根据图象回答问题课件
合集下载
《建立反比例函数模型解决实际问题》PPT课件

所以若要在一个工作日 ( 8 小时 ) 内完成,
则每小时要比原来多加工 15 个零件.
总结
在生活与生产中,如果某些问题的两个量成反 比例关系,那么可以根据这种关系建立反比例函数 模型,再利用反比例函数的有关知识解决实际问 题.
总结
运用反比例函数解决实际问题时常用的两种思路: (1) 通过问题提供的信息,明确变量之间的函数关系, 设出相应的函数表达式,再根据题目条件确定函 数表达式中的待定系数的值; (2) 已知反比例函数模型的表达式,运用反比例函数 的图象及性质解决问题.
你从中发现了什么规律 ? 同样多的橡皮泥,搓的长条越细,得到的长度越长 .
知识点 1 实际问题中的反比例函数关系式
对现实生活中的许多问题,我们都可以通过建立反 比例函数模型来加以解决.
例1 某机床加工一批机器零件, 如果每小时加工 30 个, 那么 12 小时可以完成. (1) 设每小时加工 x 个零件,所需时间为 y 小时,写 出 y 关于 x 的函数表达式; (2) 若要在一个工作日 ( 8 小时 ) 内完成, 则每小时 要比原来多加工几个零件?
1. 《典中点》P13T3 2. 《典中点》P13T4
知识点 2 实际问题中的反比例函数图象
反比例函数的图象在实际生活中的应用问题,体 现了数形结合思想及函数思想, 是初中数学常用的思 想方法.
例2 【中考·宜昌】 某学校要种植一块面积为100 m2 的长 方形草坪,要求相邻两边长均不小于 5 m,则草坪的 一边长 y ( 单位:m ) 随其邻边长 x ( 单位:m ) 的变 化而变化的图象可能是图中的( C )
第一章 反比例函数
1.3 反比例Байду номын сангаас数的应用
第1课时 建立反比例函数模型 解决实际问题
函数及其图象PPT课件

s
s
s
s
t
t
O
O
A
B
O
t
C
t
O D
3、(09湖州市)如图,一只蚂蚁从 O 点出发,沿着扇形 OAB 的边缘匀速
爬行一周,设蚂蚁的运动时间为 t ,蚂蚁到 O 点的距离为 S ,则 S 关于 t 的函数图象大致为( C )
A
S
S
S
S
O
O
tO
tO
tO
t
第(3)题
B
A.
B.
C.
D.
4、(09内江市)打开某洗衣机开关(洗衣机内无水),在洗涤衣服时,洗衣机 经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗
(2)(09大连)函数y x 2 中,自变量x的取值范围是 ( D )
A.x < 2 B.x ≤2 C.x > 2 D.x≥2
x x 2
(3)(09哈尔滨)函数y=
的自变量 的取值范围是_____________.
x2
x (4)(09齐齐哈尔)函数 y x 的自变量 的取值范围是_x_≥_0_且__x_≠1 ___. x 1
5000
4000 3000 2000
乙
甲
A
1000
O
5
10 15
20 x(分)
(3)解: x 15 时,甲的路程是: 25015 5000 1250 米,
乙的路程是2000米, 两人相距:2000 — 1250 = 750米
在15<x<20的时段内, 乙速:2000÷(20 — 15)= 400 米/分 两人速度之差: 400 — 250 = 150米/分
热身练习:
二次函数的图象和a、b、c的那些事课件 66

___直 ___线 ___x______2b_a__,顶点坐标是
______2b_a__,_4_a__c4_a___b_2_____。
练习:1、函数y=2x2+4x-6的开口方向向__上___;
对称轴是__直_线__x_=_-_1__;顶点坐标是_(_-_1_,-_8_)__;
与x轴的交点坐标为_(_-3_,_0_)_与_(_1_,_0_) _,与y轴的交
二次函数与一元二次方程有着内在联系。欲 判断二次函数的图象与x轴有无交点,只要 判断相应一元二次方程有无实数根,即判断 △=b2-4ac的正负,具体如下:
△>0 抛物线与x轴有两个交点;
△=0 抛物线与x轴有一个交点;
△<0 抛物线与x轴无交点。
例 已知抛物线y= ax2+bx+c如图, y 试确定a、b、c及△=b2-4ac 的符号,并说明理由。
y
o
x
2、二次函数y= ax2+bx+c中,a>0,b>0,c=0,
则其图象的顶点坐标在( C )
A、第一象限
B、第二象限
C、第三象限
D、第四象限
3、二次函数y= ax2+bx+c和一次函数y=ax+b的
图象在同一坐标系内大致图象是( C )
y
y
y
y
Ox
O
x
O
x
O
x
A
B
C
D
4、二次函数y=ax2+bx+c的图象经过原点和 第一、第二、第三象限,则有( B ) A、a>0,b<0, c=0 B、a>0,b>0, c=0 C、a<0,b>0, c=0 D、a>0,b<0, c=0
______2b_a__,_4_a__c4_a___b_2_____。
练习:1、函数y=2x2+4x-6的开口方向向__上___;
对称轴是__直_线__x_=_-_1__;顶点坐标是_(_-_1_,-_8_)__;
与x轴的交点坐标为_(_-3_,_0_)_与_(_1_,_0_) _,与y轴的交
二次函数与一元二次方程有着内在联系。欲 判断二次函数的图象与x轴有无交点,只要 判断相应一元二次方程有无实数根,即判断 △=b2-4ac的正负,具体如下:
△>0 抛物线与x轴有两个交点;
△=0 抛物线与x轴有一个交点;
△<0 抛物线与x轴无交点。
例 已知抛物线y= ax2+bx+c如图, y 试确定a、b、c及△=b2-4ac 的符号,并说明理由。
y
o
x
2、二次函数y= ax2+bx+c中,a>0,b>0,c=0,
则其图象的顶点坐标在( C )
A、第一象限
B、第二象限
C、第三象限
D、第四象限
3、二次函数y= ax2+bx+c和一次函数y=ax+b的
图象在同一坐标系内大致图象是( C )
y
y
y
y
Ox
O
x
O
x
O
x
A
B
C
D
4、二次函数y=ax2+bx+c的图象经过原点和 第一、第二、第三象限,则有( B ) A、a>0,b<0, c=0 B、a>0,b>0, c=0 C、a<0,b>0, c=0 D、a>0,b<0, c=0
《函数的图象》课件优秀(完整版)6

(1)7,12
(2)这一天内,上海在哪段时间比北京气温高?在哪段时间 试想,如果乌龟没有追求胜利的信念,没有渴望成功的意志,他是绝对不会有战胜兔子、战胜自我的那一刻的。
设点R运动的路程为x,∆MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到( )
比北京气温低? (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗?
检测提升
4、小明外出散步,从家走了20分钟后到达了一个离 家900米的报亭,看了10分钟的报纸然后用了15分钟 返回到家.则下列图象能表示小明离家距离与时间关 系的是( )
检测提升
5、下图表示一辆汽车的速度随时间变化的情况:
速度/(千米/时) 90 60 30
0 4 8 12 16 20 24 时间/分
展示反馈
下图是某一天北京与上海的气温随时间变化的图象. (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗?
图(2)反映了这个过程中,小明离他家的距离 y与时间 x之间的对应关系.
2、柿子熟了,从树上落下来.
如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点沿A→B→C→D→A运动一周,则P的纵坐标Y与点P走过的路程S之
通过图象,我们可以数形结合地研究函数.
展示反馈
1、下列四个图象中,不表示某一函数图 设点R运动的路程为x,∆MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到( )
5、下图表示一辆汽车的速度随时间变化的情况: (2)高:0~7,12~24
象的是( ) (2)小明吃早餐用了多少时间?
检测提升
1、周一的升旗仪式上,同学们看到匀速上升的旗子,
能反应其高度与时间关系图象大致是(
时借助两个一次函数图象解决有关问题课件

借助一次函数图象解决不等式问题
不等式解集
通过观察一次函数的图象 ,可以大致确定不等式解 集的范围。
借助图象分析
利用一次函数的图象可以 直观地分析不等式的解集 情况。
转化为方程式
将不等式转化为方程பைடு நூலகம், 然后借助一次函数的图象 求解。
借助一次函数图象解决方程问题
方程解的几何意义
方程的解可以看作是两个函数图 象的交点。
观察法求解
通过观察两个函数的图象,可以大 致确定方程解的情况。
转化为不等式
将方程转化为不等式,然后借助一 次函数的图象求解。
04
案例分析
案例一:两个一次函数图象的交点求解
总结词
了解函数图象交点的含义,掌握求解两个一次函数图象交 点的方法。
详细描述
对于两个一次函数 y=kx+b (1) 和 y=mx+n (2),它们的 交点就是解方程组 y=kx+b 和 y=mx+n。通过解方程组 ,可以得到交点的横坐标和纵坐标。
总结词
理解不等式的解法及其与一次函数图象的关系,掌握运用 一次函数图象解不等式的方法。
总结词
能够根据实际问题的需要,灵活运用不等式的解法与一次 函数图象的关系解决问题。
详细描述
在具体应用中,可以根据实际问题的需要,灵活运用不等 式的解法与一次函数图象的关系解决问题。例如,在解决 实际问题时,可以通过画出相应的图象,直观地得到问题 的解集等。
在实际生活中的应用
针对不同学生的实际情况,进 行分层教学,更好地满足不同 学生的需求
鼓励学生多做习题,熟能生巧 ,提高解题能力
THANKS
感谢您的观看
详细描述
首先,需要明确函数图象交点的含义和重要性。交点是指 两个或多个函数图象在同一直角坐标系中相交的点。求解 交点就是求出这些函数图象在某一点处的横坐标和纵坐标 。
函数的图象(课件)八年级数学下册(人教版)

边上有一动点P沿A→B→C→D→A运动一周,则点P的纵
坐标y与点P走过的路程s之间的函数关系用图象表示大致
是( D )
9.如图是某地一天气温随时间的变化的图象,根据图象回答,在这一天中:
10
(1)_____时,气温最高为______;____时,气温最低为_______;
2
14℃
-2℃
(2)14时的气温是______;_______时的气温是8℃;
(1)这一天内,上海与北京何时气温相同?
(2)这一天内,上海在哪段时间比北京气温高?在哪段时间比北京气温低?
例3.在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的
函数.画出这些函数的图象:
(1) y=x+0.5
6
(2) y= (x>0)
(1) y=x+0.5
解:Ⅰ.列表:
Ⅱ.描点:以表中各组对应值作为点的坐标,
2×1-1≠3
2×2.5-1=4
【点睛】把点的横坐标(即自变量x)的取值代入解析式求出相应的函数值y
∴
点A,B不在函数y=2x-1的图象上,点C在函
值,看是否等于该点的纵坐标,如果等于,则该点在函数图象上;如不在,
数y=2x-1的图象上.
则该点不在函数图象上.
例3.下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回
30千米;
(2)他到达离家最远的地方是什么时间?
离家多远?
(2)到达离家最远的时间是12时,离家30
千米;
10.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离
与时间的变化情况.(如图所示)
(3)11时到12时他行驶了多少千米?
坐标y与点P走过的路程s之间的函数关系用图象表示大致
是( D )
9.如图是某地一天气温随时间的变化的图象,根据图象回答,在这一天中:
10
(1)_____时,气温最高为______;____时,气温最低为_______;
2
14℃
-2℃
(2)14时的气温是______;_______时的气温是8℃;
(1)这一天内,上海与北京何时气温相同?
(2)这一天内,上海在哪段时间比北京气温高?在哪段时间比北京气温低?
例3.在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的
函数.画出这些函数的图象:
(1) y=x+0.5
6
(2) y= (x>0)
(1) y=x+0.5
解:Ⅰ.列表:
Ⅱ.描点:以表中各组对应值作为点的坐标,
2×1-1≠3
2×2.5-1=4
【点睛】把点的横坐标(即自变量x)的取值代入解析式求出相应的函数值y
∴
点A,B不在函数y=2x-1的图象上,点C在函
值,看是否等于该点的纵坐标,如果等于,则该点在函数图象上;如不在,
数y=2x-1的图象上.
则该点不在函数图象上.
例3.下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回
30千米;
(2)他到达离家最远的地方是什么时间?
离家多远?
(2)到达离家最远的时间是12时,离家30
千米;
10.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离
与时间的变化情况.(如图所示)
(3)11时到12时他行驶了多少千米?
函数图像的三种表示方法用ppt课件

一、解析法
• 一种豆子每千克售2元,则豆子总的售价 y (元)与所售豆子的数量 x(千克)之间有 何关系?
定义: 用含有表示自变量的字母的代数式 表示因变量的式子称为解析法。
.
例 :已知两个函数的解析式分 别为 y=2x-5和 y= 1 x 2
2 当x=-4时求这两个函数的函数 值
.
二、列表法:用列表的方法表示函数关系的 方法称为列表法。
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
.
下图是自动测温仪记录的图象, 它反映了北京的春季某天气温T 如何随时间t的变化而变化.你从 图象中得到了哪些信息?
图象法: 用画图象表示函数关系的方法称为 图象法。
.
函数的三种表示方法
• 解析法:用数学表达式表示两个变量之间 的对应关系.
• 列表法:列出表格来表示两个变量之间的 对应关系.
• 图象法:用图象表示两个变量之间的对应 关系.
.
三种表示方法的特点
解析法的特点:简明、全面地概括了变 量间的关系;可以通过用解析式求出任意 一个自变量所对应的函数值。 列表法的特点:不通过计算就可以直接 看出与自变量的值相对应的函数值。 图像法的特点:直观形象地表示出函数 的变化情况 ,有利于通过图形研究函数的 某些性质。
.
下图反映的过程是小明从家去菜地浇水,又去玉米
地锄草,然后回家. 其中x表示时间,y表示小明离
Байду номын сангаас
他家的距离.
根据图象回答下列问题:
3用51用42.了..了菜多玉菜 多 小小地 少米地 少 明明离 时地离 时 给给玉 间离小 间 玉菜米 ?小明 ? 米地地明家地浇多家多锄水远多远草用?远?用了小?小了多明小明多少从明走长时菜从到时间地玉菜 间?到米地 ?玉地米走地回家 平均速度是多少?
• 一种豆子每千克售2元,则豆子总的售价 y (元)与所售豆子的数量 x(千克)之间有 何关系?
定义: 用含有表示自变量的字母的代数式 表示因变量的式子称为解析法。
.
例 :已知两个函数的解析式分 别为 y=2x-5和 y= 1 x 2
2 当x=-4时求这两个函数的函数 值
.
二、列表法:用列表的方法表示函数关系的 方法称为列表法。
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
.
下图是自动测温仪记录的图象, 它反映了北京的春季某天气温T 如何随时间t的变化而变化.你从 图象中得到了哪些信息?
图象法: 用画图象表示函数关系的方法称为 图象法。
.
函数的三种表示方法
• 解析法:用数学表达式表示两个变量之间 的对应关系.
• 列表法:列出表格来表示两个变量之间的 对应关系.
• 图象法:用图象表示两个变量之间的对应 关系.
.
三种表示方法的特点
解析法的特点:简明、全面地概括了变 量间的关系;可以通过用解析式求出任意 一个自变量所对应的函数值。 列表法的特点:不通过计算就可以直接 看出与自变量的值相对应的函数值。 图像法的特点:直观形象地表示出函数 的变化情况 ,有利于通过图形研究函数的 某些性质。
.
下图反映的过程是小明从家去菜地浇水,又去玉米
地锄草,然后回家. 其中x表示时间,y表示小明离
Байду номын сангаас
他家的距离.
根据图象回答下列问题:
3用51用42.了..了菜多玉菜 多 小小地 少米地 少 明明离 时地离 时 给给玉 间离小 间 玉菜米 ?小明 ? 米地地明家地浇多家多锄水远多远草用?远?用了小?小了多明小明多少从明走长时菜从到时间地玉菜 间?到米地 ?玉地米走地回家 平均速度是多少?
《一次函数的应用》PPT课件 湘教版

建立一次函数模型解决 实际问题
1. 说一说本节课的收获。 2. 你还存在哪些疑惑?
y 8 6 4 2 –3 –2 –1 O 1 2 3 x
湘教·八年级下册
建立一次函数模型解决预测 y 类型的实际问题
O
x
王大强和张小勇两人比赛跑步,路程和时间的关系如图: 根据图象回答下列问题: (1)王大强和张小勇谁跑的快?
请每位同学伸出一只手掌,把大拇指与小拇指尽量张开, 两指间的距离称为指距. 已知指距与身高具有如下关系:
(1)求身高y与指距x之间的函数表达式; (2)当李华的指距为22cm时,你能预测他的身 高吗?【教材P136页】
(1)解:上表3组数据反映了身高y与指距x之间的对应关系, 观察这两个变量之间的变化规律,当指距增加1cm,身高就 增加9cm,可以建立一次函数模型.
当t=8时,y=3.73,这说明1908年的撑杆跳高纪录也 符合公式①.
公式①就是奥运会早期男子撑杆跳高纪录y与时间t 之间的函数表达式.
能利用公式预测1912年奥运 会的男子撑杆跳高纪录吗?
y=0.05×12+3.33=3.93 实际上,1912年奥运会男子撑杆跳高纪录约为3.93m. 这表明用所建立的函数模型,在已知数据邻近做预测, 结果与实际情况比较吻合.
【教材P134页】
(1)试写出A,B两种方案所付话费y(元)与通话时间t(min)之间 的函数表达式;
解:A方案:y = 25+0.36t(t≥0) , B方案:y = 0.5t(t≥0) .
(2)分别画出这两个函数的图象;
y /元
45 40 35 30 25 20 15 10 5
y = 25+0.36t(t≥0) y = 0.5t(t≥0)
1. 说一说本节课的收获。 2. 你还存在哪些疑惑?
y 8 6 4 2 –3 –2 –1 O 1 2 3 x
湘教·八年级下册
建立一次函数模型解决预测 y 类型的实际问题
O
x
王大强和张小勇两人比赛跑步,路程和时间的关系如图: 根据图象回答下列问题: (1)王大强和张小勇谁跑的快?
请每位同学伸出一只手掌,把大拇指与小拇指尽量张开, 两指间的距离称为指距. 已知指距与身高具有如下关系:
(1)求身高y与指距x之间的函数表达式; (2)当李华的指距为22cm时,你能预测他的身 高吗?【教材P136页】
(1)解:上表3组数据反映了身高y与指距x之间的对应关系, 观察这两个变量之间的变化规律,当指距增加1cm,身高就 增加9cm,可以建立一次函数模型.
当t=8时,y=3.73,这说明1908年的撑杆跳高纪录也 符合公式①.
公式①就是奥运会早期男子撑杆跳高纪录y与时间t 之间的函数表达式.
能利用公式预测1912年奥运 会的男子撑杆跳高纪录吗?
y=0.05×12+3.33=3.93 实际上,1912年奥运会男子撑杆跳高纪录约为3.93m. 这表明用所建立的函数模型,在已知数据邻近做预测, 结果与实际情况比较吻合.
【教材P134页】
(1)试写出A,B两种方案所付话费y(元)与通话时间t(min)之间 的函数表达式;
解:A方案:y = 25+0.36t(t≥0) , B方案:y = 0.5t(t≥0) .
(2)分别画出这两个函数的图象;
y /元
45 40 35 30 25 20 15 10 5
y = 25+0.36t(t≥0) y = 0.5t(t≥0)