盾构施工渣土改良专项方案
盾构施工——粘土中的渣土改良方案

粘土中的渣土改良方案一、基本情况近段时间源天盾构项目部在珠江新城旅游观光线的盾构施工过程中,出现掘进缓慢,刀盘结泥饼等现象,影响了施工进度。
其中先后试用了ELCO,东莞明洁和巴斯夫的麦斯特等三种品牌发泡剂,效果均不是很明显,没有解决根本问题。
经同相关人员沟通和现场了解情况,在盾构机始发阶段,有约十多环砂层,喷涌厉害,采用日本TAC高分子材料和ELCO发泡剂搭配改良渣土,解决了喷涌问题。
随后进入8号粘土层,渣土粘度大,推进困难。
在第19环(约10月12号)项目部撤下ELCO发泡剂,换上另一品牌泡沫剂,在16号晚我司接到项目部电话,告之结泥饼厉害,掘进不顺利。
17号上午我方派人到现场了解情况,盾构机已经开仓清理过泥饼,当天已经掘进到23环,25日再到现场了解情况,已经掘进到40环,平均每天2环左右,其间一直在试用另两种发泡剂,但没有根本解决问题。
二、原因分析在此过程中项目部采取各种措施来解决问题,但由于地层条件恶劣等因素,目前未能根本解决此难题。
经过多年的工程实践,我方认为如下因素会导致这种不利情况出现:1.盾构通过地层条件差,广州这种典型的复合地层对盾构施工是个极大的考验。
在这种粘土层中,经过改良剂和水的浸润,在刀盘的搅拌下,土体粘度增大,很容易粘附在刀盘上,同时由于相互之间的摩擦产生瞬间高热,使土体结焦附着在刀盘上不易除掉。
2.泡沫剂等外加剂使用不当,在不同的盾构条件下,泡沫剂的使用参数应做相应调整,包括注入率,发泡倍率,稀释倍率,流量等。
正确使用泡沫剂有利于防止结泥饼,降低扭矩,提高工作效率。
3.使用工艺不恰当,在恶劣地质条件下,刀盘转速,推进速度,螺旋剂排土速度,外加剂的配合使用都会影响施工质量。
三、产品介绍针对项目部目前出现的问题和对其影响因素的分析,我们建议采取ELCO高分子材料和发泡剂配合使用来预防和解决盾构机在粘土层中的掘进问题。
ELCO STP 401A是一种长链分子的有机化合物,可以单独使用,也可与膨润土及泡沫配合使用。
盾构工程渣土处理方案

盾构工程渣土处理方案一、渣土的分类及特点盾构工程渣土主要包括岩屑、泥沙和混凝土碎屑等,其中岩屑含量较高,通常含有不同程度的粘土和有机质。
根据渣土的特性和用途,可以将渣土分为可利用渣土和废弃渣土两类。
1. 可利用渣土可利用渣土主要指的是具有一定工程价值和环境利用价值的渣土,如砂石料、砂浆料等。
可利用渣土通常含有一定的矿物质成分,具有较好的物理和力学性质,适合作为建筑材料、地基填料和路基材料等使用。
2. 废弃渣土废弃渣土主要指的是由于成分复杂、工程价值较低或环境污染因素较大而难以利用的渣土。
废弃渣土通常含有较多的有机质、重金属和其他污染物,如果不经过处理就直接排放到环境中,容易对周围的土壤、水体和大气造成污染。
二、盾构工程渣土处理方案1. 渣土的收集和堆放在盾构工程的施工过程中,渣土的收集和堆放是整个处理流程的第一步。
施工现场应根据渣土的种类和数量合理规划渣土的堆放场所,避免对周围环境造成影响。
对于可利用渣土,应按照不同种类进行分类堆放,为后续的利用做好准备。
2. 渣土的分选和粉碎在收集和堆放的基础上,对可利用渣土进行初步的分选和粉碎处理,以提高其利用价值。
通过筛分和破碎设备对渣土进行初步处理,将其分离出较纯净的砂石料和砂浆料,并降低其颗粒大小以适应后续的利用要求。
3. 渣土的资源化利用对经过初步处理的可利用渣土,可以进行资源化利用,如利用其作为建筑材料、路基填料或土壤改良剂等。
通过再生利用渣土,可以减少对自然资源的开采压力,同时降低建筑垃圾的产生量,实现资源循环利用和减少环境污染的目的。
4. 废弃渣土的处理对于废弃渣土,应采取专门的处理措施,以减少对环境的影响。
废弃渣土可以通过固化、封存、填埋或焚烧等方式进行处理,将其中的有机物和污染物尽可能地固化或清除,以减少其对环境的潜在危害。
5. 渣土的监测和治理在盾构工程渣土处理过程中,应对渣土的质量和污染程度进行监测和评估,以及时发现问题并采取相应的措施。
大直径盾构隧道施工渣土改良技术

大直径盾构隧道施工渣土改良技术摘要:目前国内各台盾构机的使用工况,不难发现土质改良技术应用的好坏,对降低工程造价、提高工程施工进度都有着决定性的作用,通过在长株潭城际铁路Ⅱ标树木岭隧道树香区间S660盾构施工标段进行了一系列现场测试试验,验证了本文所配制的盾构泡沫剂的性能满足现场施工的需要。
关键词:盾构渣土改良总推力土压推进速度目前我国所应用的盾构机类型主要为土压平衡式盾构,其特点是用开挖出的土砂作为支撑开挖面稳定的介质,因此要求作为支撑介质的土砂具有良好的塑性变形、软稠度、内摩擦角小及渗透率小等特点[1]。
由于一般土壤不能完全满足这些特性,所以要进行改良,其技术要点是在刀盘前部和泥土仓中注入水、膨润土泥浆、粘土、聚合物或泡沫等混合添加材料,经强力搅拌,改善开挖的土砂塑性和流动性,降低渣土的透水性。
渣土改良系统已成为盾构法施工的一个重要组成部分,对盾构法隧道施工的发展有着深远的影响[2]。
长株潭城际铁路Ⅱ标树木岭隧道树香区间S660盾构施工区域地质资料及其现场勘察表明,包括粉土、粉质粘土和泥质粉砂岩等地层,主要地层为中风化、弱风化泥质粉砂岩,本项目采用的是土压平衡盾构机。
因本工程采用土压平衡盾构施工,穿越段地质为泥质粉砂岩,为使进入土仓的渣土具有较好的流动性,降低渣土的粘度和土仓内的温度,选择泡沫剂对渣土改良是不二之选,通过及时向土仓内注入一定量的水和泡沫,具有防止刀盘前部形成泥饼和刀具磨损,确保盾构正常掘进从而降低铁路沉降风险的作用。
图1 泡沫发生原理图在盾构机推进过程中,其泡沫注入系统可以根据地质条件的需要对泡沫剂溶液的浓度、发泡倍率和气泡掺入比进行控制,以达到改善不同开挖土层的目的[3]。
其中盾构推力、推进速度、总扭矩变化分析如图2、3和4所示。
图2 盾构总推力变化图通过图2分析可得知:与试验前的几米相比较还是处于相对较小的值,然后盾构推力呈现出逐渐减小的趋势。
根据盾构推力变化的曲线可以发现新型泡沫还是能适当的改善盾构机推力的。
土压盾构在粘土层中的渣土改良施工工法(2)

土压盾构在粘土层中的渣土改良施工工法土压盾构是一种在地下开挖的隧道工法,它采用高压土压力推进机械,利用土壤的承载力来支持和稳定隧道施工过程。
在粘土层中进行渣土改良是土压盾构施工的重要环节之一。
本文将分别从前言、工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面进行介绍。
一、前言随着城市化进程的加快,地下空间的需求越来越大,土压盾构在建设地铁、地下管廊等项目中起着重要作用。
而粘土层是隧道施工中常见的地质条件之一,对于土压盾构施工来说,如何在粘土层中实现渣土改良是一个重要的研究课题。
二、工法特点土压盾构在粘土层中的渣土改良施工工法具有以下特点:1. 以渣土为基础材料进行改良,无需添加额外的辅助材料,降低了成本;2. 通过渣土的填充和固结作用,提高了粘土的稳定性和承载力,减少了盾构施工中的沉降和地表破坏;3. 渣土改良可以有效地改善粘土的工程性质,提高施工效率和施工质量。
三、适应范围土压盾构在粘土层中的渣土改良适用于以下情况:1. 粘土层地质条件较差,土体稳定性低,需要增强地基承载力;2. 盾构施工过程中需要保持地表沉降和地面破坏控制在一定范围内;3. 地下隧道工程对地表变形要求较高,需要增加隧道施工的稳定性和安全性。
四、工艺原理土压盾构在粘土层中的渣土改良施工工法的基本原理是通过盾构推进机械将渣土注入粘土层中,实现对粘土的填充和固结。
具体的工艺原理分为以下几个步骤:1. 与施工工法联系:根据具体施工工程的要求,合理选择渣土注入的位置和注入量,保证施工效果;2. 采取的技术措施:通过渣土的填充和固结,提高粘土的强度和稳定性,减少施工过程中的地表沉降和地面破坏。
五、施工工艺在具体的施工过程中,土压盾构在粘土层中的渣土改良施工工艺包括以下几个施工阶段:1. 盾构机的准备和调试;2. 注浆管的安装和定位;3. 渣土的调配和输送;4. 注浆和固结;5. 地表处理和修复。
土压盾构在粘土层中的渣土改良施工工法

土压盾构在粘土层中的渣土改良施工工法土压盾构是一种应用广泛的隧道施工工法,可以有效地克服地层不稳定、水压较高等问题。
在特定的施工环境下,土压盾构也可以用于在粘土层中进行渣土改良施工工法。
本文将从前言、工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面全面介绍土压盾构在粘土层中的渣土改良施工工法。
一、前言引入土压盾构在粘土层中的渣土改良施工工法的背景和意义。
二、工法特点介绍土压盾构在粘土层中渣土改良的特点,包括渣土改良的效果、施工速度快、施工安全性高等。
三、适应范围详细阐述土压盾构渣土改良施工工法适用的地质条件和范围,如粘土层的稳定性要求、水压情况等。
四、工艺原理通过对施工工法与实际工程之间的联系、采取的技术措施进行具体的分析和解释,让读者了解该工法的理论依据和实际应用。
包括土压盾构的结构和工作原理,以及渣土改良的基本原理和方法。
五、施工工艺对土压盾构在粘土层中渣土改良施工工法的各个施工阶段进行详细的描述,包括前期准备工作、渣土挖掘与处理、渣土改良、土压盾构推进等。
六、劳动组织介绍土压盾构渣土改良施工工法的劳动组织方式,包括施工人员的分工与配备、施工流程的安排等。
七、机具设备详细介绍土压盾构渣土改良施工工法所需的机具设备,包括土压盾构机、渣土处理设备等,介绍其特点、性能和使用方法。
八、质量控制对土压盾构渣土改良施工工法的质量控制方法和措施进行详细介绍,包括材料的选择与监控、施工质量的检验等,以确保施工过程中的质量达到设计要求。
九、安全措施介绍施工中需要注意的安全事项,特别是对施工工法的安全要求,包括人员安全、设备运行安全等,让读者清楚地了解施工中的危险因素和安全措施。
十、经济技术分析对土压盾构渣土改良施工工法的施工周期、施工成本和使用寿命进行分析,以便读者进行评估和比较。
十一、工程实例列举具体的工程实例,介绍该工法在实际工程中的应用和效果。
土压平衡盾构法施工渣土改良试验方案

土压平衡盾构法施工渣土改良试验方案1、试验目的(1)依据泡沫的要求(如半衰期、发泡倍率等)发出合适的泡沫,并评价泡沫的性质。
讨论气泡性能与发泡液浓度和气体流量、气体压强及液体流量的关系,为土压平衡盾构渣土改良供应合适的泡沫。
(2)依据改良土体的需求配制合适的泥浆,并试验泥浆的性能。
对试验结果与数据处理,讨论泥浆漏斗粘度、比重、PH值与纯碱、CMC、膨润土添加量的关系,为土压平衡盾构渣土改良供应合适的泥浆。
(3)在几类典型地层的盾构施工中,总结满意盾构施工土体性能所要求的土体含水量、泡沫注入率、泡沫浓度、泥浆注入率、泥浆浓度等参数指标。
(4)通过坍落度试验、搅拌试验、LCPC磨擦试验、盾构模型试验综合评价土样经过不同添加剂改良后的性能,最终得到土压平衡盾构施工优化添加剂配比方案。
(5)依据北京地区地层的土层特性,采纳合适的添加剂(如泥浆和泡沫等添加剂)进行渣土改良,并明确以下内容:泡沫稳定性及注入率对改良土流淌性的影响;不同浓度的泥浆和不同泥浆注入量对改良土体流塑性的影响;泡沫和泥浆共同改良土体各自发挥的作用以及交互作用的影响。
2、试验装置及试验步骤(1)泡沫试验川⑵本次试验装置如图1、2所示,本试验使用的盾构用泡沫的发生装置及衰落度测试仪器是由龚秋明课题组设计制造。
使用该套试验装置能快捷的制造动身泡倍率及稳定性不同的泡沫,该仪器设施经测试参数定位精确、性能稳定、试验操作便利。
试验步骤如下:①.启动空气压缩机,关闭气体开关和发泡液容器的出口开关,依据发泡溶液浓度称取肯定的水和发泡原液,将水和发泡原液注入发泡液容器并搅拌匀称;②.打开溶液罐的出口开关和液体开关,启动增压泵(保证液体布满增压泵内部),调整液体开关使得液体流量和压强到设定值;③.待空气压缩机储气罐中气体达到8bar时,打开气体开关,调整开关使得气体流量和压强为设定值,收集生产的泡沫;④.J等衰落筒内壁用水潮湿,然后放到电子天平上,置零;⑤.招1生产出来的泡沫注入衰落筒,注满后开动秒表,关闭液体增压泵和气体开关;⑥.将装满泡沫的衰落筒放在电子天平上,读取泡沫的质量mf ;⑦.把衰落桶快速放到三角架上,然后把量筒放到三角架下方的电子天平上,置零,使衰落筒液体流出口对准量筒的中心(第6、7步为测量泡沫半衰期的关键步骤,为了提高试验的精确性,这两个步骤尽量在30秒内完成);⑧.纪录量筒内液体每增加5g时所用的时间,直至量筒内液体接近泡沫质量为止,整理数据求得泡沫的半衰期tl/2;⑨.清洗衰落桶,以备下次试验;⑩.至少进行三次平行试脸,取泡沫发泡倍率和半衰期的平均值作为最终试验值。
盾构施工中土体改良的方法及应用

盾构施⼯中⼟体改良的⽅法及应⽤盾构施⼯当中⼟体改良⽅法及应⽤(李懂懂)⼟体改良⽬的:通过盾构⾃⾝的管路系统向开挖⾯注⼊⼟体改良剂,以达到润滑效果降低⼑具的磨损、改良⼟质以防治结饼等施⼯问题,使盾构掘进顺畅、⾼效。
⼟体改良要求:(1).对⼑盘前⽅的⼟体需预先及持续不断地改良(2).将⼑盘切削下来的⼟体改良成流动性好、能够及时建⽴起⼟仓内的⼟体和⼑盘外⼟体之间的压⼒平衡、维持盾构掘进过程中盾构切⼝上⽅的⼟体稳定;(3).增加⼟体的流动性,⼑盘切削进⼊⼟仓的⼟体能及时排出,减少⼟仓内泥饼的形成,不会形成颗粒的⾻架拱效应。
⼟体改良⽅法:⼀、泡沫剂改良⼀般⼟压平衔盾构机适应于内摩擦⾓⼩,渗透系数在10-6m/s以下的易塑流的粘性⼟层。
在颗粒粒径较⼤的砂层、砾⽯层中,由于摩擦⼒⼤,透⽔性⾼,在这种⼟层中施⼯难以保持开挖⾯稳定。
为解决砂性⼟的塑流性,可在开挖⼟仓中注⼊泡沫并充分搅拌,改变⼟的成分,以保证⼟的流动性和减少⼟的透⽔性,使开挖⾯保持稳定;减少⼑盘与⼟体的摩擦,降低扭矩,减少壳体与⼑盘上粘⼟的粘着⼒有利于排⼟机构出⼟,在盾构机泡沫改良系统中,泡沫剂溶液浓度控制为2%~5%的情况下,针对主要地层建议采⽤以下泡沫注⼊及膨润⼟添加参数:(1).<2-5>粉细砂层、<2-6><3-5><4-2>中砂层,泡沫发泡倍率15~25倍,泡沫注⼊率35%~45%(泡沫体积与渣⼟的体积⽐)。
(2).<2-8><3-7><4-4>卵⽯层、<5-2>强风化泥岩,泡沫发泡倍率25~35倍,泡沫注⼊⽐45%~60%。
不同地层中泡沫剂的⽤量⼆、膨润⼟改良由于膨润⼟具有吸湿膨胀性、低渗性、⾼吸附性及良好的⾃封闭性能,所以向⼟舱内注⼊钠基膨润⼟溶液时,可以起到的主要作⽤为:增加⼟舱内⼟体的流动性,在⼑盘转动切削⼟体的过程中在掌⼦⾯形成泥膜,起到护壁作⽤,有利于保持⼟舱内⼟压平衡,从⽽避免开挖⾯的⼟体坍塌,保持掘进的持续顺利进⾏。
盾构施工——粘土中的渣土改良方案

盾构施工——粘土中的渣土改良方案一说到盾构施工,脑海中便浮现出那深深的地下通道,犹如一条巨大的蟒蛇,在泥土中缓缓前行。
而粘土,这种看似普通的土壤,却给盾构施工带来了不小的麻烦。
今天,就让我来为大家详细讲解一下如何在粘土中进行渣土改良,让盾构施工变得更加顺畅。
我们要了解粘土的特性。
粘土颗粒细腻,粘性强,水分含量高,这使得它在盾构施工过程中容易造成刀盘堵塞、土仓压力不稳定等问题。
为了解决这些问题,我们需要对渣土进行改良。
1.渣土改良材料的选择(3)水泥:可以增加渣土的强度,提高其稳定性。
2.渣土改良方法(1)直接添加法:将改良材料直接添加到渣土中,搅拌均匀。
(2)预混合法:将改良材料与水预混合,形成悬浮液,再与渣土混合。
(3)泡沫法:将改良材料与泡沫混合,形成泡沫悬浮液,再与渣土混合。
3.渣土改良工艺(1)对施工区域进行地质调查,了解粘土的性质和分布情况。
(2)根据地质调查结果,选择合适的渣土改良材料和方法。
(3)在施工过程中,实时监测渣土的性能,调整改良材料和方法的用量。
(4)加强渣土的排放管理,确保施工环境的安全。
我们来谈谈渣土改良在盾构施工中的应用。
1.刀盘堵塞的预防通过渣土改良,可以提高渣土的流动性,减少刀盘堵塞现象。
在施工过程中,要密切关注刀盘的运行情况,一旦发现堵塞迹象,及时调整渣土改良材料和方法的用量。
2.土仓压力的稳定渣土改良可以降低土仓压力的波动,提高施工效率。
在施工过程中,要实时监测土仓压力,根据压力变化调整渣土改良材料和方法的用量。
3.土体位移的控制渣土改良可以提高土体的稳定性,减少土体位移。
在施工过程中,要加强对土体位移的监测,发现异常情况及时采取措施。
4.施工安全渣土改良可以降低施工过程中的风险,提高施工安全性。
在施工过程中,要严格执行安全规程,确保施工人员的安全。
我们来谈谈渣土改良的成本和效益。
1.成本渣土改良的成本主要包括改良材料费、设备折旧费、人工费等。
在选择改良材料和方法时,要充分考虑成本因素,力求在保证施工质量的前提下降低成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编制依据(1)隧道施工图(2)铁路隧道工程施工技术指南(TZ204-2008)(3)公司《质量管理体系-要求》(GB/T19001-2000)一、工程概况本工程盾构区间总长度3566.5m ,附属工程包括7个联络通道、2 个防淹门、12 个洞门。
盾构区间采用德国进口的两台直径8.84 米的海瑞克土压平衡盾构机进行施工。
二、工程地质条件和水文地质条件2.1地形地貌本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10m,仅佛山西站附近有零星剥蚀残丘分布,高程10~20m。
区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道。
2.2工程地质条件(1)洞身地层本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>。
在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821m);里程DK32+260~DK34+50洞0 身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m);里程DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5m)。
(2)洞身地层分布统计根据目前提供的地质断面图,隧道洞身地层统计如下表所示:表隧道地层统计(3)岩层特性全风化砂质泥岩、砂岩W4:灰色,棕红色,原岩结构已经破坏,岩芯呈土状,水浸易软化崩解。
强风化砂质泥岩、砂岩W3:棕红色、深灰色,泥质、铁质胶结,裂隙很发育,岩芯呈碎块状、局部短柱状,锤击易碎。
弱风化砂质泥岩、砂岩W2:棕红色、深灰色,泥质、铁质胶结,中厚层状构造,裂隙稍发育,岩芯呈短柱状、柱状。
(4)岩石的物理力学性质根据我司的勘察报告,在岩样中取样进行岩石试验及原位测试,结果如下所示:岩石(弱风化)的天然抗压强度最大值为53.0MPa,最小值3.7MPa,平均值20.36MPa。
强风化岩层的推荐基本承载力为400kPa。
全风化岩层的实测标准贯入试验值N=10~59 击,标贯平均击数36击。
○Ⅲ级硬土,推荐基本承载力为200kPa。
2.3水文地质条件2.3.1地表水地表水:线路主要经过河涌和陈村水道,地表水系主要为陈村水道水系2.3.2地下水地下水主要是第四系土层中的孔隙水和基岩风化裂隙水。
勘测期间测得第四系孔隙潜水地下水水位埋深在0.4 ~6.1m;主要接受大气降水、地表补给,通过地表蒸发、人工开采、地表径流等方式排泄。
第四系孔隙水主要赋存于海陆交互沉积层中的粉砂、细砂、中砂、粗砂中,海陆交互含水层厚度较大,分布较连续,径流畅通,渗透性好,水量较为丰富。
基岩风化裂隙水主要赋存于白垩系下统强、弱风化砂岩、泥岩及泥岩夹砂岩风化节理裂隙中,含水层埋深和厚度差异较大,砂岩、泥岩节烈裂隙较发育,水量一般。
由于岩性及裂隙发育程度的差异,其富水程度与渗透性也不尽相同,裂隙发育,连通性较好,渗透性较强富水较好。
三、设备配置本标段盾构区间采用德国进口的两台直径8.8 米的海瑞克土压平衡盾构机进行施工,渣土改良系统主要包括泡沫系统和膨润土系统,同时刀盘形式对渣土能否顺利进入土仓有很大影响。
3.1 泡沫系统泡沫系统主要包括泡沫剂桶、泡沫剂泵、水泵、溶液计量调节阀、空气剂量调节阀液体流量计、气体流量计、泡沫发生器及连接管路,泡沫系统有8 条泡沫管,分别通往刀盘面,土仓,螺旋输送机,其泡沫发生原理见图3-1 ,各部件连接示意图见图3-2 。
向盾构机掘进仓中注入泡沫发生装置产生的泡沫,用于掘进面土壤的性状改良,掌子面土层在加入泡沫后,其塑性、流动性、防渗性都得到改进,同时亦可减少刀具的磨损。
图3-1 泡沫发生原理图图3-3 泡沫原液泵、水泵图3-4 泡沫剂混合系统泡沫系统有关参数介绍如下:稀释液浓度(x) :稀释液中所含发泡剂原液的比例FER=泡沫体积/ 稀释液体积FIR=泡沫注入量/ 开挖土方量,即注入泡沫体积总量与盾构机刀盘切削的原状岩土的实方比3.2膨润土系统盾构机配置有一套膨润土注入系统。
在确定不使用泡沫剂的情况下,关闭泡 沫输送管道, 同时将膨润土输送管道打开, 通过输送泵将膨润土压入刀盘、 碴仓 和螺旋输送机内,达到改良碴土地目的。
根据实际需要, 可以把膨润土箱内装入泥浆注入土仓内。
膨润土只应用在一 些特殊的工程下。
四、渣土改良方法4.1 渣土改良必要性 土压平衡式盾构的特点是用开挖出的渣土作为支撑开挖面稳定的介质, 因此 要求作为支撑介质的渣土具有良好的塑性变形和软稠度, 以及内摩擦角小及渗透 率小等特点。
由于一般土壤不能完全满足这些特性, 所以要进行改良, 其技术要 点是在刀盘前部和泥土仓中注入水、 膨润土泥浆、 粘土、聚合物或泡沫等混合添 加材料,经强力搅拌,改善开挖渣土的塑性、流动性,降低渣土的透水性。
在富水含砂地层的掘进主要是要降低对刀具磨损、 降低刀盘扭矩、 螺旋输送 机的磨损,防止喷涌,采取向刀盘前和土仓内及螺旋输送机内注入泥浆或泡沫混 合物的方法来改良碴土。
并增加对螺旋输送机内注入量, 以利于螺旋输送机形成 土塞效应,防止喷涌。
根据设计提供的地质勘察报告可知,本项目盾构前段区间 820m 左右和尾段 区间 500m 左右为砂层、淤泥层及全强风化层,且地下水丰富,地下水位较高, 且上部砂层渗透性较好, 粘性较小, 不易形成密闭空间, 盾构在该区段掘进存在 喷涌的风险,且盾构机在砂层中掘进时对刀具磨损较快,增大了开仓换刀频率。
图 3-5 膨润土图 3-6 膨润土同时该地层属于软弱地层,容易塌陷,且在始发和到达段附近,隧道埋深较浅, 存在土仓漏气而保不住气压的风险。
因此,在盾构掘进过程中, 要保证出渣顺畅, 维持仓内土压(或气压)平衡,快速通过。
4.2 渣土改良剂种类渣土改良剂能较好解决以上问题, 在盾构机掘进时, 向开挖面、 土仓等处加 注改良添加剂,其具体功能如下:①对于富含水砂层,一方面止水,另一方面可 以改善砂的和易性; ②在砂性土和砂砾土地层中, 可以起到支撑作用而且可以改 善土的流动性; ③在粘性土层, 可以防止渣土附着刀盘和土仓室内壁, 另一方面, 由于改良剂中的微细气泡可以置换土颗粒中的孔隙水,因而可以达到止水效果。
目前常用的渣土改良剂包括膨润土、泡沫剂、高分子聚合物、增粘剂等,不同种 类改良剂的适用范围和改良效果有很大差别,具体见下表 4-1 。
表各种改良剂特点及适用范围4.3 泡沫剂的应用在实际操作过程中,通过调整螺旋输送机的转速,可以调整土仓内土压力, 而在不同地层和操作条件下, 渣土的类别和性质都不一样, 必须加入外加剂来改 良渣土。
土压平衡盾构成功的关键是要将开挖面开挖下来的土体在土仓内调整成 一种“塑性流动状态”。
1、 发泡剂的使用量参数数:① 稀释液浓度 (x) 稀释液中所含发泡剂原液的比例,一般取值为 2%~5%。
② 发泡倍率 FERFER=泡沫体积 / 稀释液体积,一般取值为 8~15③注入率FIRFIR=泡沫注入量/ 开挖土方量。
即注入泡沫体积总量与刀盘切削的原状岩土的实方比,通常取值20~45%。
表4-2 不同地层中注入率2、泡沫用量计算①泡沫流量Q F:Q F=A*V*FIR (1)泡沫总流量,以L/min 为单位,式中,A=隧道开挖面积,A=3.14*(8.84/2)*(8.84/2)=61.3m 2;V= 盾构推进速度;FIR=注入率。
②稀释液流量QL:Q L=Q F/FER=A*V*FIR/FER (2)泡沫剂原液加水稀释后的混合物,通常按照2~5%的比例进行,以L/min 为单位;式中,V ——盾构推进速度;FIR——注入率;FER——发泡倍率。
则:原液流量Q=Q L*x (x=稀释液浓度)③压缩空气流量QA:Q A=Q F-Q L =A*V*FIR*(P+1)*(1-1/FER)(3)即注入压缩空气的流量。
式中P=空气支持压力(相对压力,一般P=0.2~0.3MPa)3、本工程泡沫剂用量计算根据本工程实际情况确定以下参数:盾构机开挖直径R=8.84m,故A=61.3m2 ;盾构机推进速度取V=0.03m/min 。
稀释液浓度x=3%;注入率FIR=35%;发泡倍率FER=10 空气支持压力P =0.3MPa按照公式(1): Q F=A*V*FIR求得泡沫流量Q F=643.7 L/min ;按照公式(2): Q L=A*V*FIR/FER 求得稀释液流量Q L=64.4L/min ;按照公式(3): Q A= A*V*FIR*(P+1)*(1-1/FER)求得压缩空气量Q A=2.317m3/min;原液流量Q=Q L*X= 64.4L/min*3%=1.932 L/min 掘进1 米所需时间:1/0.03=33.33 min 每米用量为:33.33*1.932=64.39 L 每环用量为:64.39*1.6=103.0L4、中控室电脑显示操作:图4-1 F2 泡沫显示图8图4-2 F2 泡沫显示图图4-3 泡沫参数调整4.4 膨润土的使用膨润土浆液对土体的改良作用主要体现在较好的润滑及降低抗剪强度,浆液中的膨润土掺量、膨润土浆液的注入率均对土体改良效果产生影响。
一般情况下浆液中膨润土掺量越高,则浆液的质量性能越好,相应的改良作用也较明显;浆液注入章越高,则相应的改良作用也越大。
但掺量不宜过大,否则会造成土体的分层离析,不利于盾构开挖而的稳定。
具体产掺入量和注入量要根据现场地层条件和膨润土品质进行试验,以确定最佳配比。
盾构施工用膨润土必须保证膨润土的质量,严禁膨润土泥浆中含有硬质颗粒,以防损坏中心回转体或卡死刀盘泡沫管路中的止回阀。
4.5 两种改良方式适用地层适合使用膨润土改良的地层,(1)细粒含沙量少的土体,膨润土泥浆能够补充砂砾土中相对缺乏的微细粒含量,提高和易性,级配性,从而可以提高止水性;(2)透水性高的土体,在高透水性土体中膨润土泥浆较易渗入,并形成具有气密性的泥模,可有效改善渣土喷涌。
本工程中,里程DK32+260~DK34+500 洞身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m),用膨润土泥浆对渣土进行改良较为适合。
适合使用泡沫改良的地层,(1)泡沫更适合于颗粒级配相对良好的土体,在级配良好的土体中,泡沫和土体颗粒结合得更完整和致密,容易形成更多封闭的空间(2)泡沫更适合平均粒径较大的土体(3)泡沫更适合含水量较高的土体。