一次函数的图像的应用课件.ppt

合集下载

第3课时两个一次函数图象的应用PPT课件(北师大版)

第3课时两个一次函数图象的应用PPT课件(北师大版)
A.小亮骑自行车的平均速度是12km/h B.小明比小亮提前0.5小时到达滨湖湿地公园 C.小明在距学校12km处追上小亮 D.9:30小明与小亮相距4km
解:A.根据函数图象小亮去滨湖湿地公园所用时间为10﹣8=2小时, ∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
B.由图象可得,小明到滨湖湿地公园对应的时间t=9.5,小亮 到滨湖湿地公园对应的时间t=10,10﹣9.5=0.5(小时), ∴小明比小亮提前0.5小时到达滨湖湿地公园,故正确;
6000
y=1000x ,
l1 销售收入
5000
4000
3000
2000
1000
O 1 23 4 5 6
x/吨
l2 反应了公司产品的销售成本与销售量的关系
l2对应的函数表达式是 y=500x+2000 .
y/元
6000
l2 销售成本
5000
4000
3000
2000
1000
O 1 23 4 5 6
x/吨
讲授新课
一 两个一次函数的应用
l1 反应了某公司产品的销售收入与销售量的关系,根据
图意填空:当销售量为2吨时,销售收入= 2000 元,
y/元
6000
l1
销售收入
5000
4000
3000
2000
1000
O 1 2 345 6
x/吨
l1 反应了公司产品的销售收入与销售量的关系.
l1对应的函数表达式是 y/元
l2 A l1 B
解:视察图象,得 当t=0时,B距海岸 0海里,即S=0, 故 l1 表示 B 到海岸 的距离与追赶时间 之间的关系;

一次函数图象的应用课件

一次函数图象的应用课件
一次函数图象的应 用ppt课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况

02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述

《一次函数的图象》一次函数PPT课件

《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右


逐渐
,
上升

即y的值随x的增大而增大;

②直线
,y=-4x向右逐渐

即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.

2
增大

分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x

精美获奖课件54《一次函数的图像》课件

精美获奖课件54《一次函数的图像》课件

精美获奖课件54《一次函数的图像》课件一、教学内容1. 一次函数的一般形式:y=kx+b(k≠0,k、b为常数)。

2. 一次函数的图像:一条穿过原点的直线,斜率为k,截距为b。

3. 一次函数的斜率:表示直线的倾斜程度,k>0时,直线向上倾斜;k<0时,直线向下倾斜。

4. 一次函数的截距:表示直线与y轴的交点,b>0时,直线在y轴上方;b<0时,直线在y轴下方。

5. 一次函数的图像与系数的关系:k>0时,图像在第二、四象限;k<0时,图像在第一、三象限;b>0时,图像在y轴上方;b<0时,图像在y轴下方。

二、教学目标1. 让学生掌握一次函数的一般形式,理解斜率和截距的概念及意义。

2. 培养学生利用一次函数的图像解决实际问题的能力。

3. 培养学生合作学习、积极探究的学习态度。

三、教学难点与重点1. 教学难点:一次函数图像的斜率和截距的求法及应用。

2. 教学重点:一次函数图像与系数的关系。

四、教具与学具准备1. 教具:黑板、粉笔、投影仪、电脑。

2. 学具:教材、练习册、三角板、直尺、彩笔。

五、教学过程1. 实践情景引入:利用投影仪展示生活中的一些实际问题,如购物、出行等,引导学生发现这些问题都可以用一次函数来表示。

2. 例题讲解:以教材第54页例1为例,讲解一次函数的图像特点及斜率和截距的求法。

3. 随堂练习:让学生独立完成教材第54页的练习题,教师巡回指导。

4. 小组讨论:让学生分小组讨论一次函数图像与系数的关系,引导学生发现规律。

6. 课堂小结:让学生复述本节课所学内容,检查学生对知识的掌握情况。

7. 布置作业:让学生完成教材第55页的课后作业。

六、板书设计1. 一次函数的一般形式:y=kx+b(k≠0,k、b为常数)。

2. 一次函数的图像:一条穿过原点的直线,斜率为k,截距为b。

3. 一次函数的斜率:表示直线的倾斜程度,k>0时,直线向上倾斜;k<0时,直线向下倾斜。

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500

冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)

冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)
(1)旅客最多可免费携带多少千 克行李? 30千克
(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,

一次函数的图像(第1课时)同步课件

一次函数的图像(第1课时)同步课件
列表法: 把自变量的值和对应的函数值列成表格来表示函数关系的方法叫做列表法.
函数表达式法: 表示两个变量之间函数关系的式子称为函数表达式.
图像法: 在平面直角坐标系中,以函数的自变量的值为横坐标、对应的函数值为纵
坐标的点所组成的图形叫做这个函数的图像.
2.什么是一次函数?
一般地,形如y=kx+b(k、b 是常数,且k≠0)的函数,叫做一次函数,其中x是自变量,
y
y=-2x+3 5
解:
=+,
(2)
=-+ ,




=

=


.
∴交点

坐标为( , )

y=x+2
4
3
2
1
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5
-1
-2
-3
-4
-5
x
新知巩固
2.已知一次函数y=x+2与y=-2x+3 ,
(3)求这两条直线与坐标轴所围成的图形面积.
在平面直角坐标系中描出相应的点;
③连线:顺次连接描出的各点.
5
4
3
2
1
-2 -1 O 1 2 3 4 5
-1
-2
-3
x
尝试与交流
仿照上述方法,在下图中画出y=-x+2的图像.
判断点(0,2)、(2,0)、(3,1)、(-1,3)是否在此函数图像上.
y
①列表:
x
··· -2
-1
0
1
2
···
y
···
3
3
3
平行
6. 直线y=2x+3与直线y=2x-1的位置关系是________.

一次函数的图象(第1课时)课件

一次函数的图象(第1课时)课件
上的点(x,y)都满足关系式y=–2x+5吗?
y
9 8 7 6 5 4 3 2 1
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
x
–1
A
–2
–3
B
–4
–5
–6
–7
答:(1)点B坐标(4,-3) 当x=4时,y=-2x4+5=-3
故(4,-3)满足关系式 y=-2x+5
(2)一次函数y=–2x+5的 图象上的点(x,y)满足关系 式y=–2x+5
北师大版 八年级 上册(第四章)
3.一次函数的图象
(第1课时)
引例
已知一次函数y=2x , <1> 当x= 1 时,y = 2
当x= 2 时,y = 4 <2> 当x= –3时,y = – 6
当x= –4时,y = – 8 <3>以x为点的横坐标,相应的y的值为点 的纵坐标,可得点
(1, 2) ;(2,4) ;(-3,-6);(-4,-8) <4>再找一些满足同样要求的点
<4>作函数的一般步骤应怎样?
答: A:一次函数y=-3x的图象应是一条直线
B:作函数的一般步骤:列表,描点,连线
例 作出一次函数y=-3x的图象
解: x … -2 -1 0 1 2 … y
y=2x+1 … 6 3 0 -3 -6 … 5
4
作函数图象的一般步骤: 列表:找到一些满足条件的点。 描点:以表中各组对应值作为点的坐
1 2 34567 8
A
B
答: (1)当x=3, y=–2x3+5=-1 所对应的点(3,–1)在一次函数 y=–2x+5的图象上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、一次函数,正比例函数的概念及联系
若两个变量x、y间的关系式可以表示成y=kx+b(k,b 为常数,b≠0)的形式,则称y是x的一次函数。X是自 变量,y是因变量。 当b=0时,即y=kx时,称y是x的正比例函数
3、函数图象的概念
把一个函数的自变量x与对应的因变量y的值分别作为点的 横坐标和纵坐标,在直角坐标系内描出它的对应点,所有 这些点组成的图形叫做该函数的图象。
第六章:一次函数
一、本章知识内容
1、函数,一次函数的概念 2、一次函数图象的概念及特征 3、确定一次函数表达式 4、一次函数图象的应用。
二、本章知识网络结构图
丰富的现实背景
函数
一次函数
函数表达式
图象
函数表达式的确定
图象的应用
三、知识点回顾
1、函数的概念
一般地,在某个变化过程中,有两个变量x和y,如果 给定一个x值,相应地就确定了一个y值,那么称y是x 的函数,其中x是自变量,y是因变量。
1200 1000
800 600 400 200
O
10
20
30
40
60 t/天
例2 . 某种摩托车的油箱最多可储油10升,加满油后, 油箱中的剩余油量y(升)与摩托车行驶路程x(千米) 之间的关系,如图所示:根据图象回答下列问题
y/升
10 9 8 7 6 5 4 3 2 1
1 油箱汽油可供摩托车行驶 多少千米?
Y(元)
10 6
A
60 80
x (公斤)
例5. 某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂 量服用,那么每毫升血液中含药量y(微克)随时间x(时)变化情况如图所示,当 成人按规定剂量服药后.
(1)服药后 时,血液中含药量最高,达每毫升 微克,接着逐步衰减.
(4)当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小。
5、函数y=k1x+b1与y=k2x+b2的位置关系
当k1 ≠ k2,两直线相交; 当k1 ≠ k2,b1=b2时,两直线相交于y轴上同一点;
当k1=k2,b1≠b2时,两直线平行。
6、一次函数的应用
四、复习题
1、在函数y=2x中,函数y随自变量x的增大__________。
2、已知一次函数y=kx+5过点P(-1,2),则k=_____。
3、已知一次函数y=2x+4的图像经过点(m,8),则m= ________。
4、已知y与x成正比例,且当x=1时,y=2,那么当x=3时, y=_________。
5、一弹簧,不挂重物时,长6cm,挂上重物后,重物每增 加1kg,弹簧就伸长0.25cm,但所挂重物不能超过10kg,则 弹簧总长y(cm)与重物质量x(kg)之间的函数关系式为 ___________。
设表达式为y=kx+b,
得-2k+b=0 ①
b=1

把②代入①得 k=0.5
议一议:
一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系? (1)一元一次方程0.5x+1=0的解为
x=-2,一次函数y=0.5x+1包括许多点. 因此0.5x+1=0是y=0.5x+1的特殊情况. (2)当一次函数y=0.5x+1的函数值为0时,相应的自变量 的值即为方程0.5x+1=0的解. 函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的 解.
4、一次函数图象的特征(y=kx+b,b≠0)
(1)不过原点,和两坐标轴相交的直线。
当k>0,b>0时,图象经过一、二、三象限;
当k>0,b<0时,图象经过一、三、四象限;
当k<0,b>0时,图象经过一、二、四象限;
当k<0,b<0时,图象经过二、三、四象限。
(2)作图象时,需描两个点。
(0,b)和(
(3)弹簧的长度是24cm时,所挂物体的质量是多少?
y/cm
20
A
8
0 5 10 15
x/kg
例4. 某地长途汽车客运公司规定旅客可随身携 带一定重量的行李,如果超过规定,则需要购 买行李票,行李票费用y(元)是行李重量x(公 斤)的一次函数,图象如图所示 求:(1)从图中可以获取哪些信息
(2)旅客最多可免费携带行李的公斤数.
b k
,0)
(3)当k>0时,y的值随x的增大而增大;
当k<0时,y的值随x的增大而减小。
正比例函数的图象特点(y=kx)
(1)正比例函数的图象都经过坐标原点 的直线。
(2)作y=kx的图象时,除原点外还需找
一点。
一般找(1,k)点 。
(3)当k>0时,k的值越大,函数图象与x 轴正方向所成的锐角越大。图象越靠近y轴
6、已知y-3与x成正比例,有x=2时,y=7。 (1)写出y与x之间的函数关系式。 (2)计算x=4时,y的值。 (3)计算y=4时,x的值。
7、已知一次函数y=kx+b的图像与y=2x+1的交点的 横坐标为 2,与直线 y=-x+8的交点的纵坐标为 - 7,求 直线的表达式。
8、某图书馆开展两种方式的租书业务:一种是使用会员 卡,另一种是使用租书卡,使用这两种卡租书,租书金额 y(元)与租书时间x(天)之间的关系如下图所示。
(1)分别写出用租书卡和会 y/天 员卡租书金额y(元)与租书 时间x(天)之间的关系式。 50
(2)两种租书方式每天的收 20
费是多少元?
O
租书卡 会员卡
100 x/天
1 2
Ⅲ.课堂练习
看图填空:
(1)当y=0时, x= -2 ; (2)直线对应的函数表达式 是y=0.5x+1 解:
直线过(-2,0)和(0,1)
例1. 由于持续高温和连日无雨,某水库的蓄水量随着时间的增 加而减少,干旱持续的时间t(天)与蓄水量v(立方万米)的关系 如图。
(1)干旱持续10天,蓄水量为多少?持续20天呢?
(2)蓄水量小于400立方万米时,将发出严重干旱警报,多少天 后将发出严重干旱警报?
(3)v/立按方万照米这个规律,预计持续干旱多少天水库将干涸?
2 摩托车每行驶100千米消耗 多少升汽油?
3 油箱中的剩余油量小于1升 时,摩托车将自动报警, 行驶多少千米后,摩托车 将自动报警?
0 100 200 300 400 500
x/千米
例3:弹簧的长度y (cm)与所挂物体的质量x (kg)的关系 是一次函数,图象如左图所示,观察图象回答:
(1)弹簧不挂物体时的长度是多少?从图中还可知道什么? (2) y与x之间的函数关系式为?
相关文档
最新文档