四川省泸州市江阳区2019年初中数学适应性考试试题含答案
最新四川省泸州市中考数学模拟试卷(解析版)

2019年四川省泸州市中考数学模拟试卷一、选择题:本大题共12小题,每小题3分,共36分1.6的相反数为()A.﹣6 B.6 C.﹣D.2.计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.33.下列图形中不是轴对称图形的是()A.B.C.D.4.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1085.下列立体图形中,主视图是三角形的是()A.B.C.D.6.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,57.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.8.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.229.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤110.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.12.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或二、填空题:本大题共4小题,每小题3分,共12分13.分式方程﹣=0的根是.14.分解因式:2a2+4a+2=.15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三、本大题共3小题,每小题6分,共18分17.计算:(﹣1)0﹣×sin60°+(﹣2)2.18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.19.化简:(a+1﹣)•.四.本大题共2小题,每小题7分,共14分20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?五.本大题共2小题,每小题8分,共16分22.如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).23.如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B 两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.六.本大题共2小题,每小题12分,共24分24.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC 的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.25.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△PM N满足S△B C N=2S△PM N,求出的值,并求出此时点M的坐标.2019年四川省泸州市中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.6的相反数为()A.﹣6 B.6 C.﹣D.【考点】相反数.【分析】直接利用相反数的定义分析得出答案.【解答】解:6的相反数为:﹣6.故选:A.2.计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【考点】合并同类项.【分析】直接利用合并同类项的知识求解即可求得答案.【解答】解:3a2﹣a2=2a2.故选C.3.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.4.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=6.【解答】解:5570000=5.57×106.故选:B.5.下列立体图形中,主视图是三角形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.6.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【考点】众数;算术平均数.【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【解答】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.8.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【考点】平行四边形的性质.【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.9.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤1【考点】根的判别式.【分析】直接利用根的判别式进而分析得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【考点】正多边形和圆.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选:D .11.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A .B .C .D .【考点】相似三角形的判定与性质;矩形的性质.【分析】过F 作FH ⊥AD 于H ,交ED 于O ,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F 作FH ⊥AD 于H ,交ED 于O ,则FH=AB=2 ∵BF=2FC ,BC=AD=3, ∴BF=AH=2,FC=HD=1,∴AF===2,∵OH ∥AE ,∴==,∴OH=AE=,∴OF=FH ﹣OH=2﹣=,∵AE ∥FO , ∴△AME ∽FMO ,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.12.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【考点】二次函数的性质.【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.二、填空题:本大题共4小题,每小题3分,共12分13.分式方程﹣=0的根是x=﹣1.【考点】分式方程的解.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x(x﹣3)进行检验即可.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.14.分解因式:2a2+4a+2=2(a+1)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣.【考点】抛物线与x轴的交点.【分析】设y=0,则对应一元二次方程的解分别是点A和点B的横坐标,利用根与系数的关系即可求出+的值.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∵+==﹣,∴原式==﹣,故答案为:﹣.16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是6.【考点】三角形的外接圆与外心.【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.三、本大题共3小题,每小题6分,共18分17.计算:(﹣1)0﹣×sin60°+(﹣2)2.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.【解答】解:(﹣1)0﹣×sin60°+(﹣2)2=1﹣2×+4=1﹣3+4=2.18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【考点】全等三角形的判定与性质.【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得△ACD≌△CBE,继而证得结论.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.19.化简:(a+1﹣)•.【考点】分式的混合运算.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.四.本大题共2小题,每小题7分,共14分20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;(2)求出a的值与总人数的比可得出结论;(3)求出喜爱新闻类人数的百分比,进而可得出结论.【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.五.本大题共2小题,每小题8分,共16分22.如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=27,∴AC=AM+CM=15+27.23.如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B 两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m 的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△B OC=bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.六.本大题共2小题,每小题12分,共24分24.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC 的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【考点】圆的综合题;三角形的外接圆与外心;切线的判定.【分析】(1)欲证明BE是⊙O的切线,只要证明∠EBD=90°.(2)由△ABC∽△CBG,得=求出BC,再由△BFC∽△BCD,得BC2=BF•BD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题.【解答】(1)证明:连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)解:∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴=,即BC2=BG•BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF•BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==4,∴CG=CF+FG=5,在RT△BFG中,BG==3,∵BG•BA=48,∴即AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC﹣CH=.25.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△PM N满足S△B C N=2S△PM N,求出的值,并求出此时点M的坐标.【考点】二次函数综合题.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D 即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△B C N=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△BC N=2S△PM N,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).2019年7月1日。
2019年中考适应性考试九年级数学参考答案

2019年中考适应性考试(一)数学参考答案一、选择题(本大题共有6小题,每小题3分,共18分.)1. D2.C .3.C4.B5.D6.A二、填空题(本大题共有10小题,每小题3分,共30分)7.2 8.2x ≥ 9.32 10.)3)(3(-+a a a 11. 2010 12. 15 13. (4,0) 14.1 15. 4 16.32三、解答题(本大题共有10题,共102分.)17.(本题满分12分)(1)解:原式=)2(331--+- ………3分=3. ………6分(2)解:原式)3(21+-=a ………3分 当33-=a 时,原式=63-………6分 18.(本题满分8分)解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;………2分(2)如图:;………5分(3)18000×(1﹣70%)=5400(人),………7分答:我区初中学生这学期课外阅读超过2册的人数是5400人.………8分19.(本题满分8分)解:(1)∵姐姐从4张卡片中随机抽取一张卡片,∴恰好抽到A 佩奇的概率 41………2分 共有12种等可能的结果数,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果数为1,所以姐姐抽到A 佩奇,弟弟抽到乔治的概率121=………8分 20.(本题满分10分)解:(1)设“泰安”车队载质量为8t 、 10t 的卡车分别有x 辆、y 辆,由题意,得 {12100108=+=+y x y x 解得{102==x y所以“泰安”车队载质量为8t 的卡车有10辆,10t 的卡车有2辆。
……5分(2) 设载质量为8t 的卡车增加了z 辆,由题意得8(10+z)+ 10(2+7-z)> 165,解得z<25, 因为z ≥0且为整数,所以z=0、1、2,则7-z=7、6、5.所以车队共有3种购车方案:①载质量为8t 的卡车不购买,10t 的卡车购买7辆;②载质量为8t 的卡车购买1辆,10t 的卡车购买6辆;③载质量为8t 的卡车购买2辆.10t 的卡车购买5辆……10分21.(本题满分10分)(1)四边形AODE 为矩形。
四川省泸州市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

四川省泸州市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.310102.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.163.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.564.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC5.如图,在矩形纸片ABCD中,已知AB=3,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D 的过程中,则点F运动的路径长为()A.πB3πC 3D.33π6.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B.C.D.7.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)8.图为小明和小红两人的解题过程.下列叙述正确的是( )计算:31x-+231xx--A.只有小明的正确B.只有小红的正确C.小明、小红都正确D.小明、小红都不正确9.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米10.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB 绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A .3π2B .πC .2πD .3π11.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )A .30°B .50°C .40°D .70°12.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120o ∠=,AB 8=,则点A 到BC 的距离是( )A .4B .43C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4的平方根是 .14.已知代数式2x ﹣y 的值是12,则代数式﹣6x+3y ﹣1的值是_____. 15.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.16.分解因式:x 2y ﹣4xy+4y =_____.17.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲、乙行驶过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图所示.则当乙车到达A 地时,甲车已在C 地休息了_____小时.18.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)关于x 的一元二次方程x 2+(m -1)x -(2m +3)=1.(1)求证:方程总有两个不相等的实数根;(2)写出一个m 的值,并求出此时方程的根.20.(6分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON .(2)在OM 上依次截取OA a =,AB b =.(3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D .所以:线段________就是所求的线段x .①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r.21.(6分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式.22.(8分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC=60°,∠ABE=25°.求∠DAC 的度数.24.(10分)如图1,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=12x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.25.(10分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.26.(12分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.27.(12分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC=3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.2.B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.4.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.5.D【解析】【分析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=333BCAB==,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长120323π⨯=.故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.6.C【解析】【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- 1ax2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,BC=AB=a,PC=a-x.∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴CD PC BP AB =,即y a x x a-=, ∴y=-1a x 2+x. 故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1a x 2+x 是解题的关键.7.D【解析】【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到 ,于是得到结论.【详解】解:∵AD′=AD=4, AO=12AB=1,∴,∵C′D′=4,C′D′∥AB ,∴C′(4,),故选:D .【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.8.D【解析】【分析】直接利用分式的加减运算法则计算得出答案.【详解】 解:31x -231x x-+- =﹣31x -+3(1)(1)x x x --+ =﹣3(1)(1)(1)x x x +-++3(1)(1)x x x --+=333(1)(1)x x x x --+--+ =26(1)(1)x x x ---+, 故小明、小红都不正确.故选:D .【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.9.D【解析】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米. 故选D .点睛:在负指数科学计数法10n a -⨯ 中,其中110a ≤< ,n 等于第一个非0数字前所有0的个数(包括下数点前面的0).10.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,∴∠AOC =90°,∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A .【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.11.A【解析】【分析】利用三角形内角和求∠B ,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.12.A【解析】【分析】作AH BC ⊥于H.利用直角三角形30度角的性质即可解决问题.【详解】解:作AH BC ⊥于H .DE Q 垂直平分线段AB ,EA EB ∴=,EAB EBA ∠∠∴=,AEB 120∠=o Q ,EAB ABE 30∠∠∴==o ,AE //BC Q ,EAB ABH 30o ∠∠∴==,AHB 90∠=o Q ,AB 8=,1AH AB 42∴==, 故选A .【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.±1.【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1. 考点:平方根.14.52- 【解析】【分析】由题意可知:2x-y=12,然后等式两边同时乘以-3得到-6x+3y=-32,然后代入计算即可. 【详解】∵2x-y=12, ∴-6x+3y=-32. ∴原式=-32-1=-52. 故答案为-52. 【点睛】 本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-32是解题的关键. 15.(0,2)-【解析】【分析】 求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标.【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y 轴的交点坐标为(0,2)-,故答案为(0,2)-.【点睛】本题考查了二次函数图象上点的坐标特征,在y 轴上的点的横坐标为1.16.y(x-2)2【解析】【分析】先提取公因式y ,再根据完全平方公式分解即可得.【详解】原式=2(44)y x x -+=2(2)y x -,故答案为2(2)y x -.17.2.1.【解析】【分析】根据题意和函数图象中的数据可以求得乙车的速度和到达A 地时所用的时间,从而可以解答本题.【详解】由题意可得,甲车到达C 地用时4个小时,乙车的速度为:200÷(3.1﹣1)=80km/h , 乙车到达A 地用时为:(200+240)÷80+1=6.1(小时), 当乙车到达A 地时,甲车已在C 地休息了:6.1﹣4=2.1(小时),故答案为:2.1.【点睛】本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.1【解析】【详解】解:连接OC ,∵AB 为⊙O 的直径,AB ⊥CD ,∴CE=DE=12CD=12×6=3, 设⊙O 的半径为xcm ,则OC=xcm ,OE=OB ﹣BE=x ﹣1,在Rt △OCE 中,OC 2=OE 2+CE 2,∴x 2=32+(x ﹣1)2,解得:x=1,∴⊙O 的半径为1,故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)x 1=1,x 2=2【解析】【分析】(1)根据根的判别式列出关于m 的不等式,求解可得;(2)取m =-2,代入原方程,然后解方程即可.【详解】解:(1)根据题意,△=(m -1)2-4[-(2m +2)]=m 2+6m +12=(m +2)2+4,∵(m +2)2+4>1,∴方程总有两个不相等的实数根;(2)当m =-2时,由原方程得:x 2-4x +2=1.整理,得(x -1)(x -2)=1,解得x 1=1,x 2=2.【点睛】本题主要考查根的判别式与韦达定理,一元二次方程ax 2+bx +c =1(a≠1)的根与△=b 2-4ac 有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.20.①CD ;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③94DB π=-u u u r u r . 【解析】【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证OAC OBD ∆∆∽得OA AC OB BD =,即94BD AC =,从而知999DB CA AC 444π==-=-u u u r u u u r u u u r u r . 【详解】①∵//BD AC ,∴OA :AB=OC :CD ,∵OA a =,AB b =,OC c =,::a b c x =,∴线段CD 就是所求的线段x ,故答案为:CD②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵4OA =、5AB =,且//BD AC ,∴OAC OBD ∆∆∽, ∴OA AC OB BD =,即49AC BD=, ∴94BD AC =, ∴999444DB CA AC π==-=-u u u r u u r u u u r u r . 【点睛】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.21.(1)一件A 型、B 型丝绸的进价分别为500元,400元;(2)①1625m ≤≤,②7512500(50100)5000(100)6611600(100150)n n w n n n -+≤<⎧⎪==⎨⎪-+<≤⎩.【解析】【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.【详解】(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为()100x +元, 根据题意得:100008000100x x=+, 解得400x =,经检验,400x =为原方程的解,100500x ∴+=,答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:5016m m m -⎧⎨⎩……, m ∴的取值范围为:1625m 剟,②设销售这批丝绸的利润为y ,根据题意得:()()()8005002600400?50y n m n m =--+---,()1001000050n m n =-+-50150n Q 剟,∴(Ⅰ)当50100n <…时,1000n ->,25m =时,销售这批丝绸的最大利润()2510010000507512500w n n n =-+-=-+;(Ⅱ)当100n =时,1000n -=,销售这批丝绸的最大利润5000w =;(Ⅲ)当100150n <…时,1000n -<当16m =时,销售这批丝绸的最大利润6611600w n =-+.综上所述:7512500(50100)50001006611600(100150)n n w n n n -+<⎧⎪==⎨⎪-+<⎩…….【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.22.(1)520千米;(2)300千米/时.【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x 千米/时,则高铁平均速度为2.5x 千米/时,根据题意列出分式方程求出未知数x 的值.试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米) (2)设普通列车的平均速度为x 千米/时,则高铁平均速度为2.5x 千米/时 依题意有:5204002.5x x-=3 解得:x=120 经检验:x=120分式方程的解且符合题意 高铁平均速度:2.5×120=300千米/时 答:高铁平均速度为 2.5×120=300千米/时. 考点:分式方程的应用.23.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.24.(1)n=2;y=12x2﹣54x﹣1;(2)p=272855t t-+;当t=2时,p有最大值285;(3)6个,712或43;【解析】【分析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.【详解】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值.(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.如图3中,设A1的横坐标为m,则O1的横坐标为m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋转180°时点A1的横坐标为或【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.25.(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】【分析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为4+42=4天,平均数为118+221+363+334+275+156150⨯⨯⨯⨯⨯⨯=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.26.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.试题解析:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.27.(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.。
四川省泸州市2019-2020学年第三次中考模拟考试数学试卷含解析

四川省泸州市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<22.3的倒数是()A.3B.3-C.13D.13-3.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A.116 B.120 C.121 D.1264.计算(﹣12)﹣1的结果是()A.﹣12B.12C.2 D.﹣25.下列运算结果正确的是()A.3a2-a2 = 2 B.a2·a3= a6C.(-a2)3 = -a6D.a2÷a2 = a 6.方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3 7.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.18.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等9.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山10.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是()A.无法求出B.8 C.8πD.16π11.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C.D.12.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为_____.14.如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE 交AC于点F,则△AEF的面积为_______.15.抛物线y=(x﹣3)2+1的顶点坐标是____.16.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.17.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.18.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C (4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.20.(6分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.21.(6分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=42,点P 为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PC CE CD CB=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE=1,求△PBD的面积.22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.23.(8分)解方程:3x2﹣2x﹣2=1.24.(10分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.25.(10分)先化简,再求值:2222+244a b a ba b a ab b--÷++﹣1,其中a=2sin60°﹣tan45°,b=1.26.(12分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?27.(12分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.2.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.C【解析】【分析】根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.甲所写的数为1,3,1,7,…,49,…;乙所写的数为1,6,11,16,…,设甲所写的第n个数为49,根据题意得:49=1+(n﹣1)×2,整理得:2(n﹣1)=48,即n﹣1=24,解得:n=21,则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,故选:C.【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键.4.D【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:1112122-⎛⎫-==-⎪⎝⎭-,故选D.【点睛】本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.5.C【解析】选项A,3a2-a2 = 2 a2;选项B,a2·a3= a5;选项C,(-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.6.B【解析】【分析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x−3)(x+1),得(x−2) (x+1)=x(x−3),,检验:把x=1代入(x−3)(x+1)=-4≠0.∴原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.7.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.8.C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.9.D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×8=4cm.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.故选D.考点:1.垂径定理的应用;2.切线的性质.11.C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.12.B【解析】【分析】延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;延长AC交DE于点F.A. ∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B. ∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.14.2【解析】【分析】首先,利用等边三角形的性质求得△ADE 为等边三角形,则DE=AD ,便可求出EF 和AF ,从而得到△AEF 的面积.【详解】解:∵在等边△ABC 中,∠B=60º,AB=4,D 是BC 的中点,∴AD ⊥BC ,∠BAD=∠CAD=30º,∴AD=ABcos30º 根据旋转的性质知,∠EAC=∠DAB=30º,AD=AE ,∴∠DAE=∠EAC+∠CAD=60º,∴△ADE 的等边三角形,∴,∠AEF=60º,∵∠EAC=∠CAD∴EF=DF=12DE ,AF ⊥DE∴AF=EFtan60º,∴S △AEF =12EF×AF=12×.故答案为:2. 【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出△ADE 是等边三角形是解题的关键.15. (3,1)【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x ﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).点睛:主要考查了抛物线顶点式的运用.16.6°∠B=48°,∠ACB=90°,所以∠A=42°,DC 是中线,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°. 17.51【解析】Q E 、F 分别是BC 、AC 的中点. 12EF AB ∴P , Q ∠CAB=26°26EFC ∴∠=︒又90ADC ∠=︒Q12DF AC AF ∴== Q ∠CAD =26°52CFD ∴∠=︒ 78EFD ∴∠=︒AB AC =QEF FD ∴=18078512EDF ︒-︒∴∠==︒ !18.174cm 1.【解析】直径为10cm 的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=6013AB BO AO ⨯=, 圆锥底面半径=BD=6013,圆锥底面周长=1×6013π,侧面面积=12×1×6013π×11=72013π. 点睛: 利用勾股定理可求得圆锥的母线长,进而过B 作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①见解析;②见解析;(1)1π.【分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=9042 180ππ⨯=【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.20.解:(1)400;15%;35%.(2)1.(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(4)列树状图得:∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,∴小明参加的概率为:P(数字之和为奇数)82 123 ==;小刚参加的概率为:P(数字之和为偶数)41 123 ==.∵P(数字之和为奇数)≠P(数字之和为偶数),∴游戏规则不公平.【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m,n的值:60m100%15%n15%15%45%35% 400=⨯==---=,.(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角:360°×35%=1°.(3)根据D等级的人数为:400×35%=140,据此补全条形统计图.(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.21.(1)见解析;(2) AC∥BD,理由见解析;(3)5 2【解析】【分析】(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.【详解】(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)解:结论:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵PC CE CD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=42,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴EC PECB BD=,即4142BD=,∴BD=2,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=52∴△PBD的面积S=12BD•PM=12×2×522=52.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.22.(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y =x +1,可得点C(0,1),过点C 作CD 平行于x 轴,交PB 于点E ,交反比例函数y =的图象于点D ,分别连结PD 、BD ,∴点D (8,1), BP ⊥CD∴PE =BE =1,∴CE =DE =4,∴PB 与CD 互相垂直平分,∴四边形BCPD 为菱形.∴点D (8,1)即为所求.23.121717x x +-== 【解析】【分析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案.【详解】解:x 22-2-43-2±⨯⨯()() 17± 即121717x x +-== ∴原方程的解为121717x x +-==. 【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.24.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE ,再根据直角三角形两锐角互余求出∠BAD ,然后根据∠DAC=∠BAC ﹣∠BAD 计算即可得解.【详解】∵BE 平分∠ABC ,∴∠ABC=2∠ABE=2×25°=50°.∵AD 是BC 边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC ﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.25.3【解析】【分析】 对待求式的分子、分母进行因式分解,并将除法化为乘法可得2-+a b a b ×()()()22a b a b a b ++--1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a 的值,再将a 、b 的值代入化简结果中计算即可解答本题.【详解】原式=2-+a b a b ×()()()22a b a b a b ++--1 =2++a b a b -1 =2a b a b a b a b++-++ =b a b+,当a═2sin60°﹣tan45°﹣1,b=1时,原式=. 【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.26.(1)w =200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】【分析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D 的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.27.(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=92.【解析】【分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB是⊙O的直径,∴∠BCA=90°,∵圆O的半径为3,∴AB=6,∵∠CAB=30°,∴13333 2BC AB AC BC====,,∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴,AC AB AD AC=∴AD = ∴92AD =. 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.。
泸州市泸县2019年中考数学一诊试卷含答案解析+【精选五套中考模拟卷】

泸州市泸县2019年中考数学一诊试卷含答案解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)一元二次方程x2+3x=0的根为()A.﹣3 B.3 C.0,3 D.0,﹣32.(3分)在下列的银行行徽中,是中心对称图形的是()A.B.C.D.3.(3分)三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则她们拿到的贺卡是自己所写的概率是()A.B.C.D.4.(3分)若两个相似三角形的相似比为1:2,则它们面积的比为()A.2:1 B.1:C.1:4 D.1:55.(3分)二次函数y=3(x﹣2)2+5的图象的顶点坐标是()A.(2,5)B.(2,﹣5)C.(﹣2,5)D.(﹣2,﹣5)6.(3分)我们知道,国旗上的五角星是旋转对称图形,它旋转与自身重合时,至少需要旋转()A.36° B.60° C.45°D.72°7.(3分)如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30° B.60° C.90° D.45°8.(3分)设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.69.(3分)如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O交于点D,则的长是()A.πcm B.3πcm C.4πcm D.5πcm10.(3分)如图,矩形ABCD的长和宽分别为2cm和1cm,以D为圆心,AD为半径作弧AE,再以AB的中点F为圆心,FB长为半径作弧BE,则阴影部分的面积是()A.1cm2B.2cm2C.3cm2D.4cm211.(3分)已知直角三角形的两条直角边分别为12cm和16cm,则这个直角三角形内切圆的半径是()A.2cm B.3cm C.4cm D.5cm12.(3分)若一次函数y=ax+b的图象经过一、二、四象限,则函数y=ax2+bx的图象只可能是()A.B.C.D.[来源:]二、填空题(每小题3分,共12分)13.(3分)⊙O的半径为4cm,则⊙O的内接正三角形的周长是cm.14.(3分)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为.15.(3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.16.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题(每小题6分,共18分)17.(6分)解方程:x(x﹣1)=4x+6.18.(6分)若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.19.(6分)如图,AE为△ABC外接圆⊙O的直径,AD为△ABC的高.求证:(1)∠BAD=∠EAC;(2)AB•AC=AD•AE四、解答题(每小题7分,共14分)20.(7分)某地2019年为做好“精准扶贫”工作,投入资金2000万元用于异地安置,并规划投入资金逐年增加,2019年投入资金2880万元,求2019年到2019年该地投入异地安置资金的年平均增长率.21.(7分)如图,在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB1C1,并直接写出点B1、C1的坐标.(2)求线段AB所扫过的图形的面积.五、解答题(每小题8分,共16分)22.(8分)二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=﹣1.(1)求函数解析式;(2)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.23.(8分)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?六、解答题(每小题12分,共24分)24.(12分)如图,AB为⊙O的直径,点C在⊙O上,点D为的中点,过点D作EF∥BC,EF交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若OG⊥AD,BG平分∠ABC,试判断:①△BDG的形状;②线段AD与BD的数量关系,并说明理由.25.(12分)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:D.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;[来源:Z_xx_]D、不是中心对称图形,故本选项不符合题意.故选:C.3.【解答】解:第一个同学的贺卡为A,第二个同学的贺卡为B,第三个同学的贺卡为C,共有(A,B,C)、(A,C,B)、(B,A,C)、(B,C,A)、(C,A,B)、(C,B,A),6种情况,她们拿到的贺卡都是自己的有:(A,B,C)共1种,故她们拿到的贺卡都是自己所写的概率=,故选:A.4.【解答】解:∵两个相似三角形的相似比为1:2,∴它们面积的比等于()2=.故选:C.5.【解答】解:∵二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),∴二次函数y=3(x﹣2)2+5的图象的顶点坐标是(2,5).故选:A.6.【解答】解:根据旋转对称图形的概念可知:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而国旗上的每一个正五角星绕着它的中心至少旋转72度能与自身重合.故选:D.[来源:]7.【解答】解:∵∠BAC=30°,∴∠BOC=60°(同弧所对的圆周角是圆心角的一半).故选:B.8.【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.9.【解答】解:连接OD.∵AC是切线,∴BC⊥AC,∴∠ACB=90°,∵AC=BC,∴∠A=∠B=45°,∴∠COD=2∠B=90°,∴的弧长==3π(cm)故选:B.10.【解答】解:∵AD=1cm,AB=2cm,AB的中点是F,∴AF=BF=AB=1cm=AD,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1(cm2).故选:A.11.【解答】解:∵直角三角形的两直角边分别为12,16,∴直角三角形的斜边是20,∴内切圆的半径为:(12+16﹣20)÷2=4.故选:C.12.【解答】解:∵一次函数y=ax+b的图象经过一、二、四象限,∴a<0,b>0,∴函数y=ax2+bx的图象只可能是D,故选:D.二、填空题(每小题3分,共12分)13.【解答】解:如图所示:∵半径为4的圆的内接正三角形,∴在Rt△BOD中,OB=4cm,∠OBD=30°,∴BD=cos30°×OB=×4=2,∵BD=CD,∴BC=2BD=4cm,即它的内接正三角形的边长为4cm,∴⊙O的内接正三角形的周长是4×3=12cm.故答案为:12.14.【解答】解:∵正六边形被分成相等的6部分,阴影部分占3部分,∴指针落在有阴影的区域内的概率为: =.故答案为:.15.【解答】解:由已知得:,即,解得:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.16.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<3三、解答题(每小题6分,共18分)17.【解答】解:x2﹣x=4x+6x2﹣5x﹣6=0(x﹣6)(x+1)=0x=6或x=﹣118.【解答】解:(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤;(2)由(1)可知a≤,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.19.【解答】证明:(1)如图,连接CE.∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD+∠B=90°.∵AE是⊙O的直径,∴∠ACE=90°.∴∠EAC+∠E=90°.又∵∠B=∠E,∴∠BAD=∠EAC;(2)在△ABD与△AEC中,,∴△ABD∽△AEC,∴=,∴AB•AC=AD•AE.四、解答题(每小题7分,共14分)20.【解答】解:设2019年到2019年该地投入异地安置资金的年平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:2019年到2019年该地投入异地安置资金的年平均增长率为20%.21.【解答】解:(1)如图所示,△AB1C1即为所求;由图可知点B1的坐标为(4,﹣2)、C1的坐标为(1,﹣3);(2)∵AB==3,且∠BAB1=90°,∴线段AB所扫过的图形的面积为=π.五、解答题(每小题8分,共16分)22.【解答】解:(1)由题意可得解得y=﹣x2﹣2x+3;(2)由题意可知:A(﹣3,0),B(1,0),C(0,3),D(﹣1,4);过D作DE⊥AB于ES四边形ABCD=S△ADE+S梯形DEOC+S△BOC=×AE×DE+×(DE+OC)×OE+×OB×OC=×2×4+×(4+3)×1+×1×3=9.23.【解答】解:(1)总人数为:12÷30%=40(人),A级占:×100%=15%,D级占:1﹣35%﹣30%﹣15%=20%;C级人数:40×35%=14(人),D级人数:40×20%=8(人),[来源:学|科|网] 补全统计图得:(2)估计不及格的人数有:4500×20%=900(人);(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是:20%.六、解答题(每小题12分,共24分)24.【解答】(1)证明:连接OD.∵=,∴OD⊥BC,∵BC∥EF,∴EF⊥OD,∴EF是⊙O的切线.(2)解:①△BDG是等腰直角三角形;理由:∵AB是直径,∴∠A CB=∠ADB=90°,∴∠CAB+∠A BC=90°,∵=,∴GA平分∠BAC,GB平分∠ABC,∴∠GAB+∠GBA=45°,∴∠BGD=45°,∴△BDG是等腰直角三角形,②结论:AD=2BD.理由:∵OG⊥AD,∴AG=GD,∵△BDG是等腰直角三角形,∴DG=DB,∴AD=2BD.25.【解答】解:(1)∵直线y=﹣x+1与x轴交于点A,与y轴交于点B,∴A(2,0),B(0,1),∵抛物线y=﹣x2+bx+c经过A、B两点,∴,[来源:学科网]∴∴抛物线解析式为y=﹣x2+x+1,(2)①由(1)知,A(2,0),B(0,1),∴OA=2,OB=1,由(1)知,抛物线解析式为y=﹣x2+x+1,∵点P是第一象限抛物线上的一点,∴设P(a,﹣a2+a+1),((a>0,﹣a2+a+1>0),∴S△POA=OA×P y=×2×(﹣a2+a+1)=﹣a2+a+1S△POB=OB×P x=×1×a= a∵△POA的面积是△POB面积的倍.∴﹣a2+a+1=×a,∴a=或a=﹣(舍)∴P(,1);②如图1,由(1)知,抛物线解析式为y=﹣x2+x+1,∴抛物线的对称轴为x=,抛物线与x轴的另一交点为C(﹣,0),∵点A与点C关于对称轴对称,∴QP+QA的最小值就是PC=;(3)①当OB为平行四边形的边时,MN=OB=1,MN∥OB,∵点M在直线AB上,点N为抛物线上,∴设M(m,﹣m+1),∴N(m,﹣m2+m+1),∴MN=|﹣m2+m+1﹣(﹣m+1)|=|m2﹣2m|=1,Ⅰ、m2﹣2m=1,解得,m=1±,∴M(1+,(1﹣))或M(1﹣,(1+))Ⅱ、m2﹣2m=﹣1,解得,m=1,∴M(1,);②当OB为对角线时,OB与MN互相平分,交点为H,∴OH=BH,MH=NH,∵B(0,1),O(0,0),∴H(0,),设M(n,﹣n+1),N(d,﹣d2+d+1)∴,∴或,∴M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));即:满足条件的点M的坐标(1+,(1﹣))或(1﹣,﹣(1+))或(1,)或M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));中考数学模拟试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.21.下列各数中,比-1小的数是 A .1B .0C .-1D .-22.下列运算错误的是 A .()632--=a a B .()532a a = C .231a a a -÷= D .532a a a =⋅3.下列说法正确的是 A .一个游戏的中奖概率是101,则做10次这样的游戏一定会中奖 B .多项式22x x -分解因式的结果为(2)(2)x x x +- C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则乙组数据比甲组数据稳定4.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是A .14,9B .9,8C .9,9D .8,95、给出下列四个函数:①x y -=;②x y =;③xy 2=;④2x y =.其中当0<x 时,y 随x 的增大而减小的函数有 A .1个B .2个C .3个D .4个6. 如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是 A .① B .② C .③ D .④7.试运用数形结合的思想方法确定方程242x x+=的根的取值范围为A. 01x <<B. 10x -<<C. 12x <<D. 23x <<8、如图①,在矩形 ABCD 中,动点 E 从点 A 出发,沿 AB → BC 方向运动,当点 E 到达点 C 时停止运动.过点 E 作 FE ⊥ AE ,交 CD 于 F 点,设点 E 运动路程为x , FC = y ,图②表示 y 与 x 的函数关系的大致图像,则矩形 ABCD 的面积是 A.523B.5C.6D. 425二、填空题(每题3分,满分30分,将答案填在答题纸上)9、我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为 10.函数2-=x y 中自变量x 的取值范围是11、分解因式:22123y x -=12.已知m 是方程2210x x --=的一个根,则代数式263m m -+1的值为_____. 13.已知圆锥的底半径为1cm ,圆锥的高为2 cm ,则圆锥的侧面积为 。
2019年四川省泸州市中考数学模拟试卷及答案(word解析版)

四川省泸州市2019年中考数学模拟试卷一、选择题(每小题2分共24分,请将答案填在以上表格中)(﹣)的倒数是﹣2.(2分)(2019•泸州模拟)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()3.(2分)(2019•泸州模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的25.(2分)(2019•泸州模拟)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()B==6.(2分)(2019•泸州模拟)2019年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()B7.(2分)(2019•泸州模拟)如图,AB 为⊙O 的直径,PD切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )8.(2分)(2019•泸州模拟)已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等9.(2分)(2019•泸州模拟)已知实数x,y满足,则以x,y的值为两,10.(2分)(2019•泸州模拟)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是(),同理可得另一阴影部分的面积也等于正方形的面积的,从而得到两个阴影部分,然后计算即可得解.∴阴影部分的面积等于正方形面积的同理可得,另一阴影部分的面积也等于正方形的面积的∴图中阴影部分的面积等于正方形的=,×11.(2分)(2019•泸州模拟)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()|k|经过点=×S=12.(2分)(2019•泸州模拟)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正确结论的序号是()DP=DP=EC二、填空题(本大题共4个小题,每题4分,共16分)13.(4分)(2019•泸州模拟)分解因式:x3﹣x=x(x+1)(x﹣1).14.(4分)(2019•泸州模拟)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是每线BC上一点且PC=BC.一只蚂蚁从点A出发沿着圆柱体的表面爬行到点P的最短距离是5cm.PC=BC×BC×AP==515.(4分)(2019•泸州模拟)在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数n=5.==16.(4分)(2019•泸州模拟)对于正数x,规定,例如:,,则= 2019.5.;,当时,(=,当时,(=)((=,当时,(;当=时,)…)()+2019=2019.5)三、(本大题共3个小题,每小题6分,共18分)17.(6分)(2019•泸州模拟)计算:.18.(6分)(2019•泸州模拟)先化简,再求值:,其中.÷×,时,原式﹣19.(6分)(2019•泸州模拟)如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.四、(本大题共2个小题,每小题7分,共14分)20.(7分)(2019•泸州模拟)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?.10121.(7分)(2019•泸州模拟)吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整.(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?五、(本大题共2个小题,每小题8分,共16分)22.(8分)(2019•泸州模拟)在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,AD∥BC,坝高10m,迎水坡面AB的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度.(1)求原方案中此大坝迎水坡AB的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7m,求坝底将会沿AD方向加宽多少米?i==,且中,∵23.(8分)(2019•泸州模拟)如图,正比例函数的图象与反比例函数(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由),三角形的面积已知,,得;,,六、(本大题共2个小题,其中第24题10分,第25题12分,共22分)24.(10分)(2019•泸州模拟)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O 分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.DBC==,,DBC==AC=CP=AP==,+25.(12分)(2019•泸州模拟)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A 的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.,解得,2,坐标为()或(,坐标为()或(点的坐标为()或()或(数学试卷。
2019年中考适应性考试数学试卷及答案

2019年中考适应性考试数学试卷一、选择题(每小题3分,共30分)1、四个数﹣5,﹣0.1,12中为无理数的是A 、﹣5B 、﹣0.1C 、12D2、已知ABCD 的周长为32,AB =4,则BC =A 、4B 、12C 、24D 、283、某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是A 、4B 、5C 、6D 、104、将点A (2,1)向左平移2个单位长度得到点A′,则点A′的坐标是A 、(0,1)B 、(2,﹣1)C 、(4,1)D 、(2,3)5、下列函数中,当x >0时,y 值随x 值增大而减小的是A 、2y x =B 、1y x =-C 、34y x =D 、1y x=6、若a <c <0<b ,则a b c 与0的大小关系是 A 、a b c <0B 、a b c =0C 、a b c >0D 、无法确定7、下面的计算正确的是A 、3x 2•4x 2=12x 2B 、x 3•x 5=x 15C 、x 4÷x =x 3D 、(x 5)2=x 78、如图所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A 、B 、C 、D 、9、当实数x y =4x +1中y 的取值范围是A 、y ≥﹣7B 、y ≥9C 、y >9D 、y ≤910、如图,AB 切⊙O 于点B ,OA =,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为A B C 、π D 、32π二、填空题:(每小题3分,共18分) 11、9的相反数是 ▲ .12、已知∠α=26°,则∠α的补角是 ▲ 度. 13、方程132x x =+的解是 ▲ .14、如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 ▲ .15、已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题: ①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 ①②④ .(填写所有真命题的序号)16、定义新运算“⊗”,1=43a b a b ⊗-,则12⊗(﹣1)= ▲ .三、解答题(本大题共9大题,满分102分)17、解不等式组13210x <x >-⎧⎨+⎩。
2019年四川省泸州中考数学试卷含答案解析

绝密★启用前四川省泸州市2019年初中毕业会考、高级中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的绝对值是( )A .8B .8-C .18D .182.将7 760 000用科学记数法表示为 ( ) A .57.7610 B .67.7610C .677.610D .77.7610 3.计算233a a 的结果是( )A .54aB .64aC .53aD .63a4.下列立体图形中,俯视图是三角形的是( )ABC D 5.函数24y x 的自变量x 的取值范围是( ) A .2x <B .2xC .2x >D .2x6.如图,BC DE ⊥,垂足为点C ,AC BD ∥,40B =,则ACE 的度数为( )A .40B .50C .45D .60 7.把228a 分解因式,结果正确的是( )A .22(4)aB .22()2aC .()(222)a aD .22()2a8.四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A .AD BC ∥B .OA OC ,OB OD C .AD BC ∥,ABDCD .AC BD ⊥9.如图,一次函数1y ax b 和反比例函数2ky x的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x <<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x <<或4x >10.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( )A .8B .12C .16D .32 11.如图,等腰ABC △的内切圆O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且5AB AC ,6BC ,则DE 的长是( )ABC D 12.已知二次函数11((3))7y x a x a a (其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a<D.12a <第Ⅰ卷(非选择题 共84分) 毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效-------------二.填空题(本大题共4个小题,每小题3分,共12分) 13.4的算术平方根是 .14.在平面直角坐标系中,点,()M a b 与点1(3,)N 关于x 轴对称,则a b 的值是 .15.已知1x ,2x 是一元二次方程240x x 的两实根,则12()(44)x x 的值是 .16.如图,在等腰Rt ABC △中,90C =,15AC ,点E 在边CB 上,2CE EB ,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 的长为 .三.本大题共3个小题,每小题6分,共18分.17.计算:023()()128sin30 .18.如图,AB CD ∥,AD 和BC 相交于点O ,OA OD .求证:OB OC .19.化简:(112)m m mm .四.本大题共2个小题,每小题7分,共14分.20.某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是 ℃,中位数是 ℃; (2)求扇形统计图中扇形A 的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车4辆,B 型汽车7辆,共需310万元;若购买A 型汽车10辆,B 型汽车15辆,共需700万元. (1)A 型和B 型汽车每辆的价格分别是多少万元?(2)该公司计划购买A 型和B 型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五.本大题共2个小题,每小题8分,共16分. 22.一次函数ykx b 的图象经过点()1,4A ,()4,6B .(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数my x的图象相交于11(),C x y ,22(),D x y 两点,且2132x x=-,求m 的值.23.如图,海中有两个小岛C ,D ,某渔船在海中的A 处测得小岛位于东北方向上,且相距nmile ,该渔船自西向东航行一段时间到达点B 处,此时测得小岛C 恰好在点B 的正北方向上,且相距50nmile ,又测得点B 与小岛D相距nmile .(1)求sin ABD 的值;(2)求小岛C ,D 之间的距离(计算过程中的数据不取近似值).六.本大题共2个小题,每小题12分,共24分.24.如图,AB 为O 的直径,点P 在AB 的延长线上,点C 在O 上,且2PC PB PA .(1)求证:PC 是O 的切线;(2)已知20PC ,10PB ,点D 是AB 的中点,DE AC ⊥,垂足为E ,DE 交AB 于点F ,求EF 的长.25.如图,在平面直角坐标系xOy 中,已知二次函数2yax bx c 的图象经过点0()2,A ,6(0,)C ,其对称轴为直线2x .(1)求该二次函数的解析式; (2)若直线13yx m 将AOC △的面积分成相等的两部分,求m 的值; (3)点B 是该二次函数图象与x 轴的另一个交点,点D 是直线2x 上位于x 轴下方的动点,点E 是第四象限内该二次函数图象上的动点,且位于直线2x 右侧.若以点E 为直角顶点的BED △与AOC △相似,求点E 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效-------------四川省泸州市2019年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷一.选择题 1.【答案】A【解析】:8的绝对值是8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第1页 共4页江阳区2019年高中阶段学校招生统一考试适应性考试数 学 试 卷全卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。
全卷满分120分,考试时间共120分钟。
答题前,请考生务必在答题卡上正确填写自己所在的学校、班级、姓名、考号。
考生作答时,须将答案写在答题卡上,在试卷、草稿纸上答题无效。
选择题每小题选出的答案须用2B 铅笔在答题卡上把对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案。
非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答。
作图题须画在答题卡上,可先用铅笔绘出,所得图形经过确认后,再用0.5毫米黑色墨迹签字笔描画清楚。
第I 卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分;在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡上相应的位置) 1.3-的倒数是A .3B .3-C .31-D .312.中国教育在线发布的《2019年全国研究生招生调查报告》显示,2019年全国硕士研究生报名人数强势增长,达到2900000人,2900000这个数用科学记数法表示为 A .5109.2⨯B .6109.2⨯C .7109.2⨯D .51029⨯3.下列结果等于46a 的是A .2223a a +B .2223a a ⋅C .22)3(aD .2639a a ÷4.下列图形中,是正方体的平面展开图的是A .B .C .D . 5.如图,AB ∥CD ,点E 在CA 的延长线上. 若°50=∠BAE , 则ACD ∠的大小为 A .°120B . °130 C .°140 D .°1506.据统计,某住宅楼30户居民今年三月份最后7天每天实行垃圾分类的户数依次是:27,30,29,26,25,28,29,那么这组数据的中位数和众数分别是A .25,30B .25 ,29C .28,30D .28,297.菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若6=BD ,则菱形ABCD 的面积是A .12B .24C .48D .96江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第2页 共4页8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙 购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是A .⎩⎨⎧=-=-4738x y x yB .⎩⎨⎧=-=-4738y x x yC .⎩⎨⎧=-=-4738x y y xD .⎩⎨⎧=-=-4738y x y x9.如果关于x 的一元二次方程012)1(2=+--x x k 有两个不相等的实数根,则k 的取 值范围是A . 2<k 且1≠kB .2<k 且0≠kC . 2>kD .2-<k 10.如图,直线x y 3=经过点A ,作x AB ⊥轴于点B ,将ABO ∆绕点B 顺时针旋转︒60得到CBD ∆,若点B 的坐标为(1,0), 则点C 的坐标为 A .(3,21)B .(25,21) C .(3,23) D .(25,23) 11.如图,在正方形ABCD 中,a AB =,E 、F 分别是AB 、AD 边上的点,BF ,DE 相交于点G ,若AB AE 31=,AD AF 31=,则 四边形BCDG 的面积是A .2107aB .22417aC .243aD . 254a12.已知一次函数a ax y 3=1-,二次函数32=222-)-(-x a x y .若x >0时021≥y y 恒成立,则a 的取值范围是A. 2≤-a 或2≥a B . 2≤≤2a -且0≠a C . 2=-a D . 2=a第II 卷(非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效。
第11题图E第10题图江阳区2019二、填空题(本大题共4个小题,每小题3分,共12分) 13.因式分解: +-x x x 2422314.在函数3+=x y 15.若1x ,2x 是方程2-+x x 则2221)1()1(+++x x 16.已知点A 是圆心为坐标原点经过点B (4,0)作直线l ⊥若︒=∠45OPA ,则BOP ∆三、解答题(本大题共317.计算:++-272019)21(0118.先化简92)33(2-÷---x xx x x x ,再任取一个你喜欢的数代入求值.19.已知:如图,AC AB =,C B ∠=∠ 求证:CE BD =江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第4页 共4页四、解答题(本大题共2个小题,每小题7分,共14分)20.张老师为了解学生课前预习的情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.制成以下两幅不完整的统计图,请你 根据统计图解答下列问题: (1)张老师一共调查了▲名同学?(2)C 类女生有 ▲ 名,D 类男生有 ▲ 名;(3)为了共同进步,张老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好都是男同学的概率.21.在今年“绿色清明,文明祭祀”活动中,某花店用1200元购进若干菊花,很快售完,接着又用3000元购进第二批菊花,已知第二批所购菊花的数量是第一批所购菊花数量的2倍,且每朵菊花的进价比第一批每朵菊花的进价多1元. (1)求第一批每朵菊花的进价是多少元?第19题图D A20%C 60%B第20题图(2) 第20题图(1) 87654321D C B江阳区2019(2)若第一批每朵菊花按5元的售价销售,要使总利润不低于1500元(不考虑其他因 素),第二批每朵菊花的售价至少是多少元?五、解答题(本大题共2个小题,每小题8分,共16分)22. 科技改变生活,导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到C 地开展研学游活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地20千米,导航显示车辆应 沿北偏东︒60方向行驶至B 地,再沿西北方向行驶一段距离才能到 达C 地,求B 、C 两地的距离(计算结果用根号表示,不取近似值23交于A 、C 两点,OA AB ⊥交江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第6页 共4页(1)求双曲线的解析式;(2)求点C 的坐标,并直接写出1y <2y 时x 的取值范围.六、解答题(本大题共2个小题,每小题12分,共24分)24.如图,⊙O 是ABC ∆的外接圆,AB 是⊙O 的直径,点D 在⊙OAC 平分BAD ∠,延长AB 到点E 且有CAD BCE ∠∠=. (1)求证:CE 是⊙O 的切线;(2)若10=AB ,6=AD ,求BC ,CE 的长.25.如图(1),抛物线c x ax y ++=62交x 轴于A ,B 两点,交y 轴于点C .直线5+=x y 经过点A ,C . (1)求抛物线的解析式;(2)如图(2),若过点B 的直线交直线AC 于点M .BM⊥时,过抛物线上一动点P(不与点B,C重合),作直线BM的平①当AC点②M江阳区2019年高中阶段学校招生统一考试适应性考试数学试题参考解答及评分意见江阳区2019年高中阶段学校招生统一考试适应性考试数学试题第7页共4页江阳区2019年高中阶段学校招生统一考试适应性考试数学试题说 明1.本参考答案只给出了一种解法,如果学生的解法与参考解答不同,可参照相应步骤评分.2.对解答题,当学生的解答在某一步出现错误,影响了后续部分,但是该步后的解答 未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部 分的给分,这时原则上不应超过后面部分应得分的一半;如有严重概念性错误,则 不给分,在一道题解答过程中,对发生第二次错误起的部分,不给分. 3.解答题右端所注分数,表示学生正确做到这一步应得的累加分数. 一、选择题(本大题有12个小题,每小题3分,共36分) 1—12:CBBDB DBCAD CD二.填空题(本大题有4个小题,每小题3分,共12分)13.21(2)-x x . 14. 3≥-x . 15.4039. 16.22 三.解答题(本大题共3个小题,每小题6分,共18分) 17.解:原式232-33×+1+2= …………4分 32+3= …………6分 18. 解:原式=)3)(3(2)33(-+÷-+-x x x x x x x …………2分 =xx x x x 2)3)(3(32-+⋅- …………3分=3+x …………4分要使原式有意义,则3≠-x ,0,3 …………5分当1=x 时原式=4=3+1 …………6分19.证明:∵在ABE Δ和ACD Δ中⎪⎩⎪⎨⎧∠=∠=∠=∠C B AC AB A A∴ABE Δ≌△ACD ………… 3分江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第9页 共4页∴AD AE = ………… 4分 ∴AE AC AD AB --= ………… 5分 即CE BD = ………… 6分四.解答题(本大题共2个小题,每小题7分,共14分)20.解: (1) 25 …………1分(2) 3,1 …………3分 (3)…………6 分则3162(==两位男同学)P …………7分 21.解:(1)设第一批每朵菊花的进价是x 元,根据题意列方程得xx 2×1200=1+3000 …………2分 解得:4=x …………3分 经检验, 4=x 是原方程的解 …………4分(2)设第二批每朵菊花的售价是y 元,根据题意列不等式得 15005-53000412004-5≥+⨯)()(y …………5分 解得7≥y …………6分答:(1)第一批每朵菊花的进价是4元;(2)第二批每朵菊花的售价至少是7元. …………7分五.解答题(本大题共2个小题,每小题8分,共16分)22.解:(1)过点B 作AC BD ⊥于点D ,设x AD =千米 ………1分 °60=∠BAD ,°45=∠CBD 则在ABD ΔRt 中,x AD BD 3=°60tan =千米……2分在BDC ΔRt 中,x BD CD 3==千米 ………3分∵AC DC AD =+ ∴20=3+x x 则)13(10-=x ∴)31030()13(103-=-⨯=BD 千米 ……………6分在BDC ΔRt 中)610230()31030(22-=-⨯==BD BC 千米女男女男女男D 类江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第10页 共4页答:B 、C 两地的距离是(23.解:(1)过点A 作AD ∵AO AB ⊥且 ∴ABO Δ ∴OD BD =,AD 设A (a ,a -)∵点A (a ,a -) ∴a a ---=22 ∵点A (2-,2) ∴2=2-k ∴4=-k ∴ 双曲线的解析式是xy 4=2- ………………4分(2)由⎪⎩⎪⎨⎧-=--=x y x y 422得022=-+x x , 解得2=-x (不合题意,舍去)或1=x ………………6分当1=x 时4-=y经检验⎩⎨⎧-==41y x 是原方程组的解.∴点C 的坐标(1,4-)当1y <2y 时x 的取值范围是2-<x <0或x >1 ………………8分 六.解答题(本大题共2个小题,每小题12分,共24分)24.(1) 证明: 连接OC∵在⊙O 中OC OB = ∴21∠=∠ 1分 ∵AB 是⊙O 的直径 ∴︒=∠90ACB 2分 ∵AC 平分BAD ∠ ∴CAD ∠=∠3∵CAD BCE ∠∠= ∴BCE ∠=∠3 4分 ∴︒=∠+∠=∠+∠=∠90132BCE OCE∴OC CE ⊥ 5分 ∴CE 是⊙O 的切线 6分(2)解:连接CD ,分别延长AD 、BC 相交于点F 在ACB Rt ∆中3901∠-︒=∠,在ACF Rt ∆中CAD F ∠-︒=∠90,又∵CAD ∠=∠3 ∴F ∠=∠1 ∴在ABF ∆中AF AB = ∴CF BC = ∵在⊙O 中CAD ∠=∠3 ∴CD BC =江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第11页 共4页∴CF CD =∴在CDF ∆中F CDF ∠=∠∴CDF ∠=∠1又∵F F ∠=∠∴ CDF ∆∽ABF ∆ …………7分 ∴BFDF AB CD = …………8分 设x BC = 则有x x 261010-=,∴52=x ,即52=BC …………9分 在ACB Rt ∆中54)52(102222=-=-=BC AB AC∵在BEC ∆和DAC ∆中CAD BCE ∠∠=,ADC EBC ∠=∠∴BEC ∆∽DCA ∆ …………10分 ∴DABC AC EC = 则65254=EC …………11分 ∴320=EC …………12分 25.解:(1)直线5+=x y 经过点A ,C .当0=x 时,5=y , 则A (0,5)当0=y 时,5-=x ,则C (5-,0) ……………2分 ∵抛物线c x ax y ++=62经过点A ,C ∴⎩⎨⎧=+-⨯+-=0)5(6)5(52c a c 解得⎩⎨⎧==51c a∴抛物线的解析式为562++=x x y ……………4分(2) 若以点B ,M ,Q ,P 为顶点的四边形是平行四边形且BM PQ // 则BM PQ =过点PR //y 轴交AC 于点R , 则ACO QRP ∠=∠∵在AOC Rt ∆中CO AO = ∴︒=∠=∠45OAC ACO∴︒=∠45QRP 则在PQR Rt ∆中PQ PR 2=连接BC .∵AC BM ⊥ ∴BM AC OC AB S ABC ⋅=⋅=∆2121江阳区2019年高中阶段学校招生统一考试适应性考试数学试题 第12页 共4页 ∴222554=⨯=⋅=AC OC AB BM …………………5分∴42222=⨯==PQ PR设P (x ,)562++x x ,Q (x ,)5+x则x x x x x PQ 5)5(5622+=+-++=∴45=+x x ∴452=+x x 或452-=+x x ……………… 6分由0452=-+x x 得24152)4(4552±-=-⨯-±-=x 由452-=+x x 得4-=x 或1-=x (不合题意,舍去) 点P 的横坐标是4-或2415+-或2415--. ………………8分 (3)点M ( 613- ,617)或( 623-,67) ………………12分 提示如下:如图,作BC 的垂直平分线l 交AC 于点1M ,作AC BN ⊥于点N ,作点1M 关于点N 的对称点2M1M 、2M 符合条件.。