【精选】第3章 刚体的定轴转动作业答案

合集下载

刚体的定轴转动(带答案)

刚体的定轴转动(带答案)

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A)角速度从小到大,角加速度从大到小。

(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D )它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断5、(本题3分)5028如图所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M的物体,B 滑轮受拉力F ,而且F=Mg 设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 [ C ](A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB6、(本题3分)0294刚体角动量守恒的充分而必要的条件是 [ B ](A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

第三章 刚体力学习题答案

第三章     刚体力学习题答案

第三章 刚体力学习题答案3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度.解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为2sin sin sin M mgl mgl mgl θθθ=-=系统的转动惯量为两个小球(可视为质点)的转动惯量之和22223J ml ml ml =+=应用转动定律 M J β=有:2sin 3mgl ml θβ= 解得sin 3g lθβ=3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m.解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有图3-1 图3-2β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示.解:以飞轮为研究对象,飞轮的转动惯量212J mR =,制动前角速度为1000260ωπ=⨯rad/s ,制动时角加速度为tωβ-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 212f F R J mR ββ-== 则 2N mR F tωμ=以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有10N Fl F l -=110.50600.252100015720.500.7520.4560N l l mR F F l l t ωπμ⨯⨯⨯===⨯=+⨯⨯⨯N 图3-33-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转动. 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求:(1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功.解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2mRσπ=,则有20223Rf Mg r dr mgR μπσμ==⎰ 根据转动定律 21,2f M J mR Jα-==43g Rμα-= 034R t gωωαμ-==(2)根据动能定理有 摩擦力的功2220011024f W J mR ωω=-=-3-5 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度.解: (1)由转动定律,有β)31(212ml mg= ∴ lg23=β(2)由机械能守恒定律,有图3-622)31(21sin 2ωθml l mg =∴ lg θωsin 3=3-6 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如3-8图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:(1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).(a)图 (b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=gr m R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N3-7 一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力做的功为44.4J,求风扇的转动惯量和摩擦力矩.解:设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移2N θπ=,摩擦力矩所做的功为2A M M N θπ=-=-摩擦力所做的功应等于风扇转动动能的增量,即2102A J ω=-2222(44.4)0.01(9002/60)AJ ωπ⨯-=-=-=⨯kg ⋅m 2 44.40.09422275A M N ππ-=-=-=⨯N ⋅m 3-8 一质量为M 、半径为r 的圆柱体,在倾斜θ角的粗糙斜面上从距地面h 高处只滚不滑而下,试求圆柱体滚止地面时的瞬时角速度ω.解: 在滚动过程中,圆柱体受重力Mg 和斜面的摩擦力F 作用,设 圆柱体滚止地面时,质心在瞬时速率为v ,则此时质心的平动动能为212Mv ,与此同时,圆柱体以角速度ω绕几何中心轴转动,其转动动能为212J ω.将势能零点取在地面上,初始时刻圆柱体的势能为Mgh ,由于圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,于是有221122Mgh Mv J ω=+ 式中 21,2J Mr v r ω==,代入上式得 22211()22Mgh Mr Mr ω=+即 23gh r ω=3-9 一个轻质弹簧的倔强系数 2.0k =N/m,它的一端固定,另一端通过一条细绳绕过一个定滑轮和一个质量为m =80g 的物体相连,如图所示. 定滑轮可看作均匀圆盘,它的质量为M =100g,半径r =0.05m. 先用手托住物体m ,使弹簧处于其自然长度,然后松手.求物体m 下降h =0.5m 时的速度为多大?忽略滑轮轴上的摩擦,并认为绳在滑轮边缘上不打滑.解:由于只有保守力(弹性力、重力)做功,所以由弹簧、滑轮和物体m 组成的系统机械能守恒,故有222111222mgh kh I mv ω=++21,2v r I Mr ω==所以 22 1.4812mgh kh v M m -==+m/s3-10 有一质量为1m 、长为l 的均匀细棒, 静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为2m 的小滑块, 从侧面垂直于棒与棒的另一端A 相碰撞, 设碰撞时间极短. 已知小滑块在碰撞前后的速度分别为1V 和2V ,如图示,求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒绕O点的转动惯量2113J m l =).图3-11图3-12解:对棒和滑块组成的系统,因为碰撞时间极短,所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩,故可认为合外力矩为零,所以系统的角动量守恒,且碰撞阶段棒的角位移忽略不计,由角动量守恒得22122113m v l m v l m l ω=-+碰撞后在在转动过程中棒受到的摩擦力矩为 11012tf m M gdx m gl l μμ=-=-⎰由角动量定理得转动过程中210103tfM dt m l ω=-⎰ 联立以上三式解得:12212V V t m m gμ+= 3-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1,这时它离太阳的距离2r 为多少?(太阳位于椭圆的一个焦点.)解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r =∴ m 1026.51008.91046.51075.81224102112⨯=⨯⨯⨯⨯==v v r r 3-12 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球做匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如3-14图.试问这时小球做匀速圆周运动的角速度ω'和半径r '为多少?图3-14解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得10021123011213212()M g mr M g M M mr M M M M r g r m M M ωωω=+'=+'==⋅'+3-13 如图示, 长为l 的轻杆, 两端各固定质量分别为m 和2m 的小球, 杆可绕水平光滑轴在竖直平面内转动, 转轴O 距两端的距离分别为/3l 或2/3l . 原来静止在竖直位置. 今有一质量为m 的小球, 以水平速度0v 与杆下端的小球m 做对心碰撞, 碰后以0/2v 的速度返回, 试求碰撞后轻杆所获得的角速度ω.解:将杆与两端的小球视为一刚体,水平飞来的小球m 与刚体视为一系统,在碰撞过程中,外力包括轴O 处的作用力和重力,均不产生力矩,故合外力矩为零,系统角动量守恒- 选逆时针转动为正方向,则由角动量守恒得 0022323v ll mv m J ω=-+ 222()2()33l l J m m =+图3-13解得 032v lω=3-14 圆盘形飞轮A 质量为m , 半径为r , 最初以角速度0ω转动, 与A 共轴的圆盘形飞轮B质量为4m ,半径为2r , 最初静止, 如图所示, 两飞轮啮合后, 以同一速度ω转动, 求ω及啮合过程中机械能的损失.解:以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有22201114(2)222mr mr m r ωωω=+ 得 0117ωω=初始机械能为 2222100111224W mr mr ωω==啮合后机械能为222222201111114(2)2222174W mr m r mr ωωω=+=则机械能损失为 221201611617417W W W mr W ω∆=-==3-15 如图示,一匀质圆盘半径为r ,质量为1m ,可绕过中心的垂轴O 转动.初时盘静止,一质量为2m 的子弹一速度v 沿与盘半径成160θ︒=的方向击中盘边缘后以速度/2v 沿与半径方向成230θ︒=的方向反弹,求盘获得的角速度.解:对于盘和子弹组成的系统,撞击过程中轴O 的支撑力的力臂为零,不提供力矩,其他外力矩的冲量矩可忽略不计,故系统对轴O 的角动量守恒,即12L L =,初时盘的角动量为零,只有子弹有角动量,故图3-14 图3-1512sin 60L m vr ︒=末态中盘和子弹都有角动量,设盘的角速度为ω,则22211sin 3022v L m r m r ω︒=+ 故有 22211sin 60sin 3022v m vr m r m r ω︒︒=+可解得:1ω=3-16 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量为'm ,转台的质量为10'm ,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.解:以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0J mRv ω+= 人和转台的转动惯量'2'21102J m R m R =+,代入上式后得 '6mvm Rω=-人的线速度为'6mvv R mω==-其中负号表示转台角速度转向和人的线速度方向与假设方向相反-3-17 一人站在转台上,两臂平举,两手各握一个4m =kg,哑铃距转台轴00.8r =m,起初转台以02ωπ=rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r =0.2m,设人与转台的转动惯量不变,且5J =kg ⋅m 2,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?解:以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有2200(2)(2)J mr J mr ωω+=+22002225240.8212.025240.2J mr J mr ωωπ++⨯⨯==⨯=++⨯⨯rad/s 动能的增量为222200011(2)(2)22W W W J mr J mr ωω∆=-=+-+222211(5240.2)12(5240.8)(2)22π=⨯+⨯⨯⨯-⨯+⨯⨯⨯ =183J3-18 如3-20图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒做弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤所以22001)(2ωωmv ml I v -=-图18求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰ gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.3-19如图示,一个转动惯量为I ,半径为R 的定滑轮上面绕有细绳,并沿水平方向拉着一个质量为M 的物体 A. 现有一质量为m 的子弹在距转轴2R 的水平方向以速度0v 射入并固定在定滑轮的边缘,使滑轮拖住A 在水平面上滑轮.求(1)子弹射入并固定在滑轮边缘后,滑轮开始转动时的角速度ω.(2)若定滑轮拖着物体A 刚好转一圈而停止,求物体A 与水平面间的摩擦系数μ(轴上摩擦力忽略不计).解:(1)子弹射入定滑轮前后,子弹、定滑轮及物体A 构成的系统角动量守恒220[]2Rmv mR I MR ω=++ 解得 0222()mv RmR I MR ω=++(2)定滑轮转动过程中物体A 受的摩擦力所做的功等于系统动能的增量 2221()22I mR MR Mg R ωμπ-++=-⨯ 解得 202216()m v RMg mR MR I μπ=++ 3-20 行星在椭圆轨道上绕太阳运动,太阳质量为1m ,行星质量为2m ,行星在近日点和远日点时离太阳中心的距离分别为1r 和2r ,求行星在轨道上运动的总能量.解:将行星和太阳视为一个系统,由于只有引力做功,系统机械能守恒,设行星在近日点图3-19和远日点时的速率分别为1v 和2v ,有2212121122121122m m m m m v G m v G r r -=- 行星在轨道上运动时,受太阳的万有引力作用,引力的方向始终指向太阳,以太阳为参考点,行星所受力矩为零,故行星对太阳的角动量守恒 111222m rv m r v =行星在轨道上运动时的总能量为2212121122121122m m m m E m v G m v G r r =-=- 联立以上三式得:1212Gm m E r r =-+3-21 半径为R 质量为'm 的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动. 圆盘边缘及/2R 处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿两轨道反向运行,相对于圆盘的线速度值同为v . 若圆盘最初静止,求两小车开始转动后圆盘的角速度.解: 设两小车和圆盘运动方向如图所示,以圆盘转动方向为正向,外轨道上小车相对于地面的角动量为()mR R v ω-,内轨道上小车相对于地面的角动量为11()22m R R v ω+,圆盘的角动量为'212J m R ωω=,由于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得 '2111()()0222mR R v m R R v m R ωωω-+++= '2(52)mvm m Rω=+ 3-22 如图示,一匀质圆盘A 作为定滑轮绕有轻绳,绳上挂两物体B 和C,轮A 的质量为1m ,半径为r ,物体B 、C 的质量分别为2m 、3m ,且2m >3m . 忽略轴的摩擦,求物体B 由静止下落到t 时刻时的速度.图3-21图3-22解:把滑轮和两个物体作为一个系统,其运动从整体上看对定轴O 是顺时针方向的,即轮A 沿顺时针方向转动物体B 向下运动物体C 向上运动,故以顺时针方向的运动作为系统运动的正方向,根据角动量定理,得00tMdt L L =-⎰(1)(1)式左边为系统受到的合外力矩对轴O 的冲量矩,由于轮A 所受重力和轴的作用力对轴O 的力矩为零,故只有两物体所受重力提供力矩,注意到两个重力矩的方向相反,故合力矩为2121()M m gr m gr m m gr =-=- (2)(1)式右边为系统对轴O 的角动量的增量- 0t =时系统静止,角动量00L = (3)到t 时刻,A 、B 、C 三个物体均沿顺时针方向运动,角动量均为正- 设此时轮A 的角速度ω,B 、C 两物体速率相同设为v ,则有212312A B C L L L L m r m vr m vr ω=++=++ (4)把(2)、(3)、(4)式代入(1)式有2211231()2m m grt m r m vr m vr ω-=++由于系统为一连接体,两物体的速率与轮边缘的速率相同,即有v r ω= 把此式代入(5)式即可求得物体下落t 时的速度 211232()23m m gtv m m m -=++。

物理同步训练答案—刚体定轴转动答案

物理同步训练答案—刚体定轴转动答案

刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。

2、14ml 23、lg 43,lg 23 4、 2ω0 5、ωωωω--B A A J )( 6、MLm 23v.7、L76v8、02ωmrJ J +三、计算题1、解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J β ② 1分 a =R β ③ 1分由此可得 T =m (g -a )=m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-J TR g /2 那么 mg J mRT =⎪⎪⎭⎫⎝⎛+21 将 J =21MR 2代入上式,得mM m M g T 2+=2分 图2分2、解:(1) 各物体受力情况如图 图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (3r )-Tr =14mr 2β 2分 a =r β 1分 a '=(3r )β 1分 由上述方程组解得:β=g / (12r )=16.33 rad ·s -2 2分3、解:以小球为研究对象,由转动定律βJ M =得:水平位置时:lg ml mgl ==002ββ 5分杆与水平方向夹角为60°时:' ' m ´glgml l mg2212==ββ 5分4、解:将杆与子弹视为一刚体,水平飞来子弹与刚体视为一系统.由角动量守恒得:ω)(2J ml mvl += ω=)/(2.02s rad Jmlmvl =+。

03-刚体的定轴转动习题答案

03-刚体的定轴转动习题答案

刚体的定轴转动习题参考答案1. t t t 4323+-=θ,4632+-==t t dt d θω,角加速度6622-==t dtd θβ2. 根据转动定律βI M =可知:和外力矩越大,角加速度越大。

3. 细杆静止,细杆所受各力对过B 的水平轴的力矩和为零,θθsin 2cos lmg Nl =,可知2tan θmg N =。

4. 根据转动惯量的定义⎰=Vdm r I 2,可知B A I I =5. 力矩为零,角动量守恒。

质点受力不为零,动量不守恒。

6. 根据力对转轴力矩的概念,(A )正确。

7. 外力力矩为零,角动量守恒。

8. 根据角动量守恒,ωω00031I I =,可得03ωω=。

二、填空题1、j i vππ68+-=2、16-⋅S rad ,210-⋅-Srad3、质量、质量分布、转轴的位置4、R mg μ325、2mR aag - 6、232mL ,mLv 7、角动量,04ω8、122-⋅⋅Sm kg1. j i r vππω68+-=⨯=。

2. 角速度t dt d 108-==θω,角加速度10-==dtd ωβ,可得t=0.2s 时刚体的角速度为16-⋅S rad 、角加速度为210-⋅-S rad 。

3. 根据转动惯量的定义,转动惯量与质量、质量分布以及转轴的位置有关。

4. 将圆形平板看做一系列同心圆环组成的,摩擦力对转轴的力矩为:32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰。

5. 对于m :ma T mg =-;对于定滑轮:RaII TR ==β;将两式联立可求得定滑轮转动惯量2mR aag I -=。

6. 根据转动惯量∑∆=2mr I ,232mL I =;角动量mLv I =ω。

7. 物体受力为有心力,该力对圆心的力矩为零,所以角动量守恒;根据角动量守恒定律,有ωω202)2(R m mR =,则04ωω=。

8. 由角动量定理,1221L L Mdt t t -=⎰,有122-⋅⋅=∆=∆s m kg t FL L 。

第3章刚体的定轴转动习题解答..

第3章刚体的定轴转动习题解答..

习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200 转匀加快地增添到每分钟 2700 转,求:( 1)角加快度;( 2)在此时间内,曲轴转了多少转?解:(1)40 ( / )1rad s 2 90 (rad / s)2t 1 901240 25 (rad / s 2 ) 13 .1( rad / s 2 )6匀变速转动2 2(2)2 12 780 (rad ) n3 9 0(圈)23-2 一飞轮的转动惯量为J ,在 t 0 时角速度为0 ,今后飞轮经历制动过程。

阻力矩M 的大小与角速度的平方成正比,比率系数K 0 。

求:( 1)当0 3时 ,飞轮的角加快度;( 2)从开始制动到0 3 所需要的时间。

解:(1)依题意M JK 2 K 2 K 02 (rad / s2 )J 9Jd K 2 t 0 3 Jd 2J( 2)由dt J 得dt0 K2tK 03-3 如下图,发电机的轮 A 由蒸汽机的轮 B 经过皮带带动。

两轮半径 R A=30cm, R B75cm。

当蒸汽机开动后,其角加快度B0.8πrad/s2,设轮与皮带之间没有滑动。

求( 1 )经过多少秒后发电机的转速达到n A=600rev/min?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加快度。

解:(1) AA t BB t因为轮和皮带之间没有滑动,所以A 、B 两轮边沿的线速度同样,即ARA BRB2600 (rad / s) 联立得 tARA10(s)又 A20BRB60(2) A2 300 10 (rad / s) A AA( rad / s 2 )60t63-4 一个半径为R1.0m 的圆盘,能够绕过其盘心且垂直于盘面的转轴转动。

一根轻绳绕在圆盘的边沿, 其自由端悬挂一物体。

若该物体从静止开始匀加快降落,在t = 2.0s 内降落的距离 h = 0.4m 。

求物体开始降落后第 3 秒末,盘边沿上任一点的切向加快度与法向加快度。

大学物理五第三章习题答案

大学物理五第三章习题答案

第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。

2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。

3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。

通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。

4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。

5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。

6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。

7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。

8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。

9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

内力做功,机械能守恒,动量守恒的条件为合外力为零,转轴不属于系统,转轴与盘之间有
作用力,动量不守恒。
3-2 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑
O
固定轴 O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打
击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆
与小球这一系统的哪种物理量守恒? 答:在碰撞时,小球重力过转轴,杆的重力也过轴,外力矩为
思考题 3­2 图
零,所以角动量守恒。因碰撞时转轴与杆之间有作用力,所以动量不守恒。碰撞是非弹性的,
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
解:(1)设在任意时刻定滑轮的角速度为w,物体的速度大小为 v,则有 v=Rw.
则物体与定滑轮的总角动量为: L = Jw + mvR = Jw + mR2w
根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率:
M = dL ,该系统所受的合外力矩即物体的重力矩:M=mgR dt
所以: b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.
J

J m
R2
0
B.
(J

J m)R2
0
C.
J m R2
0
D. 0
二、填空题
1. 半径为0.2m,质量为1kg的匀质圆盘,可绕过 圆心且垂直于盘的轴转动。现有一变力F=0.1t (F以牛顿计,t以秒计)沿切线方向作用在圆 盘边缘上。如果圆盘最初处于静止状态,那么
它在第3秒末的角加速度β= 3rad s,2 角速度 ω= 4.5rad s1。
A.ω↗β↗ C.ω↘β↘
B.ω↗β↘
D.ω↘β↗
7.如图示,一均匀细杆可绕通过上端与杆垂直的水平 光滑固定轴O旋转,初始状态为静止悬挂。现有一个 小球自左方水平打击细杆。设小球与细杆之间为非弹 性碰撞,则在碰撞过程中对细杆与小球这一系统
A. 只有机械能守恒;
o
B. 只有动量守恒;
rM
C. 只有对转轴O的角动量守恒; D. 机械能、动量和角动量均守恒。
A.增大 B. 减小 C.不变 D.无法确定
9.质量相等,半径相同的一金属环A和同一种金属的圆 盘B,对于垂直于圆面的中心转轴,它两的转动惯量有:
A.IA=IB C.IA>IB
B.IA<IB D.不能判断
10.有一半径为R的水平圆转台,可绕通过其中的竖直 固定光滑轴转动,转动惯量为J,开始时转台以匀角速 度ω0转动,此时有一质量为m的人站在转台中心,随后 人沿半径向外跑去,当人到达转台边缘时,转台的角速 度为
质点和刚体运动规律对照表
质点


d
F ma m
t
2
Fd
t
t1

P2

dt P1
Fi外 0
i
P
mii 恒矢量
A
ir2
F

dr

1r1m
2
2 2

1 2
m12
刚体
M


J

J
Hale Waihona Puke dt2 Mdt
t1

L2
dt L1
为 1 mgl 。
2
M f

rgdm
m
l x m gdx
0l
5.转动飞轮转动惯量为I,在t =0时角速度为ω0,飞轮
经历制动过程,阻力矩M大小与角速度ω平方成正比,
比例系数为k(k为大于0常数)。
当ω= 13ω0时,飞轮的角加速度β= k02 / 9,I
从开始制动到ω= ω13 0经过时间t = 2I / k0。
套管将沿着杆滑动。在套管滑动过程中,该系统
转动的角速度 与套管轴的距离x的函数关系为
4(
70l 2
l2 3x
2
(杆对OO′轴转动惯量为
)。
O
0
1 3
ml )2
[
1 3
ml
2

m(
l )2 2
]0
[
1 3
ml
2

mx
2
]
l
1l m m
2
O
4.质量m、长l均匀细杆,在水平桌面上绕通过其一端 竖直固定轴转动,细杆与桌面的滑动摩擦系数为μ, 则杆转动时受摩擦力矩的大小
ml
mr (m r2 1 Ml 2 )
m (mr Ml 2 )
如果要
m
3
(mr

1
Ml )
必须有
3r
r
2l
2
3
8.对一个绕固定水平轴O匀速转动的转盘,沿如图 所示的同一水平直线从相反方向射入两颗质量相同、 速率相等的子弹,并留在盘中,则子弹射入后转盘的 角速度应为
B. 动量、机械能守恒,但角动量是否守恒还不能确
C. 动量守恒,但机械能和角动量是否守恒还不能确定
D. 动量和角动量守恒,但机械能是否守恒还不能确定
2. 一刚体绕定轴转动,若它的角速度很大,则 A. 作用在刚体上的合外力一定很大
B. 作用在刚体上的合外力一定为零 C. 作用在刚体上的合外力矩一定很大 D. 以上说法都不对
3.关于力矩有以下几种说法,其中正确的是 A.内力矩会改变刚体对某个定轴的角动量 B.作用力和反作用力对同一轴的力矩之和必为零 C.角速度的方向一定与外力矩的方向相同 D.质量相同、形状和大小不同的两个刚体,在相同 力矩的作用下,它们的角加速度一定相等
4.一力矩M作用于飞轮上,使该轮得到角加速度1,如 撤去这一力矩,此轮的角加速度为 - 2 , 则该轮的转动
Mi外 0
i
L Jii 恒矢量
i
A 2Md
1

1 2
J 22

1 2
J 12
A外 A非保内 0 Ek EP 恒量
一、选择题
刚体定轴转动作业答案
1. 力学体系由两个质点组成,它们之间只有引力作用,
若两质点所受的外力的矢量和为零,则此系统
A. 动量、机械能以及角动量都守恒
惯量为
M
A. 1
M
B. 2
M
C. 1 2
M
D. 1 2
5.一根长为l,质量为m的均匀细直棒在地上竖立着。如 果让竖立着的棒,以下端与地面接触处为轴倒下,当 上端达地面时速率应为
A. 6gl B. 3gl C. 2gl D. 3g
2l
6.一均匀细棒由水平位置绕一端固定轴能自由转动,今 从水平静止状态释放落至竖直位置的过程中,则棒的角 速度ω和角加速度β将
2.一飞轮直径为D,质量为m(可视为圆盘),边 缘绕有绳子,现用恒力拉绳子一端,使其由静
止开始均匀地加速,经过时间t,角速度增加为
ω,则飞轮的角加速度为 / t,
这段时间内飞轮转过 N t / 4 转,
拉力做的功为 A 1 mD 2 2。
16
1 t2
2 A 1 J 2
力矩 M = 0 ;角 动量 L = mabk。
M
M r
r
F
mr amaLmr
2mr
r

0


L

r

m
1 ) M = k2 = I → 2 ) M = k 2 = I d
dt
∫ ∫ 0 3 0
d 2
=
k I
t dt → t
0
6. 一质量为m的质点沿着一条空间曲线运动,该 曲线在直角坐标系下的定义式为
r acos( t) i bsin( t) j
式中a、b、ω都是常数, 则 此质点所受的对原点
2
N / 2
J 1 m( D )2 1 mD 2 22 8
3. 在一水平放置的质量为m、长度为l的均匀细
杆上,套着一个质量为m套管B(可看作质点),
套管用细线拉住,它到竖直光滑固定轴OO′距离
为 l /,2 杆和套管组成系统以角速度 绕0 OO′轴
转动,如图所示。若在转动过程中细线被拉断,
相关文档
最新文档