim] + hidden_dim + [num_classes]for i in range(self.num_layers):self.params['W' + str(i + 1)] = np.random.randn(layers_dims[i], layers_dims[i + 1]) * self.weight_scaleself.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))if e_batchnorm and i < (self.num_layers - 1):self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1]))self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))self.bn_params = [] # listif e_batchnorm:self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]def loss(self, X, y=None):X = X.astype(self.dtype)mode = 'test' if y is None else 'train'# compute the forward data and cachebasic_sigmoid_cache = {}layer_out = {}layer_out[0] = Xout_basic_forward, cache_basic_forward = {}, {}out_bn, cache_bn = {}, {}out_sigmoid_forward, cache_sigmoid_forward = {}, {}for lay in range(self.num_layers - 1):# print('lay: %f' % lay)W = self.params['W' + str(lay + 1)]b = self.params['b' + str(lay + 1)]if e_batchnorm:gamma, beta = self.params['gamma' + str(lay + 1)], self.params['beta' + str(lay + 1)]out_basic_forward[lay], cache_basic_forward[lay] = basic_forard(np.array(layer_out[lay]), W, b)out_bn[lay], cache_bn[lay] = batchnorm_forward(np.array(out_basic_forward[lay]), gamma, beta, self.bn_params[lay])layer_out[lay + 1], cache_sigmoid_forward[lay] = sigmoid_forward(np.array(out_bn[lay]))# = out_sigmoid_forward[lay]else:layer_out[lay+1], basic_sigmoid_cache[lay] = basic_sigmoid_forward(layer_out[lay], W, b)score, basic_cache = basic_forard(layer_out[self.num_layers-1], self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)]) # print('Congratulations: Loss is computed successfully!')if mode == 'test':return score# compute the gradientgrads = {}loss, dscore = mean_square_error(score, y)dx, dw, db = basic_backward(dscore, basic_cache)grads['W' + str(self.num_layers)] = dw + self.reg * self.params['W' + str(self.num_layers)]grads['b' + str(self.num_layers)] = dbloss += 0.5 * self.reg * np.sum(self.params['W' + str(self.num_layers)] * self.params['b' + str(self.num_layers)])dbn, dsigmoid = {}, {}for index in range(self.num_layers - 1):lay = self.num_layers - 1 - index - 1loss += 0.5 * self.reg * np.sum(self.params['W' + str(lay + 1)] * self.params['b' + str(lay + 1)])if e_batchnorm:dsigmoid[lay] = sigmoid_backward(dx, cache_sigmoid_forward[lay])dbn[lay], grads['gamma' + str(lay + 1)], grads['beta' + str(lay + 1)] = batchnorm_backward(dsigmoid[lay], cache_bn[lay])dx, grads['W' + str(lay + 1)], grads['b' + str(lay + 1)] = basic_backward(dbn[lay], cache_basic_forward[lay])else:dx, dw, db = basic_sigmoid_backward(dx, basic_sigmoid_cache[lay])for lay in range(self.num_layers):grads['W' + str(lay + 1)] += self.reg * self.params['W' + str(lay + 1)]return loss, gradsdef sgd_momentum(w, dw, config=None):if config is None: config = {}config.setdefault('learning_rate', 1e-2)config.setdefault('momentum', 0.9)v = config.get('velocity', np.zeros_like(w))v = config['momentum'] * v - config['learning_rate'] * dwnext_w = w + vconfig['velocity'] = vreturn next_w, configclass Solver(object):def __init__(self, model, data, **kwargs):self.model = modelself.X_train = data['X_train']self.y_train = data['y_train']self.X_val = data['X_val']self.y_val = data['y_val']self.update_rule = kwargs.pop('update_rule', 'sgd_momentum')self.optim_config = kwargs.pop('optim_config', {})self.lr_decay = kwargs.pop('lr_decay', 1.0)self.batch_size = kwargs.pop('batch_size', 100)self.num_epochs = kwargs.pop('num_epochs', 10)self.weight_scale = kwargs.pop('weight_scale', 0.01)self.print_every = kwargs.pop('print_every', 10)self.verbose = kwargs.pop('verbose', True)if len(kwargs) > 0:extra = ', '.join('"%s"' % k for k in kwargs.keys())raise ValueError('Unrecognized argements %s' % extra)self._reset()def _reset(self):self.epoch = 100self.best_val_acc = 0self.best_params = {}self.loss_history = []self.train_acc_history = []self.val_acc_history = []self.optim_configs = {}for p in self.model.params:d = {k: v for k, v in self.optim_config.items()}self.optim_configs[p] = ddef _step(self):loss, grads = self.model.loss(self.X_train, self.y_train)self.loss_history.append(loss)for p, w in self.model.params.items():dw = grads[p]config = self.optim_configs[p]next_w, next_config = sgd_momentum(w, dw, config)self.model.params[p] = next_wself.optim_configs[p] = next_configreturn lossdef train(self):min_loss = 100000000num_train = self.X_train.shape[0]iterations_per_epoch = max(num_train / self.batch_size, 1)num_iterations = self.num_epochs * iterations_per_epochfor t in range(int(num_iterations)):loss = self._step()if self.verbose:# print(self.loss_history[-1])passif loss < min_loss:min_loss = lossfor k, v in self.model.params.items():self.best_params[k] = v.copy()self.model.params = self.best_params第⼆部分import numpy as np# import datadose_QCT = np.array([0, 5, 10, 20])mean_QCT, std_QCT = np.mean(dose_QCT), np.std(dose_QCT)dose_QCT = (dose_QCT - mean_QCT ) / std_QCTdose_toxins = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])mean_toxins, std_toxins = np.mean(dose_toxins), np.std(dose_toxins)dose_toxins = (dose_toxins - mean_toxins ) / std_toxinsresult = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878], [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],[0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],[0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])mean_result, std_result = np.mean(result), np.std(result)result = (result - mean_result ) / std_result# create the train datatrain_x, train_y = [], []for i,qct in enumerate(dose_QCT):for j,toxin in enumerate(dose_toxins):x = [qct, toxin]y = result[i, j]train_x.append(x)train_y.append(y)train_x = np.array(train_x)train_y = np.array(train_y)print(train_x.shape)print(train_y.shape)import layers_regressionsmall_data = {'X_train': train_x,'y_train': train_y,'X_val': train_x,'y_val': train_y,}batch_size = train_x.shape[0]learning_rate = 0.002reg = 0model = layers_regression.muliti_layer_net(hidden_dim=[5,5], input_dim=2, num_classes=1, reg=reg, dtype=np.float64)solver = layers_regression.Solver(model, small_data, print_every=0, num_epochs=50000, batch_size=batch_size, weight_scale=1, update_rule='sgd_momentum', optim_config={'learning_rate': learning_rate})print('Please wait several minutes!')solver.train()# print(model.params)best_model = modelprint('Train process is finised')import matplotlib.pyplot as plt# %matplotlib inlineplt.plot(solver.loss_history, '.')plt.title('Training loss history')plt.xlabel('Iteration')plt.ylabel('Training loss')plt.show()# predict the training_datapredict = best_model.loss(train_x)predict = np.round(predict * std_result + mean_result, 1)print('Predict is ')print('{}'.format(predict.reshape(4, 10)))# print('{}'.format(predict))# observe the error between the predict after training with ground truthresult = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],[0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],[0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],[0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])result = result.reshape(4, 10)predict = predict.reshape(4, 10)error = np.round(result - predict, 2)print('error between predict and real data')print(error)print('The absulate error in all data is %f' % np.sum(np.abs(error)))print('The mean error in all data is %f' % np.mean(np.abs(error)))# figure the predict map in 3Dx_1 = (np.arange(0, 20, 0.1) - mean_QCT) / std_QCTx_2 = (np.arange(0, 200, 1) - mean_toxins) / std_toxinsx_test = np.zeros((len(x_1)*len(x_2), 2))index = 0for i in range(len(x_1)):for j in range(len(x_2)):x_test[int(index), 0] = x_1[int(i)]x_test[int(index), 1] = x_2[int(j)]index += 1test_pred = best_model.loss(x_test)predict = np.round(test_pred * std_result + mean_result, 3)from mpl_toolkits.mplot3d import Axes3Dx_1, x_2 = np.meshgrid(x_1 * std_QCT + mean_QCT, x_2 * std_toxins + mean_toxins)figure = plt.figure()ax = Axes3D(figure)predict = predict.reshape(len(x_1), len(x_2))ax.plot_surface(x_1, x_2, predict, rstride=1, cstride=1, cmap='rainbow')plt.show()# 最后本⽂将进⾏⼀些预测,但预测效果不是很好# question 2: predict with givendose_QCT_predict = np.ravel(np.array([7.5, 15]))dose_QCT_predict_ = (dose_QCT_predict - mean_QCT)/ std_QCTdose_toxins_predict = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])dose_toxins_predict_ = (dose_toxins_predict - mean_toxins) / std_toxinstest = []for i,qct in enumerate(dose_QCT_predict):for j,toxin in enumerate(dose_toxins_predict):x = [qct, toxin]test.append(x)test = np.array(test)print('Please look at the test data:')print(test)test = []for i,qct in enumerate(dose_QCT_predict_):for j,toxin in enumerate(dose_toxins_predict_):x = [qct, toxin]test.append(x)test = np.array(test)test_pred = best_model.loss(test)predict = np.round(test_pred * std_result + mean_result, 1)print(predict.reshape(2, 10))更多关于Python相关内容感兴趣的读者可查看本站专题:《》、《》、《》、《》及《》希望本⽂所述对⼤家Python程序设计有所帮助。

基于Hopfield神经网络的非线性系统故障估计方法

基于Hopfield神经网络的非线性系统故障估计方法
o n Ho i l e r lNe wo k pf e d N u a t r
W a g an h n Zh s an,Zha g n Enln,Zh g u gua g ,Fe g an i an H a n n Ji
( c o l fI f r to ce c n g n e i g,No t e s e n Un v r i S h o n o ma i n S i n e a d En i e rn o r h a t r ie st y,S e y n h n a g,1 0 0 1 0 4,Ch n ) ia
f u t e tma i n p o l m o v r e o t es a i t r b e o h e u r n e r l e wo k .Th r — a l s i t r b e i c n e t d t h t b l y p o l m ft e r c r e t u a t r s o s i n n ep o
()= ()一 A ()一 ,( ()“ £)一 f f x £ , ()
B x() ( ) () g( t , £ ) f () 2
Y()= C £ £ x()+ Dg( , ) ( ) x() () £
令 参 数 的估 计值 为 () 则 含估 计 值 的方 () ,
ce l i h e r i g c p biiy a d s a lt he r f r c r e e a n t inty usng t e l a n n a a l n t biiy t o y o e u r nt n ur l e wor s, t p r me e t k he a a t r
J1 01 u .2 1

霍普菲尔德Hopfield神经网络

霍普菲尔德Hopfield神经网络
1、激活函数为线性函数时
2、激活函数为非线性函数时
当激活函数为线性函数时,即
vi ui 此时系统的状态方程:为
U AU B 其中A 1 WB。
R 此系统的特征方程为:
AI 0 其中I为单位对角阵。通过解对出的特征值1,2,,r 的不同情况,可以得不到同的系统解的情况。
对于非线性系统进展稳定性分析,方 法之一就是在系统的平衡点附近对系统 进展线性化处理。也可以基于网络的能 量函数。下面介绍Hopfield能量函数法。
W XK
XK
T
I
k1
m
wij xik xkj
k1
wii 0 i 1~ n
例 设计DHNN,并考察其联想性能。
1 1 1 X T 1 1 1
1 1 1
解:
W
3
XK
XK
T
I
0 1
1 1 0 3
K 1
1 3 0
验证: Y1 sgn WX 1 T !
Y2 sgn WX 2 T 2
在MATLAB中,用函数newhop.m来设计一 个Hopfield网络:
net = newhop(T)
权值设计的方法
权值设计的方法有外积法、伪逆法、正
交设计法等。下面仅介绍外积法,它是
一种比较简单,在一定条件下行之有效
给的定方输法X入 。K, K 1~ m, X Rn, I为nn单位阵,则
m
DHNN的稳定工作点
Xi(t+1)= Xi(t)=sgn(∑j=1nWijXi(t)-θi ) i=1,2,…,n
网络的稳定性分析
DHNN的能量函数定义为:
E
1 2
n i1
n
w ij x i x j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档