整式单元测试题

合集下载

整式章节单元测试题及答案

整式章节单元测试题及答案

整式章节单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是单项式?A. 3xB. -2C. 5x²D. 4x³2. 多项式3x² - 4x + 1的次数是多少?A. 1B. 2C. 3D. 43. 多项式2x³ - x² + 5x - 3的首项系数是?A. 2B. -1C. 5D. 34. 合并同类项后,2x² + 3x - 5与3x² - 4x + 6的和是?A. 5x² - x - 1B. 5x² - x + 1C. 5x² + x - 1D. 5x² + x + 15. 如果多项式f(x) = ax³ + bx² + cx + d,其中 a = 2,b = -3,c = 4,d = -5,那么f(1)的值是?A. -2B. -1C. 0D. 1二、填空题(每题2分,共10分)6. 单项式-5x的系数是________。

7. 多项式4x³ - 2x² + 3x - 1的常数项是________。

8. 如果多项式f(x) = 2x³ - x² + 5x + 3,那么f(-1) =________。

9. 两个多项式的和是5x³ - 2x² + 3x + 1,其中一个多项式是3x³ + x² - 2x + 5,另一个多项式是________。

10. 如果多项式f(x) = 3x³ + 2x² - 5x + 7,那么f(0)=________。

三、解答题(每题5分,共30分)11. 计算多项式2x³ - 3x² + x - 5与多项式4x³ + x² - 2x + 3的差。

12. 求多项式3x³ - 2x² + 5x - 7与多项式2x³ + 3x² - 4x + 6的乘积。

初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案第七章整式的运算一、选择题。

1、以下判别中不正确的选项是( )①单项式m的次数是0 ②单项式y的系数是1③ ,-2a都是单项式④ +1是二次三项式2、假设一个多项式的次数是6次,那么这个多项式任何一项的次数( )A、都小于6B、都等于6C、都不小于6D、都不大于63、以下各式中,运算正确的选项是( )A、 B、C、 D、4、以下多项式的乘法中,可以用平方差公式计算的有 ( )A、 B、C、 D、5、在代数式中,以下结论正确的选项是( )A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的选项是( )A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项区分为( )A、2和8B、4和-8C、6和8D、-2和-88、假定关于的积中常数项为14,那么的值为( )A、2B、-2C、7D、-79、,那么的值是( )A、9B、49C、47D、110、假定,那么的值为( )A、-5B、5C、-2D、2二、填空题11、 =_________。

12、假定,那么。

13、假定是关于的完全平方式,那么。

14、多项多项式除以多项式A得商式为,余式为,那么多项式A为________________。

15、把代数式的共同点写在横线上_______________。

16、应用_____公式可以对停止简便运算,运算进程为:原式=_________________。

17、。

18、,那么P=______, =______。

三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。

参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C 10、C 二填空题11、 12、2;4 13、或7 14、15、(1)都是单项式 (2)都含有字母、 ;(3)次数相反16、平方差;17、 18、 ;三、解答题19、(1)1 (2) (3)20、21、34。

(完整)七年级数学整式单元测试题

(完整)七年级数学整式单元测试题

(完整)七年级数学整式单元测试题本文为《七年级数学整式单元测试题》。

第一节选择题(共10小题,每小题2分,共计20分)1. 若a = -3,b = 5,则ab的值为()。

A. 8B. -8C. 15D. -152. 已知整式 f(x) = 2x² - 3x + 4 ,则 f(-1)的值为()。

A. -1B. 9C. 7D. -93. 若整式 P(x) = 3x³ - 2x² + 5x + 1 ,则 P(0)的值为()。

A. 1B. 0C. -1D. -54. 若 m = 2 ,则整式 2m² - 3m - 1 的值为()。

A. 1B. -1C. 5D. -55. 设整式 f(x) = 2x³ + 4x² - x + 1 ,则 f(1) + f(-1)的值为()。

A. 1B. 4C. 0D. -26. 若整式 \(g(x) = 4x^4 - 3x^2 + 7\),则 g(-1)的值为()。

A. -14B. 4C. 14D. -47. 已知整式 P(x) = x³ - 2x² - x + 4 ,则 P(3)的值为()。

A. -2B. 2C. 4D. 88. 若整式 \(f(x) = 2x^3 - 4\),则 f(2)的值为()。

A. 2B. 0C. 8D. -49. 设整式 \(P(x) = 3x^3 + 2x^2 - 5x - 2\),则 P(-1)的值为()。

A. -8B. 0C. 8D. 210. 若 a = -1 ,b = 2 ,则 \(ab^2\)的值为()。

A. -2B. -4C. 4D. 8第二节填空题(共5小题,每小题4分,共计20分)11. 设整式 \(f(x) = 3x^3 + 4x^2 - 2x + 1\) ,则 \(f(-2)\)的值为\underline{~~~~-3~~~~}。

12. 若 \(m = -2\) ,则整式 \(3m^2 + 4m + 1\) 的值为\underline{~~~~-3~~~~}。

七年级《整式》单元测试题

七年级《整式》单元测试题

《整式》单元测试题(时量60分钟,满分100分)姓名___________班级___________一、选择题(3'×8=24')A 、单项式m 的次数是0;B 、单项式5×t 510的系数是5;C 、单项式322x π-的系数是32-; D 、-2021是单项式 二、)]([z y x ---去括号后应得 ( )A 、z y x -+-;B 、z y x +--;C 、z y x ---;D 、z y x ++-3、下列各组单项式中,不是同类项得的是 ( )A 、y a 24与322ya ; B 、y x 331与331xy -; C 、22abx 与ba x 232; D 、n a 27与n a 29- 4、下列式子正确的是 ( )A 、02222=+-x a a x ;B 、42223a a a =+-;C 、14522-=+-b a b a ;D 、222613121xy xy x y =- 五、若a 是一个两位数,b 是一名数(0≠b ),且b a ,同号,若是把b 放置在a 的左侧组成一个三位数,这个三位数是 ( )A 、ba ;B 、a b +;C 、a b +10;D 、a b +100六、计算:3562+-a a 与1252-+a a 的差,结果正确的是 ( )A 、432+-a a ;B 、232+-a a ;C 、272+-a a ;D 、472+-a a7、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A 、n m 74+;B 、mn 28;C 、n m 47+;D 、mn 11A 、618;B 、658;C 、678;D 、698二、填空题(3'×8=24')九、代数式:①-3;②y x +2;③3ax -;④a 2;⑤7542+-x x ;⑥3y x +中 整式有:_______________(写编号);多项式有:______________(写编号);单项式有:______________(写编号)。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

整式单元测试卷(含答案)

整式单元测试卷(含答案)

整式单元测试卷(含答案)整式单元测试卷时间:60分钟,满分100分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、填空题(每空3分,共39分)1.单项式 -xy^2/3 的系数是 -1.2.多项式 -3xy+5x^3y-2x^2y^3+5 是 4 次多项式。

3.把多项式 1-2x^3+5xy^2-3x^2y 按 x 的降幂排列是 -2x^3-3x^2y+5xy^2+1.4.若 x=3.2,y=6.8,则 x^2+2xy+y^2=82.56.5.计算:(-a)^3*(a^2b^3)^2=-a^7b^6.6.计算:-5a^5b^3c/15a^4b=-1/3a^1b^2c。

7.多项式 x^2+kx+36 是另一个多项式的平方,则 k= -6.8.代数式 3x+2y 的值是 -3,则 2+9x+6y 的值是 -25.9.如果 (2x+2y+1)(2x+2y-1)=63,则 x+y 的值为 2.10.若 a+b=1,a-b=2015,则 a^2-b^2=-8064.11.计算:(4x^3+4x)/(x^2+1)=4x。

二、选择题(每空3分,共18分)12.在代数式 x^2+5,-1,x^2-3x+2,π,5/2x,x+1 中,正式有 4 个。

答案:B。

13.单项式。

的系数和次数分别是 -2,3.答案:D。

14.已知2xy和-xy^2是同类项,则式子 1-2m 的值是 -2m^2.答案:D。

15.一个多项式与 x^2-2x+1 的和是 3x-2,则这个多项式为x^2-5x+3.答案:A。

16.原产量 n 吨,增产 30%之后的产量应为 (1+30%)n 吨。

答案:B。

17.下列计算正确的是 a^3*(-3a^2)=-3a^5.答案:B。

三、简答题(每题4分,共24分)18.(a^2)^3*(a^2)^4/(a^2)^5=a^6*a^8/a^10=a^14/a^10=a^4.答案:a^4.19.多项式 2x^3-3x^2+5x-1 的值在 x=2 时为 13.答案:13.20.若 a+b=4,ab=3,则 a^2+b^2=10.解法:(a+b)^2=a^2+2ab+b^2,代入 a+b=4 和 ab=3,得到a^2+b^2=10.答案:10.21.若 x+y=2,xy=1,则 x^2+y^2=2.解法:(x+y)^2=x^2+2xy+y^2,代入 x+y=2 和 xy=1,得到x^2+y^2=2.答案:2.22.若 a/b=2/3,b/c=4/5,则 a/c=8/15.解法:a/c=(a/b)*(b/c)=(2/3)*(4/5)=8/15.答案:8/15.23.若 (x+1)(x+2)(x+3)=30,则 x^3+6x^2+11x+6=0.解法:展开 (x+1)(x+2)(x+3)=30,得到 x^3+6x^2+11x+6=0. 答案:0.19.$(x-y+9)(x+y-9)$20.$\frac{(3x+4y)^2-3x(3x+4y)}{-4y}$21.因式分解:$1+x+x(1+x)$22.因式分解:$x-2xy-1+y-z$23.因式分解:$2(x-5y-2)(x-5y-4)$24.$x+y=-6$,$xy=9$25.$y=4$26.原式$=(a-b)+(b-c)=a-c$,因为$a-c=0$,所以$a=b=c$,即$\triangle ABC$是等边三角形。

七年级数学整式单元测试卷

七年级数学整式单元测试卷

七年级数学整式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)2. 单项式-3xy^2的系数和次数分别是()A. -3,3B. -3,2C. 3,3D. 3,2.3. 多项式2x^2-3x + 1的次数是()A. 2B. 3C. 1D. 0.4. 下列运算中,正确的是()A. x^2+x^3=x^5B. x^3· x^2=x^6C. (x^2)^3=x^6D. x^6÷ x^2=x^35. 化简-2a + 3a的结果是()A. -aB. aC. 5aD. -5a.6. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 17. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值为()A. 5B. 4C. 3D. 2.8. 计算(a - 2b)(a + 2b)的结果是()A. a^2-4b^2B. a^2+4b^2C. a^2-2b^2D. a^2+2b^29. 当 a = -2时,代数式a^2-2a + 1的值为()A. 9B. 1C. -1D. -9.10. 已知 A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,则 A - 3B等于()A. 5x^2+10xy - 2x - 4B. 5x^2+10xy - 2x + 2C. 5x^2-10xy - 2x - 4D.5x^2-10xy - 2x + 2二、填空题(每题3分,共15分)11. 单项式(2)/(3)π r^2的系数是___。

12. 多项式3x^2y - 5xy^2+y - 2x是___次___项式。

13. 若x^2+mx + 9是一个完全平方式,则m =___。

人教版苏科版小学数学—整式及其加减(单元测试题含答案)

人教版苏科版小学数学—整式及其加减(单元测试题含答案)

整式的加减单元测试题一.选择题1.(3分)计算222a a -+的结果为(D )A .3a-B .a-C .23a -D .2a -2.(3分)下列各组整式中不是同类项的是(D)A .23a b 与22ba -B .2xy 与12yx C .16与12-D .22xy -与23yx 3.(3分)下列合并同类项的结果正确的是(D)A .233a a a +=B .32a a -=C .33ab ab +=D .22232a a a -=-4.(3分)下列各式中,正确的是(A)A .2222x y x y x y -=-B .235a b ab +=C .734ab ab -=D .325a a a +=5.(3分)下列变形中,不正确的是(C)A .()a b c d a b c d ++-=++-B .()a b c d a b c d --+=-+-C .()a b c d a b c d ---=---D .()a b c d a b c d+---=+++6.(3分)下列说法正确的是(C)A .23x -的项是2x ,3B .1x -和11x-都是整式C .222x xy y ++与5x y+都是多项式D .2321x y xy -+是二次三项式7.(3分)如果整式3252n x x --+是关于x 的三次三项式,那么n 等于(D)A .3B .4C .5D .68.(3分)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为(B )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z -+9.(3分)计算2653a a -+与2521a a +-的差,结果正确的是(D)A .234a a -+B .232a a -+C .272a a -+D .274a a -+10.(3分)已知2210ab --=,则多项式2242a b -+的值等于(B)A .1B .4C .1-D .4-二.填空题11.(3分)代数式223a π-的系数是π32-,次数是2.12.(3分)若32n x y 与25m x y -是同类项,则m =3,n =2.13.(3分)当k =251时,代数式643643154105x kx y x x y --++中不含43x y 项.14.(3分)当31<≤m 时,化简|1||3|m m ---=42-m .15.(3分)若关于a ,b 的多项式22223(2)(2)a ab b a mab b ---++中不含有ab 项,则m =6-.三.解答题16.(10分)去括号,并合并相同的项:(1)2(1)3x x x-++222)321(2)32(322-=-+-=-+-=+--=x x x x x xx x (2)()(52)y x x y -+--yx y y x x yx x y +-=+-+--=+---=6)2()5(2517.(10分)已知14n xy +-与452m x y 是同类项,求2m n +的值.5312423,1,41,1254-41=+⨯=+===+=+m n m n m y x xy m n 所以解得所以是同类项,与解:因为解:原式解:原式18.(10分)先化简再求值:223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-.12)3()218-3,2180)8(0)22()26()33(222363)2223(63222222-=-⨯-⨯=-=-=-=+-+=-+--+-=--+--=++---=(原式时,当y x xyxy y y xy xy x x y xy y x xy x y xy y x xy x 19.(10分)某同学做一道数学题:已知两个多项式A 、B ,计算2A B +,他误将“2A B +”看成“2A B +”,求得的结果是2927x x -+,已知232B x x =+-,求2A B +的正确答案.2013152223161423221614)23()1187221187476229462729)23(2)729(22222222222222+-=-++-+=-+++-=-+++-=++-=++---=+--+-=-+-+-=x x x x x x x x x x x x x x BA x x x x x x x x x x x x x x (则20.(15分)设223A a b ab =-,222B ab a b =-+.(1)化简23A B -;(2)若2|2|(3)0a b -++=,求A B -的值.解:原式解:根据题意可得A12-3-2322323)2()3(32,0302,0)3(2)2(32666326)2(3)3(232)1(2222222222222222222222222222=⨯=-===+--=-+-=+---=--===+=-=++-=+--=-+-=+---=-)(原式时,,当则且解得且所以因为b a ba ab ab b a b a b a ab ab b a b a ab ab b a BA b a b a b a ab ab ab b a b a b a ab ab b a b a ab ab b a BA 解:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章整式单元测试题
班级________ 学号______ 生名_________ 总分________
一、填空题:(每空2分,共30分)
1.x2x3二_________ ; (,y2)3 = _____________ .
2.(二x2y3)4 (—^xy2)2=_________________ ;如果代数式2a2+3a+1的值等于6 ,则代数式
2
6a2+9a —5 = ________ .
3.有一列数为3 , 5, 7, 9, 11……,则表示第n个数的式子是______________ .
4.(a +b)2—(a —b2) =_______ .
2
5.若(2x —3)(x +5) =ax +bx +c,贝y a = _______ , b=________ , c= _________ .
2 2
6.x2+8x +18 -2k =(x +4)2,贝k = _____________ .
7.设 x —1 =1,则 x2+丄= ___________ .
x x2
8.一个三位数,百位数为 a,十位数是百位数的 3倍,个位数是十位数的一半,则这个三
位数最大是___________ .
9.若 a" =5 , a n=6,则 a m+ = _________________ .
10•阅读下文,寻找规律,并填空:
⑴已知x胡,计算:(1 —x)(1 x) =1 —x2
2 3
(1 _x)(1 x x2) =1 _X3
(1 _x)(1 x x2x3) =1 _x4,……
⑵观察上式,并猜想:(1 _x)(1 +x +x2+…+x n) = _________________
⑶根据你的猜想计算:(1 —2)(1 +2 +22+23+24+25) = __________________ .
二、选择题:(每题3分,共30分)
1.下列运算正确的是()
A. x3x3=2x6
B. x2x4=x8
C. x m x n=x m n
D. (-x5)4=-x20
8.若(x y -3)2 (x -y 5)2 =0,则 x 2 A. 8
B .七
C. 15
9. 为了应用平方差公式计算 (x - 2y —1)(x
—2y 1)下列变形正确的是( )
A. [x -(2y 1)]2
B. [x (2y 1)]2
C. [x -(2y -1)] [x (2y -1)] 10.用四个完全一样的边长分别为 论中正确的是
()
A. c 2 =(a b)2; B . c 2 二a 2 2ab b 2; C . c 2 =a 2 -2ab b 2; D . c 2 二a 2 b 2 三、计算下列各题:(每小题3分,共12 分)
A. (a _b)2 =a 2 -b 2
B. 2 2
(a b)(a _b) =a - b C. (a b)2 =a 2
b 2
D.
2 2 2
(a b)2 =a 2 -2ab b 2
3. 若(x _a)(x -5)展开式中不含有x 的一次项,则 A. 0
B . 5
C. 4. 下列因式分解错误的是
()
—5
a 的值为()
D. 5 或—5
A. 2a 3 -8a 2 12a =2a(a 2 -4a 6)
B. 2
x - 5x 6 = (x - 2)(x - 3) C. (a —b)2「c 2 =(a —b c)(a 「b 「c) D.
2 2
-2a 2 4a _2 =2(a 1)2
5. 下列多项式:①x 2亠2xy -y 2②-x 2 2
2xy ③ x 2
xy y 2
④ 1 x - x 2 ,
4
其中能用完全平方公式分解因式的有 A . 1个
B.
C. 3个
D. 4个
6.下列各式中, 代数式 ( )是x 3y 4x 2y 2 4xy 3的一个因式
A. x 2y 2
B. x y
C. x 2y
D. x —y
7.n 个底边长为
A. na 2nb
B. na nb b ; C
则图I 中的线段之和是
C. 2na 2b
-y 2
的值是 D. -15
D. [(x -2y) 1][(x -2y)-1]
b 、
c 的直角三角板拼成图中所示的图形,则下列结
a 、 a,腰长为
b 的等腰△ ABC 拼成图1, .n a 2b
1. (-7x2y)(2x2y -3xy 3xy); 2
. (-5x -)(-5x -1.5)
2
3. (x4y ・6x3y2_x2y3)-:-(3x2y) ;
4. 运用乘法公式计算:
四、分解因式(每题3分,共12分)
1. 4x3y 4x2y2xy3;
2. 9x3「25xy2
五、解答下列各题:(每题4分,共16 分)
1 2 1 2 2 1 2
1. 先化简再求值:[(a -b) ,(a-^b) ] (2a -~b ),其中 a
2 2
2.已知 x y =4 , xy =2,求x y ■ 3xy 的值
请你根据所给式子24xy “8y,联系生活实际,编写一道应用题. 1996 2004
3. -3x 6x2-3x3;
4. 2 2
(x y) —(a b)
--3 , b=4 .
12 13 3.阅读理解:计算(O125)12813
解: (-0.125)12813=(_】)12813
8
J)128128
8
=(丄 8)128
8
=8
请根据根据阅读理解计算:(~0.125)2000答案:
2000 3 (2 )
—、(l)x3(2)・gy° (3) 36x,y<(4) 10 (5)2n+ 1 ⑹ 4ab
⑺b = 7 C--15 (8)k = l (9)3 (10)621 (11)30
(12) 1-x**11-2 6 = -63
二、1—5: CBCDB 6—10: CADCD ?
三、1、-^4x 4y 2 + 21x 3y 7x 3y 22、彳"~ 4
. -x2 + 2xy -y2
3. 3
4. 3000084
四、1、xy(2x + y)22、x(3x 4- 5y) (3x-5y) 3、-3x(x-l)2
4、(x y +a f bXx 今y-a-b)
五、1.原式=30«2、原式^16*2=18
3.略
4. ©125严°・(2皿)'・1。

相关文档
最新文档