赵凯华所编《电磁学》第二版标准答案
赵凯华所编《电磁学》第二版问题详解

第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
---------------------------------------------------------------------------------------------------------------------§1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
赵凯华所编《电磁学》第二版答案之欧阳美创编

第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
---------------------------------------------------------------------------------------------------------------------§1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁学第二版习题答案第一章

求两板间的场强。
解: 由图中所示: eE cos 300 = mg cos 600
其中: Eq = T cos 600 mg = T cos 300 解之得: E = mg tg300
e 1.3.3 一个电子射入强度是 5×103 N/C,方向竖直享受的均匀电场,电子的初速度为107 m/s 与水平 面所夹的入射角为 300(见附图),不考虑重力的影响,求:
答案:无外场时,对球外而言是正确的。
1.5 附图中 A 和 B 为两个均匀点电体,S 为与 A 同心的球面,试问: (1)S 面的通量与 B 的位置及电荷是否有关? (2)S 面上某点的电场强度与 B 的位置及电荷是否有关? (3)可否用高斯定理求出 S 面上一点的场强?为什么?
答案:(1)无关 (2) 有关 (3)不能(导体球)、可以(介质球)。 场强叠加原理应用到有导体的问题时,要注意,带电导体单独存在时,有一种电荷分布,它
答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能
1.7 附图中的 S1、S2、S3 及 S4 都是以闭曲线 L 为边线的曲面(曲面法线方向如图所示)。一直 S1 的 E 通量为 Φ1 ,求曲面 S2、S3、和 S4 的 E 通量 Φ2 、 Φ3 及 Φ4 。
答案:始终在内的点
E=0
不变,始终在外的点 E
的半径为1.64 ×10-4 cm,平衡时 E=1.92×105 N/C。求:
(1)一直油的密度为 0.851g/cm3,求油滴代暖和的绝对值。 (2)此值的元电荷 e 的多少倍?
解:(1)略
(2) mg = qE
q = mg = 4π R3ρ g = 8.02×10−19 库仑
E
3E
1.3.5 两个点电荷 q1=4.0uc 和 q2=8.0uc 相距 10cm,求离她们都是 10cm 处的场强 E。
电磁学第二版习题答案2

电磁学第二版习题答案2电磁学 第二版 习题解答电磁学 第二版 习题解答 (2)第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54)第一章1.2.2 两个同号点电荷所带电荷量之和为Q 。
在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为20()4q Q q F r πε-=令力F 对电荷量q 的一队导数为零,即20()04dF Q q qdq rπε--== 得122Q q q ==即取 122Qq q ==时力F 为极值,而 22202204Q q d F dq rπε==<故当122Qq q ==时,F 取最大值。
1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零?解答:要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。
新概念物理教程 电磁学 赵凯华 第二版2版 课后习题答案全解详解

可当作点电荷),求(")! 粒于所受的力;(’)! 粒子的加速度。
解:(")
!
&"
$" + " !#
’" ’’ (’
$ +
%
%& %"" (# %"# !"&%’ ," "+ %)" )$ %"# !"’
%"" %((
(# %"# !"& " &# %"# !"$
)’
%
$ %" (+
%"# !’ %,
’& ,由 " ! ’ 题的结果可知
’"
#
%
" !
!#(
%
!&&+, &)$ ,!
’&
#
%
" !
!#(
%
&+ -& , &
)$ ;
* 点的场强为
[ ] ’
# ’"
!’&
#%
" ! !#
&+ %$ ("
!
" &,
&
%)$
! (
"
" -& ,
&
%)$
[ ( ) ] $%
" ! !#
&+ %$
"
-&$
& %
设两平行线中左边一条带负电右边一条带正电原点取在二者中间场点的坐标为利用书上例题的结果有均匀电场与半径为的半球面的轴线平行试用面积分计算通过此半球面的电通量
电磁学(赵凯华)答案[第1章 静电场]
![电磁学(赵凯华)答案[第1章 静电场]](https://img.taocdn.com/s3/m/98f0250ab7360b4c2e3f641e.png)
1. 有两个相距为2a,电荷均为+q的点电荷。
今在它们连线的垂直平分线上放置另一个点电荷q',q'与连线相距为b。
试求:(1)q'所受的电场力;(2)q'放在哪一位置处,所受的电场力最大?解:解法一用直角系分解法求解。
取直角坐标系,两q连接的中点为坐标原点O,如图所示。
(1) 由库仑定律可知,两电荷q施加给q’的电场力F1和F2的大小分别为:F1和F2分别在X轴和Y轴上的投影为:于是电荷q’所受的合力F在X轴方向的分量为:因此,电荷q’所受的合电力F的为在Y轴方向的分量,大小为:方向沿Y轴方向。
(2) 根据q’所受的电力F=Fj,设式中b为变量,求F对变量b的极值,有:可得:得:由于:所以,当q’放在处时,所受的电场力最大。
解法二本题也可以直接用矢量合成法求解。
(1) 根据库仑定律,q’所受的电力F1和F2分别为有电场力叠加原理可知,q’所受的合力F为:此结果与解法一相同。
如果选取的电荷q’与q同号,F方向与Y轴同向;如果q’与q异号,F方向与Y轴反向。
(2) 同解法一(略)。
2. 如图所示,在边长为a的正方形的4个顶点上各有一带电量为q的点电荷。
现在正方形对角线的交点上放置一个质量为m,电量为q0(设q0与q同号)的自由点电荷。
当将q0沿某一对角线移动一很小的距离时,试分析点电荷q0的运动情况。
解: 如图所示,取坐标轴OX,原点O在正方形的中心,顶点上的点电荷到O电的距离为。
沿X轴方向使q0有一小位移x(x<<a), 左右两个点电荷q对q0的作用力Fx(1)为:因为x<<a,故x<<r,所以:Fx(1)的方向沿X轴负向。
而上、下两个q对q0的作用力Fx(2)为:由上述分析可知,q0所受的合力为:Fx = Fx (1) + Fx(2)方向沿X轴负向。
这表明q0所受的电场力为一线形恢复力,则q0在这个作用力下作简谐振动。
有牛顿定律可知:可得q0在O点附近简谐振动的角频率ω和周期T为3 如图(a)所示,有一无限长均匀带电直线,其电荷密度为+λ(1)另外,在垂直于它的方向放置着一根长为L的均匀带电线AB,其线电荷密度为+λ(2)试求她们间的相互作用力。
赵凯华电磁学及课后习题答案
电场线起始于正电荷或无穷 远,止于负电荷或无穷远
应用:直线
应用:平面
34推广
应用:球面
续41
应用:球体
比较结果
§4 电势及其梯度
静电保守力
续45
点电荷系
续47
保守力小结
环路定理
电势能
续51
点电荷例
电势
电势差
叠加原理
续56
简例
电势计算法
第一章
静电场
§1 静电场的基本现象 和基本规律
电荷守恒定律
真空库仑定律
续库仑定律
§2 电场 电场强度
第二节
电场强度
点电荷的场强
点电荷系场强
电偶极子场强
带电体的场强
带电直线场强
续16
续17
带电平面场强
带电平的场强
续19
两个常用公式
带电圆环场强
续22
带电圆环场强
带电圆盘场强
1 C
1 C1
1 C2
1 Ck
电容器的电场能
电容器的能量
电容器带电时具有能量,实验如下:
. K.
a. b
将K倒向a 端 电容充电 再将K到向b端
C
R
灯泡发出一次强的闪光!
能量从哪里来?
电容器释放。
问题:当电容器带有电量Q、相应的电压为U时, 所具有的能量W=?
电容器的电场能
W 1 Q2 2C
C的大小
(1)衡量一个实际的电容器的性能主要指标 耐压能力
(2)在电路中,一个电容器的电容量或耐压能力不够时,
可采用多个电容连接:
C1
如增大电容,可将多个电容并联:
C2
赵凯华所编《电磁学》第二版标准答案
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁学答案第二章
× 由(① — ②)
μ 0σ eω R
2
可得
(a < R ) (a > R )
2 3 μ 0σ eω R B= 3 2 μ 0σ eω R R 3 3 a
或
μ 0Q ω 6π R B= μ 0Q ω R 3 3 6π R a
(a < R ) (a > R )
若已知 电量Q
#
(a > b > 0 )
(a > b )
( a > b > 0)
dθ ∫ a + b cos θ =
1 a 2 b2
ta n θ
在 0 2π 上 不 连 续
ta n 1 x
π 的 主 值 在 0, 2
)
P. 148, 2-40 【解】:参见右图, ⑴ eυ × B ,向东偏; ⑵
1T=10 4 Gauss ) (
π × (15 × 10
4
3
)
2
⑵ 最大力矩
M max = =
π π
4
nlID2 B ×100 × 30 × 2.0 × 15 ×10
4 = 4.24N m
(
3 2
)
× 4.0
P. 147, 2-33 【解】:参见右图, 左右两半受力均沿x方向 左半边
d F1 x = I 2 d lB1 cos θ
x
h R
x = R R2 h2 = 3mm
⑷ 像素同时向东偏,不影响看电视.
P. 149, 2-47 【证】: 轨道半径 则 频率(转/秒) 即
D mυ = 2 eB eBD υ= 2m
υ f = πD
eB f = 2π m
电磁学第二版答案 (3)
电磁学第二版答案第一章:电磁场的基本概念和电场定律1.问题:什么是电磁场?电磁场与电荷的关系是什么?答案:电磁场是由电荷产生的一种物质性质,可以通过施加力量或引力相互作用的方式来描述。
电磁场与电荷之间通过电场和磁场来相互作用。
电荷产生的电场是电力线从正电荷指向负电荷的线,而磁场则是呈环状绕着电流或磁体产生的。
2.问题:什么是库仑定律?请描述其数学形式。
答案:库仑定律是描述电荷之间相互作用力的定律。
其数学形式可以表示为:$F = k \\frac{Q_1Q_2}{r^2}$其中,F表示电荷之间的力,Q1和Q2分别表示两个电荷,r表示两个电荷之间的距离,k为库仑常数。
3.问题:什么是电场强度?电场强度的计算公式是什么?答案:电场强度表示单位正电荷在某点上受到的力,是描述电场场强性质的物理量。
其计算公式可以表示为:$E = \\frac{F}{q}$其中,E表示电场强度,F表示力,q表示测试电荷。
4.问题:什么是高斯定律?请描述其数学形式。
答案:高斯定律描述了电场与电荷之间的关系。
其数学形式可以表示为:$\\phi_E = \\frac{Q}{\\varepsilon_0}$其中,$\\phi_E$表示电场的通量,Q表示电荷量,$\\varepsilon_0$为真空介电常数。
第二章:静电场1.问题:什么是电势能?请描述其计算公式。
答案:电势能是指电荷在电场中的位置所具有的能量。
其计算公式为:PE=qV其中,PE表示电势能,q表示电荷量,V表示电势。
2.问题:什么是电势?请描述其计算公式。
答案:电势是描述电场中某一点电能状态的物理量。
其计算公式为:$V = \\frac{U}{q}$其中,V表示电势,U表示电势能,q表示电荷量。
3.问题:什么是电容器?请描述电容器的分类。
答案:电容器是储存电荷的装置,由两个导体之间的绝缘介质(电介质)隔开。
电容器根据结构和工作方式的不同,可以分为电容电器和分布式电容器两种类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章静电场
§1.1 静电的基本现象和基本规律
思考题:
1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?
答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?
答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度
思考题:
1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?
答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?
答:q0不是足够小时,会影响大导体球上电荷的分布。
由于静电感应,大导体球上的正电荷受到排斥而远离P点,而F/q0是导体球上电荷重新分布后测得的P点场强,因此比P点原来的场强小。
若大导体球带负电,情况相反,负电荷受吸引而靠近P点,P点场强增大。
3、两个点电荷相距一定距离,已知在这两点电荷连线中点处电场强度为零。
你对这两个点电荷的电荷量和符号可作什么结论?
答:两电荷电量相等,符号相反。
4、一半径为R的圆环,其上均匀带电,圆环中心的电场强度如何?其轴线上场强方向如何?
答:由对称性可知,圆环中心处电场强度为零。
轴线上场强方向沿轴线。
当带电为正时,沿轴线向外;当带电为负时,沿轴线向内,
-----------------------------------------------------------------------------------------------------------
§1.3 高斯定理
思考题:
1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么?
答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。
因为电力线一般是曲线,若电荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必
定偏离弯曲的电力线。
仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能沿着电力线运动。
若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。
2、空间里的电力线为什么不相交?
答:电力线上任一点的切线方向即为该点场强方向。
如果空间某点有几条电力线相交,过交点对每条电力线都可作一条切线,则交点处的场强方向不唯一,这与电场中任一点场强有确定方向相矛盾。
3、一个点电荷q放在球形高斯面的中心处,试问在下列情况下,穿过这高斯面的电通量是否改变?
(1)如果第二个点电荷放在高斯球面外附近;
(2)如果第二个点电荷放在高斯球面内;
(3)如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。
答:由于穿过高斯面的电通量仅与其内电量的代数和有关,与面内电荷的分布及面外电荷无关,所以
(1);(2);(3)
4、(1)如果上题中高斯球面被一个体积减小一半的立方体表面所代替,而点电荷在立方体的中心,则穿过该高斯面的电通量如何变化?(2)通过这立方体六个表面之一的电通量是多少?
答:(1)立方形高斯面内电荷不变,因此电通量不变;
(2)通过立方体六个表面之一的电通量为总通量的1/6。
即
5、附图所示,在一个绝缘不带电的导体球的周围作一同心高斯面S。
试定性地回答,在将一正点荷q移至导体表面的过程中,
(1)A点的场强大小和方向怎样变化?
(2)B点的场强大小和方向怎样变化?
(3)通过S面的电通量如何变化?
答:由于电荷q的作用,导体上靠近A点的球面感应电荷-q′,远离A点的球面感应等量的+q′,其分布与过电荷q所在点和球心O的联线成轴对称,故±q′在A、B两点的场强E′沿AOB方向。
(1)E=E0+E′,q移到A点前,E0和E′同向,随着q的移近不断增大,总场强EA 也不断增大。
q移过A点后,E0反向,且E0> E′,EA方向与前相反。
随着q的远离A点,E0不断减小,±q′和E′增大,但因E′始终小于E0,所以EA不断减小。
(2)由于q及±q′在B点的场强始终同向,且随着q移近导体球,二者都增大,所以EB不断增大。
(3)q在S面外时,面内电荷代数和为零,故Φ=0;q在S面内时,Φ=q/ε0;当q在S面上时,它已不能视为点电荷,因高斯面是无厚度的几何面,而实际电荷总有一定大小,此时Φ=△q/ε0,△q为带电体处于S面内的那部分电量。
6、有一个球形的橡皮气球,电荷均匀分布在表面上,在此气球被吹大的过程中,下列各处的场强怎样变化?
(1)始终在气球内部的点;(2)始终在气球外部的点;(3)被气球表面掠过的点。
答:气球在膨胀过程中,电荷始终均匀分布在球面上,即电荷成球对称分布,故场强分布也呈球对称。
由高斯定理可知:
始终在气球内部的点,E=0,且不发生变化;
始终在气球外的点,场强相当于点电荷的场强,也不发生变化;
被气球表面掠过的点,当它们位于面外时,相当于点电荷的场强;当位于面内时,E=0,所以场强发生跃变。