解三角形中的中线、角平分线、高线的处理策略
培优提能5 三角形中的中线、高线、角平分线问题

处理与三角形中线有关的问题的常用方法:
(1)利用互补角(如本例中∠ADB与∠CDB互补,其余弦值互为相反数)及余弦定理
求解.
(2)利用中线长定理求解,但要书写其证明过程.
(3)利用向量法求解.
触类旁通 1
在△ABC 中,内角 A,B,C 的对边分别是 a,b,c,已知 b=acos C+ csin A,点 M
是 BC 的中点.
(1)求A的值;
解:(1)因为 b=acos C+ csin A,
根据正弦定理得 sin B=sin Acos C+ sin Csin
A,所以 sin(A+C)=sin Acos C+ sin Csin A,
所以 sin Acos C+cos Asin C=sin Acos C+ sin Csin
( + - )
.
(2)若∠A=,∠ACB 的平分线 CE 与边 AB 相交于点 E,延长 CE 至点 D,使得 CE=DE,求
cos∠ADB.
解:(2)不妨令 AC=3,因为∠ACB= ,可得 AB=3 ,BC=6,又因为 CE 为∠ACB 的平分线,
所以∠ACE=∠BCE=,
·
,联立可得 AM2=(AB2+AC2)
-≤-=,即当且仅当 b=c= 时,中线 AM 的长度可取得最大值.
法二
因为 AM 是 BC 边上的中线,
→
所以=
→
→
+
→
2
2
2
2
八年级数学上册《三角形中的主要线段》教案、教学设计

针对以上学情,本章节教学应注重分层教学,关注学生个体差异,充分激发学生的学习兴趣,提高其合作学习能力,使学生在掌握三角形主要线段知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角形中主要线段(中线、高线、角平分线)的定义及其性质。
(3)选做题和创新与实践题目可根据个人兴趣和能力选择完成,旨在培养学生的探究精神和团队合作能力。
(二)讲授新知,500字
1.教师介绍三角形的中线、高线、角平分线的定义,并通过动态演示和静态图示相结合的方式,让学生直观地理解这些线段的特点。
2.引导学生探索三角形中线、高线、角平分线的性质,如中线将三角形分成面积相等的两个部分,高线与底边垂直,角平分线将角平分等。
3.教师通过具体例题,讲解如何利用三角形的主要线段求解几何问题,并强调解题过程中的注意事项。
5.重视数学思想的渗透,提高学生的逻辑思维能力和解决问题的能力。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示生活中常见的三角形物体,如三角形的警示牌、自行车三角架等,引导学生思考这些三角形物体的稳定性与三角形的主要线段有何关系。
2.学生观察、讨论后,教师提出问题:“三角形中除了边长外,还有哪些重要的线段?这些线段有何作用?”从而引出本节课的主题:三角形中的主要线段。
4.引导学生总结解题方法,培养学生的概括能力和逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习积极性,使其主动投入到三角形相关知识的学习中。
2.培养学生的空间想象能力和直观感知能力,使其能够从几何角度认识和理解世界。
初中数学:三角形中的角平分线、中线、高线和中垂线

一. 教学内容:三角形中的角平分线、中线、高线和中垂线二. 教学内容1. 三角形的角平分线和中线2. 三角形的高线和中垂线3. 角平分线性质定理、中垂线性质定理三. 教学目标和要求1. 理解三角形角平分线、中线、高线和中垂线的概念,并能画出相应的线。
2. 掌握三角形角平分线、中线、高线及中垂线的一些特征,并能在解题中灵活应用。
四. 教学重点、难点1. 重点:角平分线性质定理及中垂线性质定理的运用2. 难点:三角形中线在面积方面的应用,角平分线性质定理、中垂线性质定理的运用是本周难点。
五. 知识要点1. 角平分线性质定理2. 中垂线性质定理3. 三角形中的三条角平分线4. 三角形中的三条中线5. 三角形中的三条高线6. 三角形中三边上的中垂线【典型例题】例1. 如图,△ABC的两条角平分线AD,CE相交于P,PM⊥BC于M,PN ⊥AB于N,则PN=PM,请说明理由。
解:过P作PF⊥AC,垂足为F∵AD平分∠BAC,PN⊥AB,PF⊥AC∴PN=PF (为什么)∵CE平分∠ACB,PM⊥BC,PF⊥AC∴PM=PF∴PM=PN (为什么)例2. 如图,BP、CP分别为△ABC的两个外角的平分线,则点P到△ABC三边的距离相等吗?若相等,请说明理由。
解析:略例3. 已知△ABC ,要把它分成面积相等的6块,且只能画三条线,应怎样分?并说明分法的正确性。
解:分法:分别画△ABC 的三条中线AD 、BE 、CF ,交于P 点,所分得的6块面积相等。
理由:∵AD 为中线∴BD =CD ∴S △PBD =S △PCD 设S △PBD =S △PCD =a同理:可设S △PCE =S △PEA =b ;S △PAF =S △PBF =c ∵AD 为△ABC 的中线 ∴S △ABD =S △ACD 即a+2c =a+2b ∴c =b同理可得a =b ∴a =b =c∴△ABC 三条中线分得的6块三角形面积相等。
人教版八年级上册11.1《与三角形有关的线段》说课稿

3.技术工具:网络资源、在线学习平台等,提供丰富的学习资料,拓展学生的学习视野。
它们在教学中的作用主要有:
1.直观展示几何图形和性质,降低学生的理解难度。
2.提供丰富的学习资源,满足学生的个性化学习需求。
3.创设生动、有趣的学习情境,激发学生的学习兴趣。
人教版八年级上册11.1《与三角形有关的线段》说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级上册11.1《与三角形有关的线段》,它是整个课程体系中几何部分的重要内容,主要介绍了三角形的中线、高线、角平分线等基本概念及其性质。这部分内容是对三角形知识的深入探究,旨在帮助学生巩固对三角形基本概念的理解,并为后续学习相似三角形、解直角三角形等知识打下基础。
(二)新知讲授
在新知讲授阶段,我将采用以下步骤逐步呈现知识点,引导学生深入理解:
1.通过动态PPT或几何画板展示三角形的中线、高线、角平分线的定义和性质,让学生直观地理解这些概念。
2.结合实际例题,讲解中线、高线、角平分线的判定方法和应用,让学生在具体情境中掌握知识。
3.分步骤演示如何准确地画出三角形的中线、高线、角平分线,并指导学生进行动手操作,加深对知识点的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:布置一些基本的画图题目,如画出给定三角形的中线、高线、角平分线,让学生独立完成。
2.提高练习:设计一些综合性的题目,让学生运用所学知识解决实际问题,如求三角形的面积、判断三角形的类型等。
3.小组合作活动:组织小组讨论,让学生共同探究与三角形有关的线段在生活中的应用,培养学生的团队合作能力和创新思维。
三角形的中线、高线、角平分线

三角形的中线、高线、角平分线【考点精讲】三角形的重要线段定义图形表示法说明三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。
1. AD是△ABC的BC边上的高线。
2. AD⊥BC于D。
3.∠ADB=∠ADC=90°。
三角形有三条高,且它们(或它们的延长线)相交于一点,这个交点叫做三角形的垂心。
三角形的中线三角形中,连接一个顶点和它对边中点的线段。
1. AD是△ABC的BC边上的中线。
2. BD=DC=12BC。
三角形有三条中线,都在三角形的内部,且它们相交于一点,这个交点叫做三角形的重心。
三角形的重心在三角形的内部。
三角形的角平分线三角形一个内角的平分线与它的对边相交,连接这1. AD是△AB C的∠BAC的平分线。
2.∠1=∠2=12∠BA C三角形有三条角平分线,都在三角形的内部,且它们相交于一点,这个交点叫做三角形个角的顶点与交点之间的线段。
的内心。
三角形的内心在三角形的内部。
【典例精析】例题1 如图,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE ,其中画对的是_______。
甲 乙 丙 丁思路导航:根据三角形的高是过一个顶点向对边引垂线,顶点与垂足之间的线段是该三角形的高,对各图形作出判断。
答案:丁点评:这是学生在画图时的一个易错点,通过本题理解画高时的两个注意点:一是过哪个点;二是垂直于哪条边。
这道题是过B 点,垂直于AC 边。
例题 2 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形的底边长是______。
思路导航:根据等腰三角形的性质和已知条件求出腰长和底边长,然后根据三边关系进行讨论,即可得出结论。
答案:设等腰三角形的腰长是x cm ,底边是y cm 。
根据题意,得:⎪⎪⎩⎪⎪⎨⎧=+=+212122x y x x 或⎪⎪⎩⎪⎪⎨⎧=+=+122212x y x x , 解得:⎩⎨⎧==178y x 或⎩⎨⎧==514y x根据三角形的三边关系,知:8,8,17不能组成三角形,应舍去。
专题四 三角形中的中线、角平分线、高线处理

专题5 解三角形中的中线、角平分线、高线处理解三角形类问题在考查时除了结合正弦定理,余弦定理,勾股定理设置题目外,往往还和三角形的一些常见元素:中线,角平分线,高线结合在一起考查。
在处理相关题目时,我们除了要充分运用正余弦定理处理边角关系,还要结合角平分线,中线,高线自身的一些性质进行解题。
小专题 中线【知识准备】如图,在△ABC 中,角C B A ,,的对边分别为,,a b c ,D 为BC 的中点 (一)余弦定理法在ABD ∆中,ADB AD a AD a c ∠⋅-+=cos )21(222①在ACD ∆中,)cos()21(222ADB AD a AD a b ∠-⋅-+=π②①+②得)(22222AD BD c b +=+ (二)向量法由于)(21BA BC BD += 所以)cos 2(41222A bc c b AD ++=(三)倍长中线法借助平行四边形性质:平行四边形对角线的平方和等于四边的平方和。
易得2222)2()(2AD BC AB AC +=+ (四)中线公式在△ABC 中,BC 边上的中线和三边有如下关系(可以用上面三种方法推导):2)(2222a c b AD -+=一、余弦定理/倍长中线法【题目】在△ABC 中,角,,A B C 的对边分别为,,a b c(1)若0cos sin =+A b B a ,求角A.(2)若D 为BC 的中点,4==AD BC ,求AC AB +的取值范围.ACDB【解析】(1)由正弦定理0cos sin sin sin =+A B B A所以1tan -=A ,又因为),0(π∈A ,43π=∴A (2)解法一利用余弦定理因为D 为BC 的中点,所以4==AD BC由余弦定理,在ABD ∆中,ADB AB ∠⨯⨯-+=cos 42242222① 在ACD ∆中,)cos(42242222ADB AC ∠-⨯⨯-+=π② ①+②得4022=+AC AB所以54)(222=+≤+AC AB AC AB又因为三角形两边之和大于第三边,所以]54,4(∈+AC AB 解法二利用倍长中线由知识准备知80)(2)2(2222=+=+AC AB BC AD 所以4022=+AC AB所以54)(222=+≤+AC AB AC AB又因为三角形两边之和大于第三边,所以]54,4(∈+AC AB 二、向量法【题目】已知ABC ∆的面积为33,且内角C B A ,,依次成等差数列.(1)若A C sin 3sin =,求边AC 的长;(2)设D 为AC 的中点,求线段BD 长的最小值.【解析】(1)依题内角C B A ,,依次成等差数列,则3π=B所以33sin 21==∆B ac S ABC ,即12=ac 又因为A C sin 3sin =,结合正弦定理得a c 3=,所以6,2==c a 在ABC ∆中,由余弦定理得28cos 2222=-+=B ac c a b 解得72=b ,故72=AC (2)因为D 为AC 的中点,所以)(21BA BC BD +=即943)(41)cos 2(4122222=≥++=∠++=ac ac c a ABC ac c a BD当且仅当c a =时等号成立 所以线段BD 长的最小值为3题后反思以上四种处理中线的方法殊途同归,亦可以相互转化,其中倍长中线法和中线公式在使用时需要证明,不可以直接代入处理大题,因此更实用于小题解答;而向量法则可以进行推广,即点D 为BC 边上的三等分点时,也可用向量处理;余弦定理的处理手段则属于通性通法,适用于我们处理与中线有关的大题。
七年级数学下册《三角形的三条重要线段》教案、教学设计

3.及时反馈原则:要求学生在规定时间内提交作业,教师及时给予评价和指导,帮助学生发现问题、提高自己。
-指出:“在解决几何问题时,我们要学会运用所学的性质,进行严密的逻辑推理。”
3.鼓励学生对所学知识进行自我反思,评价自己的学习效果。
-提问:“你认为自己在今天的课堂上有哪些收获?还有哪些地方需要进一步学习和提高?”
五、作业布置
为了巩固学生对三角形三条重要线段的理解和应用,以及提高他们的问题解决能力,我设计了以下作业:
3.引导学生通过观察、思考、总结,形成解决问题的策略和方法。
-教师鼓励学生在学习过程中积极思考,通过问题驱动的方式,引导学生总结三角形三条重要线段的相关性质。
-学生在教师的引导下,学会运用几何知识进行逻辑推理,形成解题的策略。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的探究欲望。
-通过设置具有挑战性的问题,教师激发学生的学习兴趣,鼓励学生主动探索三角形三条重要线段的秘密。
-学习笔记要体现学生的自主学习和思考过程,有助于他们梳理知识结构。
5.互动交流作业:鼓励学生与家长或同学分享今天学到的三角形知识,讨论解决实际问题的策略。
-通过互动交流,培养学生的沟通能力和团队合作精神。
作业布置时,注意以下原则:
1.分层次原则:针对不同学生的学习水平,提供不同难度的作业,使每个学生都能得到适当的挑战和锻炼。
-通过例题,让学生看到中线如何将三角形分成面积相等的两部分,角平分线如何将角平分,高线如何与底边垂直。
3.解释这些性质在解决几何问题中的应用,并展示解题步骤。
-以具体的几何题目为例,示范如何运用中线、角平分线、高线的性质来解决问题。
鲁教版数学七年级上册第一章第一节认识三角形教案(4)

学习内容1.1认识三角形(4)总第课时周课时主备人学习目标1、了解三角形中线、高线、角平分线的概念及性质。
2、能画出三角形中线、高线、角平分线3,会运用三角形中线、高线、角平分线解决问题重难点能画出三角形中线、高线、角平分线深入理解中线、高线、角平分线实施过程设计主要环节教学内容教学策略教师活动学生活动设计一、自主学习二、讨论展示活动一:数学活动激发兴趣用铅笔支起一张均匀的三角形卡片教师活动:你知道怎样确定这个支撑点的位置吗?活动二:揭示本质、归纳定义在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.如图3,连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC•的边BC上的中线.注:三角形的中线是线段.由定义知:如果AD是△ABC的中线,那么有BD=DC=12BC.活动三:通过画图折纸等方法在教师为其准备的各类三角形上画出它们的中线,你会发现什么?师生行为:学生动手操作、讨论、教师巡视指导,画中线时,可以让学生折纸,也可以让他们用刻度尺.活动结论:三角形的三条中线交于一点.三角形三条中线的交点叫做三角形的重心.活动四:在一张薄纸上画一个三角形,然后画出它的一个内角的平分线.想一相: 1.什么是三角形的角平分线?教师巡回指导教师巡回指导教师展示下列图片学生自主学习师友互助学生快速回答:学生回答三、精讲点拨四、反思拓展五.系统总结 2.三角形的角平分线与一个角的平分线有何区别?你能通过折纸的方法得到它吗?师生行为:学生动手做,讨论,归纳,教师指导.活动结论:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线注意:1.三角形的角平分线是一条线段而不是射线,•它与一个角的平分线不同.2.一个内角的平分线与它的对边是相交的,•这个角的顶点与交点之间的线段才是这个内角的平分线,即三角形的角平分线.如图4,AD是△ABC的角平分线.那么有∠BAD=∠DAC=12∠BAC.活动五:1.四个同学为一个合作小组;每个小组学生分别画出锐角三角形、钝角三角形、•直角三角形的三条角平分线.2.讨论在每个三角形中,这三条角平分线之间有怎样的位置关系.【设计意图】培养学生的动手能力、归纳能力.活动结论:1、任一个三角形都有三条角平分线,且它们都在三角形的内部;2.任一个三角形的三条角平分线相交于一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在ABC ∆中,角,,A B C 所对的边长分别为,,,a b c AB 边上的高23h c =
. (1)若ABC ∆为锐角三角形,且3cos 5
A =,求角
B 的正弦值; (2)若22213,4a b c
C M ab
π++==,求M 的值.· 2.ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,
且(sin )()(sin sin )c C B a b A B -=-+.
(1)求A ; (2)若BC
边上的高h b ==
ABC ∆的面积.
解三角形中中线的处理策略:
3.ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,已知cos (3)cos a B c b A =-.
(1)求cos A 的值;(2)若3b =,点M 在线段BC 上,2,||32AB AC AM AM +==ABC ∆面积.
4.ABC ∆内接于半径为R 的圆,,,a b c 分别是,,A B C 的对边,且222(sin sin )()sin ,3R B A b c C c -=-=, (1)求A ; (2
)若AD 是BC 边上的中线,2
AD =
,求ABC ∆面积. 解三角形中角平分线的处理策略: 5.ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且99cos c a b A -=.
(1)求cos B (2)若角B 的平分线与AC 交于点D ,且1BD =,求
11a c +. 6.ABC ∆中,D 是BC 上的点,AD 平分,2BAC BD DC ∠=.
(1)求
sin sin B C
(2)若60BAC ∠=,求B ∠.
1.
2.。