2018年苏州园区初三数学一模测试卷(含答案)

合集下载

苏科版2018-2019学年度初三中考一模考试数学试卷附答案

苏科版2018-2019学年度初三中考一模考试数学试卷附答案

2018-2019学年度初三中考一模考试数学试卷一.填空题(共12小题,满分24分,每小题2分)1.化简﹣(﹣)的结果是.2.已知x m=6,x n=3,则x m﹣n的值为.3.若二次根式在实数范围内有意义,则x的取值范围是.4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.5.分解因式:a3﹣a=.6.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.7.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.8.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.9.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.10.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.11.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为平方单位.12.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.二.选择题(共5小题,满分15分,每小题3分)13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108B.32.4×106C.3.24×107D.324×10814.如图所示的几何体的左视图是()A.B.C.D.15.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2 C.m<2 D.m≤216.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为()A.4cm B.2cm C.3cm D.8cm17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC 于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm三.解答题(共11小题,满分91分)18.(8分)(1)计算:3tan30°﹣|1﹣|+(2008﹣π)0(2)化简:÷(1+)19.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.20.(6分)在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21.(6分)在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率.请借助列表法或树形图说明理由.22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2,求CD的长.24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.(7分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.26.(7分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).(1)求此抛物线的解析式及顶点坐标;(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.28.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF =75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)参考答案1..2.2.3.:x≥2019.4.57°.5.a(a+1)(a﹣1).6.1.3.7.﹣.8.20.9.解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.10.144°.11.40解:∵y=﹣x﹣3.∴A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.12.(,)解:∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(﹣a,b),∴由点M在双曲线y=上知b=,即ab=1;由点N在直线y=x+3上知b=﹣a+3,即a+b=3,则抛物线y=﹣abx2+(a+b)x=﹣x2+3x=﹣(x﹣)2+,∴抛物线y=﹣abx2+(a+b)x的顶点坐标为(,),二.选择题(共5小题,满分15分,每小题3分)CDCAC16.解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴CH=x=4,即此时“U”形装置左边细管内水柱的高度约为4cm.18.解:(1)原式=;(2)原式===.19.解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.20.证明:∵点D、E分别是BC、AB的中点,∴ED∥AC,ED=AC,∴∠EDB=∠C.又∵F是AC边的中点,∴FC=AC,∴DE=FC,同理可得,∠B=∠FDC,在△EBD和△FDC中,∵,∴△BED≌△DFC(AAS).21.解:作树状图可得:(5分)“两次取的小球的标号相同”的概率为P=(9分)22.解(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90,∴这次抽取的学生成绩的中位数在80≤x<90的分数段中,这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%,∴80≤x<90,12%;(3).答:该年级参加这次比赛的学生中成绩“优”等的约有105人.23.解:分别延长AB、DC交于点E.∵∠BCD=150°°,∴∠BCE=30°.∵AB⊥BC,∠CBE=90°,∴∠AEC=60°.又∠BAD=60°.∴△AED是等边三角形,在Rt△BCE中,∵BC=2,∠BCE=30°,cos30=,EC=4,∴CD=2.24.解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.25.(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.26.解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB=S△AOC+S△BOC=.27.解:(1)把(1,0),(0,3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣4x+3;∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1);(2)当x=﹣1时,y=x2﹣4x+3=8,当x=3时,y=x2﹣4x+3=0,∴当﹣1≤x≤3时,函数值y的取值范围为﹣1≤x<8;(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2+m>5,即m>3,此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,解得m1=3+,m2=3﹣(舍去),设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2﹣m<1,即m>1,此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m1=1+,m2=1﹣(舍去),综上所述,m的值为3+或1+.28.解:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.∴答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.。

2018年初三一诊考试数学试卷及答案

2018年初三一诊考试数学试卷及答案

2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5B.C.﹣D.﹣52.(3分)已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°(6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.47.3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1B.2C.﹣7D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为△x,AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商F (品共支付 16 元,B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组.13.(3 分)如图,在 Rt △ABC 中,∠A=30°,BC=2 ,以直角边 AC 为直径作⊙O 交 AB 于点 D ,则图中阴影部分的面积是.14.(3 分)已知 x 1,x 2 是关于 x 的方程 x 2+ax ﹣2b=0 的两实数根,且 x 1+x 2=﹣2, x 1•x 2=1,则 b a 的值是.15.(3 分)对于实数 a ,b ,我们定义符号 max {a ,b }的意义为:当 a ≥b 时, max {a ,b }=a ;当 a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于 x 的函数为 y=max {x +3,﹣x +1},则该函数的最小值是.16.(3 分)如图,在正方形 ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作EF ∥AD ,与 AC 、DC 分别交于点 G , ,H 为 CG 的中点,连接 DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH +∠ADH=180°;③△EHF ≌△DHC ;④若,其中结论正确的有 .△DHC= ,则 3S △EDH =13S三、解答题(本大题共 8 个题,共 72 分)17.(10 分)(1)计算:|﹣2|﹣(π﹣2015)0+( )﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+ ),其中 a=.18. 6 分)如图,分别过点C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分别为 E 、F .求证:BF=CE .(19.8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2参考答案一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1-8.B A C B B A CA二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9. ab (3a +1)(3a ﹣1) .10. 45° .11.12.13.14...﹣ π ..15. 2 .16. ①②③④ .三、解答题(本大题共 8 个题,共 72 分)17.(1)|﹣2|﹣(π﹣2015)0+( )﹣﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+ ;(2)==÷(2+ )=,当 a=时,原式= = ﹣1.( (18.证明:根据题意,知 CE ⊥AF ,BF ⊥AF ,∴∠CED=∠BFD=90°,又∵AD 是边 BC 上的中线,∴BD=DC ;在 Rt △BDF 和 Rt △CDE 中,∠BDF=∠CDE (对顶角相等),BD=CD ,∠CED=∠BFD ,∴△BDF ≌△CDE (AAS ),∴BF=CE (全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为 30,45,55,70,∴中位数为 50;(2)根据题意得:3000×(1﹣25%)=2250 人,则该校帮助父母做家务的学生大约有 2250 人;(3)画树状图,如图所示:所有等可能的情况有 12 种,其中恰好是甲与乙的情况有 2 种,则 P== .20、解:1)设每辆 B 型自行车的进价为 x 元,则每辆 A 型自行车的进价为(x +400)元,根据题意,得= ,解得 x=1600,经检验,x=1600 是原方程的解,x +400=1 600+400=2 000,答:每辆 A 型自行车的进价为 2 000 元,每辆 B 型自行车的进价为 1 600 元;(2)由题意,得 y=(2100﹣2000)m +(1750﹣1600) 100﹣m )=﹣50m +15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S △OBC=×BO×xC=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则 BC=6.在 Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得 PC=9,∴OP=PC +OC=13.在 Rt △ PBC 中 , 由 勾 股 定 理 , 得PB==3,∵AC=BC ,OA=OE ,即 OC 为△ABE 的中位线.∴OC= BE ,OC ∥BE ,∴BE=2OC=8.∵BE ∥OP ,∴△DBE ∽△DPO ,∴=,即=,解得 BD=.24.解:(1)将 A (0,1),B (﹣ 9,10)代入函数解析式,得,解得,抛物线的解析式 y=+2x +1;(2 分)(2)∵AC ∥x 轴,A (0,1),∴ x 2+2x +1=1,解得 x 1=﹣6,x 2=0(舍),即 C 点坐标为(﹣6,1),∵点 A ( 0,1),点 B (﹣9,10),∴直线 AB 的解析式为 y=﹣x +1,设 P (m ,m 2+2m +1),∴E (m ,﹣m +1),∴PE=﹣m +1﹣( m 2+2m +1)=﹣ m 2﹣3m ,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF+AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则=,,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)11/11。

江苏省苏州市工业园区中考数学一模试卷(含解析版答案)

江苏省苏州市工业园区中考数学一模试卷(含解析版答案)

江苏省苏州市工业园区中考一模试卷数 学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卷相应位置上. 1.下列实数中,无理数是( ) A .√3B .√273C .3.14D .7132.2018年苏州市GDP (国内生产总值)约为1 860 000 000元.该数据可用科学记数法表示为( ) A .1.86×109B .186×1010C .18.6×1011D .1.86×10123.中国传统扇文化有着深厚的底蕴,下列扇面图案既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.若分式x 2x−2有意义,则x 应满足的条件是( )A .x ≠0B .x =2C .x >2D .x ≠25.方程x 2﹣3x +2=0的解是( ) A .x 1=1,x 2=2 B .x 1=﹣1,x 2=﹣2C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=26.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形 B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形7.如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A .1B .12C .13D .238.如图,点A 、B 、C 、D 在⊙O 上,OB ∥CD ,∠A =25°,则∠BOD 等于( )A .100°B .120°C .130°D .150°9.如图,在四边形ABCD 中,已知AD ∥BC ,∠BCD =90°,∠ABC =45°,BD 平分∠ABC ,若CD =1cm ,则AC 等于( )A .√2cmB .√3cmC .2cmD .1cm10.如图,反比例函数y =kx (x >0)的图象经过▱OABC 的顶点C 和对角线的交点E ,顶点A 在x 轴上,若▱OABC 的面积为18,则k 的值为( )A .8B .6C .4D .2二、填空题(共8小题,每小题3分,满分24分) 11.分解因式:x 2﹣4x = .12.若一组数据1,2,x ,5,6的众数为6,则这组教据的中位数为 .13.经过点(1,2)且与直线y=﹣2x平行的直线对应的函数表达式为y=.14.若a+b=2,则代数式a2﹣b2+4b=.15.半径为3cm,圆心角为120°的扇形的弧长为.16.若二次函数y=ax2+bx﹣3的图象经过点(﹣1,0),(3,0),则其表达式为y=.17.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD的面积为4√3,则AC=.18.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为cm.三、解答题;本大颗共10小题,共76分.请将解答过程写在答题卷相应位置上,解答时应写出必要的计算过程,推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:|12−3|+sin245°−√4.20.(5分)解不等式组:{x+3<4x3x−1≥2(x+2)21.(6分)先化简,再求值:(x−3xx+2)÷x2−2x+1x+2,其中x=√3+1.22.(5分)已知:如图,点A、D、C在同一条直线上,AB∥DE,AB=AD,AC=DE,求证:∠C=∠E.23.(8分)甲、乙两名教师参加“优质课”比赛,由于参赛教师较多,需将参赛教师随机分成A、B、C三个组进行比赛.(1)甲教师恰好分在A组的概率是;(2)求甲、乙两名教师分在同一个组的概率.24.(8分)某校组织全校2000名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和数分布直方图(不完整).抽取部分学生成绩的频率分布表成绩分组频数频率50.5~60.5 20 0.0560.5~70.5 0.1570.5~80.5 7680.5~90.5 104 0.2690.5~100.5 140合计 1根据所给信息,回答下列问题(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在90.5﹣100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.25.(8分)某校为了创建书香校园,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.(1)文学书和科普书的单价分别是多少元?(2)该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?26.(10分)如图,已知抛物线y=√33x 2−2√33x与x轴相交于O、A两点,B为顶点,C是第二象限内抛物线上一点,且∠AOC=120°.(1)求点C的坐标;(2)向下平移该抛物线得到一条新抛物线,设新抛物线与x轴相交于点O′、A′(点A′在点O′的右侧).问:是否存在以点A′、A、B为顶点且与△OBC相似的三角形?若存在,求出新抛物线对应的函数表达式;若不存在,请说明理由.27.(10分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,若AE=3√2,求⊙O的半径长.28.(11分)如图①,在矩形ABCD中,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s),连接PC,以PC为一边作正方形PCEF,连接DE、DF,设△PCD的面积为y(cm2),y与t之间的函数关系如图②所示.(1)AB=cm,AD=cm;(2)当t为何值时,△DEF的面积最小?请求出这个最小值;(3)当t为何值时,△DEF为等腰三角形?请简要说明理由.江苏省苏州市工业园区中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卷相应位置上. 1.下列实数中,无理数是( ) A .√3B .√273C .3.14D .713【解答】解:A 、√3是无理数;B 、√273=3是有理数; C 、3.14为有理数; D 、713是有理数;故选:A .2.2018年苏州市GDP (国内生产总值)约为1 860 000 000元.该数据可用科学记数法表示为( ) A .1.86×109B .186×1010C .18.6×1011D .1.86×1012【解答】解:1 860 000 000元.该数据可用科学记数法表示为1.86×109. 故选:A .3.中国传统扇文化有着深厚的底蕴,下列扇面图案既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,也是中心对称图形,故此选项正确;故选:D .4.若分式x2x−2有意义,则x应满足的条件是()A.x≠0 B.x=2 C.x>2 D.x≠2【解答】解:由代数式有意义可知:x﹣2≠0,∴x≠2,故选:D.5.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=2【解答】解:原方程可化为:(x﹣1)(x﹣2)=0∴x1=1,x2=2.故选:A.6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.7.如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A .1B .12C .13D .23【解答】解:设正六边形的边长为a , 则总面积为√34a 2×6=3√32a 2,其中阴影部分面积为√34×(√3a )2=3√34a 2, ∴飞镖落在阴影部分的概率是3√3a 243√3a 22=12,故选:B .8.如图,点A 、B 、C 、D 在⊙O 上,OB ∥CD ,∠A =25°,则∠BOD 等于( )A .100°B .120°C .130°D .150°【解答】解:∵∠A =25°, ∴∠D =2∠A =50°, ∵OB ∥CD ,∴∠BOD +∠D =180°,∴∠BOD =180°﹣50°=130°; 故选:C .9.如图,在四边形ABCD 中,已知AD ∥BC ,∠BCD =90°,∠ABC =45°,BD 平分∠ABC ,若CD =1cm ,则AC 等于( )A.√2cm B.√3cm C.2cm D.1cm 【解答】解:过D作DE⊥BA交BA的延长线于E,∵∠BCD=90°,BD平分∠ABC,∴DE=CD,∵CD=1,∴DE=1,∵AD∥BC,∠ABC=45°,∴∠EAD=∠ABC=45°,∴△ADE是等腰直角三角形,∴AE=DE=1,∴AD=√2,∵AD∥BC,∠BCD=90°,∴∠ADC=90°,∴AC=√AD2+CD2=√(√2)2+12=√3,故选:B.10.如图,反比例函数y=kx(x>0)的图象经过▱OABC的顶点C和对角线的交点E,顶点A在x轴上,若▱OABC的面积为18,则k的值为()A.8 B.6 C.4 D.2 【解答】解:如图,分别过C、E两点作x轴的垂线,交x轴于点D、F,∵反比例函数y=kx(x>0)的图象经过▱OABC的顶点C和对角线的交点E,设C(m,km),∴OD=m,CD=k m,∵四边形OABC为平行四边形,∴E为AC中点,且EF∥CD,∴EF=12CD=k2m,且DF=AF,∵E点在反比例函数图象上,∴E点横坐标为2m,∴DF=OF﹣OD=m,∴OA=3m,∴S△OAE=12OA•EF=12×3m×k2m=34k,∵四边形OABC为平行四边形,∴S四边形OABC=4S△OAE,∴4×34k=18,解得k=6,故选:B.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣4x=x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).12.若一组数据1,2,x,5,6的众数为6,则这组教据的中位数为 5 .【解答】解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故答案为:5.13.经过点(1,2)且与直线y =﹣2x 平行的直线对应的函数表达式为y = ﹣2x +4 . 【解答】解:设一次函数的表达式为:y =kx +b , ∵一次函数的图象与直线y =﹣2x 平行, ∴k =﹣2,∵一次函数经过点(1,2), ∴﹣2+b =2, 解得,b =4,则一次函数的表达式为y =﹣2x +4, 故答案为:﹣2x +4.14.若a +b =2,则代数式a 2﹣b 2+4b = 4 . 【解答】解:∵a +b =2, ∴a 2﹣b 2+4b=(a +b )(a ﹣b )+4b =2(a ﹣b )+4b =2a +2b =2(a +b ) =2×2 =4, 故答案为:4.15.半径为3cm ,圆心角为120°的扇形的弧长为 2π . 【解答】解:扇形的弧长=120π×3180=2π, 故答案为:2π.16.若二次函数y =ax 2+bx ﹣3的图象经过点(﹣1,0),(3,0),则其表达式为y = x 2﹣2x ﹣3 . 【解答】解:把(﹣1,0),(3,0)代入y =ax 2+bx ﹣3得: {a −b −3=09a +3b −3=0,解得:{a =1b =−2∴二次函数的解析式y =x 2﹣2x ﹣3. 故答案为:x 2﹣2x ﹣3.17.如图,四边形ABCD 中,已知AB =AD ,∠BAD =60°,∠BCD =120°,若四边形ABCD 的面积为4√3,则AC = 4 .【解答】将△ACD绕点A顺时针旋转60°,得到△ABE.∵四边形内角和360°,∴∠D+∠ABC=180°.∴∠ABE+∠ABC=180°,∴E、B、C三点共线.根据旋转性质可知∠EAC=60度,AE=AC,∴△AEC是等边三角形.四边形ABCD面积等于△AEC面积,等边△AEC面积=√34AC2=4√3,解得AC=4.故答案为4.18.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为√10−√2cm.【解答】解:设正方形的中心为O,可证EF经过O点.连结OB,取OB中点M,连结MA,MG,则MA,MG为定长,可计算得MA =√10,MG =12OB =√2,AG ≥AM ﹣MG =√10−√2, 当A ,M ,G 三点共线时,AG 最小=√10−√2cm , 故答案为:√10−√2三、解答题;本大颗共10小题,共76分.请将解答过程写在答题卷相应位置上,解答时应写出必要的计算过程,推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔. 19.(5分)计算:|12−3|+sin 245°−√4. 【解答】解:|12−3|+sin 245°−√4 =2.5+(√22)2−2 =2.5+0.5﹣2 =120.(5分)解不等式组:{x +3<4x3x −1≥2(x +2)【解答】解:{x +3<4x ①3x −1≥2(x +2)②由①得x >1, 由②得x ≥5,∴不等式组的解集为x ≥5.21.(6分)先化简,再求值:(x −3x x+2)÷x 2−2x+1x+2,其中x =√3+1.【解答】解:(x −3x x+2)÷x 2−2x+1x+2=(x 2+2x x+2−3xx+2)•x+2(x−1)=x(x−1)x+2•x+2(x−1)2=xx−1, 当x =√3+1时, 原式=√3+13+1−1=3+√33. 22.(5分)已知:如图,点A 、D 、C 在同一条直线上,AB ∥DE ,AB =AD ,AC =DE ,求证:∠C =∠E .【解答】证明:∵AB ∥DE , ∴∠BAC =∠ADE , 在△ABC 与△ADE 中 {AB =AD∠BAC =∠ADE AC =DE, ∴△ABC ≌△ADE (SAS ), ∴∠C =∠E .23.(8分)甲、乙两名教师参加“优质课”比赛,由于参赛教师较多,需将参赛教师随机分成A 、B 、C 三个组进行比赛.(1)甲教师恰好分在A 组的概率是13;(2)求甲、乙两名教师分在同一个组的概率.【解答】解:(1)因为共有A 、B 、C 三组,而甲同学在A 组的只有1种结果, 所以甲同学恰好在A 组的概率是13,故答案为:13;(2)画树状图如下:可得一共有9种可能,甲、乙两名教师分在同一个组的有3种, 所以甲、乙两名教师分在同一个组的概率为13.24.(8分)某校组织全校2000名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和数分布直方图(不完整).抽取部分学生成绩的频率分布表成绩分组频数频率50.5~60.5 20 0.0560.5~70.5 60 0.1570.5~80.5 76 0.1980.5~90.5 104 0.2690.5~100.5 140 0.35合计400 1根据所给信息,回答下列问题(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在90.5﹣100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.【解答】解:(1)抽取的学生总数为20÷0.05=400,则60.5~70.5的频数为400×0.15=60,70.5~80.5的频率为76÷400=0.19,90.5~100.5的频率为140÷400=0.35,补全频数分布表如下:成绩分组频数频率50.5~60.5 20 0.0560.5~70.5 60 0.1570.5~80.5 76 0.1980.5~90.5 104 0.26 90.5~100.5140 0.35 合计4001(2)补全图形如下:(3)2000×0.35=700(人),答:估算出全校获奖学生的人数为700人.25.(8分)某校为了创建书香校园,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等. (1)文学书和科普书的单价分别是多少元?(2)该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?【解答】解:(1)设文学书的单价为x 元/本,则科普书的单价为(x +20)元/本, 依题意,得:800x=1200x+20,解得:x =40,经检验,x =40是原分式方程的解,且符合题意, ∴x +20=60.答:文学书的单价为40元/本,科普书的单价为60元/本. (2)设购进m 本科普书, 依题意,得:40×60+60m ≤5000, 解得:m ≤4313.∵m为整数,∴m的最大值为43.答:购进60本文学书后最多还能购进43本科普书.26.(10分)如图,已知抛物线y=√33x 2−2√33x与x轴相交于O、A两点,B为顶点,C是第二象限内抛物线上一点,且∠AOC=120°.(1)求点C的坐标;(2)向下平移该抛物线得到一条新抛物线,设新抛物线与x轴相交于点O′、A′(点A′在点O′的右侧).问:是否存在以点A′、A、B为顶点且与△OBC相似的三角形?若存在,求出新抛物线对应的函数表达式;若不存在,请说明理由.【解答】解:(1)令y=0,则x=2,则函数对称轴为x=1,故点A(2,0)、B(1,−√33),∠AOC=120°,则直线OC的倾斜角为60°,则直线OC的表达式为:y=−√3x,将直线OC的表达式与二次函数表达式联立并解得:x=﹣1,即点C(﹣1,√3);(2)存在,理由:如图所示,△ABA′只可能∠BAA′为钝角,OB 2=12+(−√33)2=43,同理CO 2=4,AB 2=43,①当△A ′AB ∽△COB 时,AA′AB=OC OB,解得:AA ′=2,②当△BAA ′∽△COB 时, 同理可得:AA ′=23,故点A ′的坐标为(4,0)或(83,0);设抛物线向下平移n 个单位,则平移后的表达式为:y =√33x 2−2√33x +n ,将点A ′的坐标代入上式并解得:n =−8√33或−16√327,则新抛物线对应的函数表达式:y =√33x 2−2√33x −8√33或y =√33x 2−2√33x −16√327.27.(10分)如图,以△ABC 的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .(1)求证:DE 是⊙O 的切线;(2)设△CDE 的面积为 S 1,四边形ABED 的面积为 S 2.若 S 2=5S 1,求tan ∠BAC 的值; (3)在(2)的条件下,若AE =3√2,求⊙O 的半径长.【解答】(1)证明:连接OD , ∴OD =OB ∴∠ODB =∠OBD . ∵AB 是直径, ∴∠ADB =90°, ∴∠CDB =90°. ∵E 为BC 的中点, ∴DE =BE ,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)∵S2=5 S1∴S△ADB=2S△CDB∴ADDC=21∵△BDC∽△ADB∴ADDB=DBDC∴DB2=AD•DC∴DBAD=√22∴tan∠BAC=DBAD=√22.(3)∵tan∠BAC=DBAD=√22∴BCAB=√22,得BC=√22AB∵E为BC的中点∴BE=√24AB∵AE=3√2,∴在Rt△AEB中,由勾股定理得(3√2)2=(√2AB)2+AB2,解得AB=4故⊙O的半径R=12AB=2.28.(11分)如图①,在矩形ABCD中,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s),连接PC,以PC为一边作正方形PCEF,连接DE、DF,设△PCD的面积为y(cm2),y与t之间的函数关系如图②所示.(1)AB= 2 cm,AD= 5 cm;(2)当t为何值时,△DEF的面积最小?请求出这个最小值;(3)当t为何值时,△DEF为等腰三角形?请简要说明理由.【解答】解:(1)由图②知:AD=5,当t=0时,P与A重合,y=12×AD×CD=5,12×5×CD=5,CD=2cm,∵四边形ABCD是矩形,∴AB=CD=2cm,故答案为:2,5;(2)由题意得:AP=t,PD=5﹣t,∴y=12CD•PD=12⋅2⋅(5−t)=5﹣t,∵四边形EFPC 是正方形,∴S △DEF +S △PDC =12S 正方形EFPC ,∵PC 2=PD 2+CD 2,∴PC 2=22+(5﹣t )2=t 2﹣10t +29,∴S △DEF =12(t 2﹣10t +29)﹣(5﹣t )=12t 2−4t +192=12(t ﹣4)2+32,当t 为4时,△DEF 的面积最小,且最小值为32; (3)当△DEF 为等腰三角形时,分三种情况:①当FD =FE 时,如下图所示,过F 作FG ⊥AD 于G ,∵四边形EFPC 是正方形,∴PF =EF =PC ,∠FPC =90°,∴PF =FD ,∵FG ⊥PD ,∴PG =DG =12PD ,∵∠FPG +∠CPD =∠CPD +∠DCP =90°,∴∠FPG =∠DCP ,∵∠FGP =∠PDC =90°,∴△FPG ≌△PDC (AAS ),∴PG =DC =2,∴PD =4,∴AP =5﹣4=1,即t =1;②当DE=DF时,如下图所示,E在AD的延长线上,此时正方形EFPC是正方形,PD=CD=2∴AP=t=5﹣2=3③当DE=EF时,如下图所示,过E作EG⊥CD于G,∵FE=DE=EC,∴CG=DG=12CD=1,同理得:△PDC≌△CGE(AAS),∴PD=CG=1,∴AP=t=5﹣1=4,综上,当t=1s或3s或4s时,△DEF为等腰三角形。

【初三英语试题精选】2018年中考数学模拟试卷(4月)(苏州市工业园区附答案和解释)

【初三英语试题精选】2018年中考数学模拟试卷(4月)(苏州市工业园区附答案和解释)

2018年中考数学模拟试卷(4月)(苏州市工业园区附答案
和解释)
江苏省苏州市工业园区提因式法,等式的性质
【解析】【解答】解∵a2﹣2a﹣8=0,
∴a2﹣2a=8,
则原式=5﹣2(a2﹣2a)=5﹣2×8=﹣11,
故答案为﹣11.
【分析】由已知得等式变形求出a2﹣2a的值,再将原代数式变形,整体代入计算。

15【答案】(1,3)
【考点】二次函数图象上点的坐标特征
【解析】【解答】解∵y=x2+(2﹣m)x+m,
∴m(1﹣x)=y﹣x2﹣2x,
∵无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点,
即m有无数个解,
∴1﹣x=0,y﹣x2﹣2x,
∴x=1,y=3,
∴定点坐标为(1,3).
故答案为(1,3).
【分析】根据题意可知该定点坐标与m值无关。

先把解析式表示为关于m的不定方程,再利用m有无数个解得到1﹣x=0,y﹣x2﹣2x,求出x、y的值即可。

16【答案】y= x
【考点】待定系数法求一次函数解析式,勾股定理的逆定理,相似三角形的判定与性质
【解析】【解答】解如图,连接AB,作CD⊥x轴于点D,。

江苏省苏州市重点学校2018年最新中考数学一模试题及答案

江苏省苏州市重点学校2018年最新中考数学一模试题及答案

2018年初中毕业暨升学模拟考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0. 5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0. 5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.―4的倒数是( )A. 4B. ―4C. 14D. 14- 2.数据―1,0,1, 2,3的平均数是( )A. ―1B. 0C. 1D. 53.过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A. 3.12×104B. 3.12×105C. 3.12×106D. 0.312×107 4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过1 5min 的频率为( )A. 0B. 0.4C. 0.5D. 0.9 5.下列关于x 的方程中一定有实数根的是( )A. 220x x -+= B. 220x x +-= C. 220x x ++= D. 210x += 6.在半径为1的⊙O 中,弦1AB =,则弧AB 的长是( ) A.6πB. 4πC. 3πD.2π7.如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点,M N 在边OB 上,PM PN =,若2MN =,则OM =( )A .3 B. 4 C. 5 D .68.如图,在菱形ABCD 中,DE AB ⊥,3cos ,25A BE ==,则tan DBE ∠的值是( ) A .12 B. 2C. 2D . 59.对任意实数x,点2(,2)P x x x -一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限 10.如图,四边形ABCD 的对角线交于点O ,且//AB CD .有以下四个结论: ①AOB COD ∆∆: ②AOD ACB ∆∆: ③::DOC AOD S S DC AB ∆∆= ④AOD BOC S S ∆∆=其中,始终正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.计算: 42a a ÷= .12.小丽近6个月的手机话费(单位:元)分别为: 18,24,37,28,24,26.这组数据的中位数是 元.13.如图,点,,B C D 在同一条直线上,//,54CE AB A ∠=︒, 如果36ECD ∠=︒,那么ACB ∠ = º.14.已知点(,)P a b 在一次函数43y x =+的图象上,则代数式42a b --的值等于 .15.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 16.如图,已知//,30,AB CD A BC AD ∠=︒⊥于O .若5BC =,则AD = .17.如图,点,,,A B C D 在⊙O 上,点O 在D∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= 度.18.如图,将ABC ∆沿边AC 翻折得到ADC ∆,在边AB 上取一点E (非A 和B 点),连结,DE F 为DE 中点,FH DE ⊥交AC 于H .若2tan 5BAC ∠==,则DH DE的值= .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算: 01)2+-20.(本题满分5分)解不等式组: 221212x x x x -≤⎧⎪⎨+>--⎪⎩21.(本题满分6分)先化简,再求值: 22(1)(1)1a a a -+÷++,其中1a =.22.(本题满分6分)西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?23.(本题满分8分)在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小 学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分 布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题: (1)从图②中,我们可以看出人均捐赠图书最多的是 年级; (2)估计九年级共捐赠图书多少册? (3)全校大约共捐赠图书多少册?24.(本题满分8分)如图,AOB ∆和COD ∆均为等腰直角三角形,90,AOB COD D ∠=∠=︒ 在AB 上. (1)求证: AOC BOD ∆≅∆;(2)若20ACD ∠=︒,求ADC ∠的度数.25.(本题满分8分)已知直线112y x =+与x 轴交于点A ,与反比例函数(0)ky x x=>的图像交于点,E B 为该直线上不同于E 的一点,BC x ⊥轴于(6,0)C ,交(0)ky x x=>的图像于点D .(1)求点B 的坐标;(2)连结ED ,若EB ED =,求k 的值.26.(本题满分10分)为了考前放松心情,小明利用清明小长假上山游玩,设小明出发x min 后行走的路程为y m.图中的折线表示小明在整个行走过程中y 与x 的函数关系. (1)小明途中体息了 min .(2)求y 与x 的函数关系式;(并写出自变量的取值范围)(3)一名挑山工(搬运物品上山的工人)在小明出发15分钟后挑担上山,途中他与小明相遇了两次。

苏州市XX学校2018年中考数学一模试题-有答案

苏州市XX学校2018年中考数学一模试题-有答案

2018年初中毕业暨升学模拟考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0. 5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0. 5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.―4的倒数是( )A. 4B. ―4C.14 D. 14- 2.数据―1,0,1, 2,3的平均数是( )A. ―1B. 0C. 1D. 5 3.过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A. 3.12×104B. 3.12×105C. 3.12×106D. 0.312×107 4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过1 5min 的频率为( )A. 0B. 0.4C. 0.5D. 0.9 5.下列关于x 的方程中一定有实数根的是( )A. 220x x -+= B. 220x x +-= C. 220x x ++= D. 210x += 6.在半径为1的⊙O 中,弦1AB =,则弧AB 的长是( ) A.6πB. 4πC. 3πD.2π7.如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点,M N 在边OB 上,PM PN =,若2MN =,则OM =( )A .3 B. 4 C. 5 D .68.如图,在菱形ABCD 中,DE AB ⊥,3cos ,25A BE ==,则tan DBE ∠的值是( ) A .12B. 2C. 2D . 59.对任意实数x ,点2(,2)P x x x -一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限 10.如图,四边形ABCD 的对角线交于点O ,且//AB CD .有以下四个结论: ①AOB COD ∆∆: ②AOD ACB ∆∆: ③::DOC AOD S S DC AB ∆∆= ④AOD BOC S S ∆∆=其中,始终正确的有( )A. 1个B. 2个C. 3个D. 4个 二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.计算: 42a a ÷= .12.小丽近6个月的手机话费(单位:元)分别为: 18,24,37,28,24,26.这组数据的中位数是 元.13.如图,点,,B C D 在同一条直线上,//,54CE AB A ∠=︒, 如果36ECD ∠=︒,那么ACB ∠ = º.14.已知点(,)P a b 在一次函数43y x =+的图象上,则代数式42a b --的值等于 .15.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 16.如图,已知//,30,AB CD A BC AD ∠=︒⊥于O .若5BC =,则AD = .17.如图,点,,,A B C D 在⊙O 上,点O 在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= 度.18.如图,将ABC ∆沿边AC 翻折得到ADC ∆,在边AB 上取一点E (非A 和B 点),连结,DE F 为DE 中点,FH DE ⊥交AC 于H .若2tan 5BAC ∠==,则DH DE的值= .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算: 01)2+-20.(本题满分5分)解不等式组: 221212x x x x -≤⎧⎪⎨+>--⎪⎩21.(本题满分6分)先化简,再求值: 22(1)(1)1a a a -+÷++,其中21a =-.22.(本题满分6分)西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?23.(本题满分8分)在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小 学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分 布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生, 进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题: (1)从图②中,我们可以看出人均捐赠图书最多的是 年级; (2)估计九年级共捐赠图书多少册? (3)全校大约共捐赠图书多少册?24.(本题满分8分)如图,AOB ∆和COD ∆均为等腰直角三角形,90,AOB COD D ∠=∠=︒ 在AB 上.(1)求证: AOC BOD ∆≅∆;(2)若20ACD ∠=︒,求ADC ∠的度数.25.(本题满分8分)已知直线112y x =+与x 轴交于点A ,与反比例函数(0)ky x x=>的图像交于点,E B 为该直线上不同于E 的一点,BC x ⊥轴于(6,0)C ,交(0)ky x x=>的图像于点D .(1)求点B 的坐标;(2)连结ED ,若EB ED =,求k 的值.26.(本题满分10分)为了考前放松心情,小明利用清明小长假上山游玩,设小明出发x min 后行走的路程为y m.图中的折线表示小明在整个行走过程中y 与x 的函数关系. (1)小明途中体息了 min .(2)求y 与x 的函数关系式;(并写出自变量的取值范围)(3)一名挑山工(搬运物品上山的工人)在小明出发15分钟后挑担上山,途中他与小明相遇了两次。

2018年江苏省苏州市昆山市中考数学一模试卷(解析版)

2018年江苏省苏州市昆山市中考数学一模试卷(解析版)

2018年江苏省苏州市昆山市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上)1. ﹣2的相反数是()A. B. 2 C. ﹣ D. ﹣2【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:﹣2的相反数是2,故选:B.点睛:本体考查了相反数,在一个数的前面加上负号就是这个数的相反数.2. 若无理数x0=,则估计无理数x0的范围正确的是()A. 1<x0<2B. 2<x0<3C. 3<x0<4D. 4<x0<5【答案】D【解析】分析:先对进行估算,再确定是在哪两个相邻的整数之间.详解:∵<<,∴无理数x0的范围正确的是:4<x0<5.故选:D.点睛:本题考查无理数的估算,应先看这个无理数在哪两个有理数之间,进而求解.3. 下列计算正确的是()A. a2•a3=a6B. 3a2+2a3=5a5C. a3÷a2=aD. (a﹣b)2=a2﹣b2【答案】C【解析】分析:直接利用同底数幂的乘除法运算法则及合并同类项法则、完全平方公式分别化简得出答案. 详解:A、a2•a3=a5,故此选项错误;B、3a2+2a3,无法计算,故此选项错误;C、a3÷a2=a,正确;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:C.点睛:本题考查了同底数幂的乘除法运算及合并同类项、完全平方公式,正确掌握运算法则是解答本题的关键.4. 实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A. a+c>0B. b+c>0C. ac>bcD. a﹣c>b﹣c【答案】D【解析】分析:根据图示,可得:c<b<0<a,,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选:D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.5. 若2x﹣y=3,则4﹣x+y的值是()A. 1B.C.D.【答案】B【解析】分析:通过观察可得4﹣x+y可转化为4﹣(2x﹣y),然后把已知代入即可.详解:∵2x﹣y=3,4﹣x+y=4﹣(2x﹣y)=4﹣=,故选:B.点睛:本题考查了利用等式的性质求代数式的值,解答本题的关键是把已知条件与要求的结论有效结合,考查了代数式的转化与整体思想.6. 如果m<0,化简|﹣m|的结果是()A. ﹣2mB. 2mC. 0D. ﹣m【答案】A【解析】分析:由m<0,利用二次根式的性质及绝对值的性质计算即可.详解:∵m<0,∴原式=||m|﹣m|=|﹣m﹣m|=|﹣2m|=﹣2m,故选:A.点睛:本题考查了二次根式的性质与化简,解答本题的关键是掌握二次根式的性质:及绝对值的性质.7. 如图,直角三角板的直角顶点落在直尺两边之间,若∠1=66°,则∠2的度数为()A. 34°B. 24°C. 30°D. 33°【答案】B学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...详解:如图,∵AB∥CD,∴∠2=∠3,又∵∠EGF=90°,∴∠3=90°﹣∠1=24°,∴∠2=24°,故选:B.点睛:本题考查了平行线的性质、三角形的内角和等知识点,牢固掌握平行线的性质,对顶角的性质是解答本题的关键.8. 平面直角坐标系中点P(x,﹣x2﹣4x﹣3),则点P所在的象限不可能是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:﹣x2﹣4x﹣3=﹣(x+2)2+1知当x>0时,﹣(x+2)2+1<-3<0,据此可得答案.详解:∵﹣x2﹣4x﹣3=﹣(x+2)2+1,∴当x>0时,﹣(x+2)2+1<﹣3<0,∴点P所在象限不可能是第一象限,故选:A.点睛:本题主要考查点的坐标,解题的关键是掌握各象限内点的坐标符号特点及配方法的应用.9. 如图,抛物线y1=ax2+bx+c(a≠0)的顶点坐标A(﹣1,3),与x轴的一个交点B(﹣4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③抛物线与x轴的另一个交点坐标是(3,0);④方程ax2+bx+c﹣3=0有两个相等的实数根;⑤当﹣4<x<﹣1时,则y2<y1.其中正确的是()A. ①②③B. ①③⑤C. ①④⑤D. ②③④【答案】C【解析】分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据抛物线的对称性对③进行判断;根据顶点坐标对④进行判断;根据函数图象得当-4<x<-1时,一次函数图象在抛物线下方,则可对⑤进行判断.详解:∵抛物线的顶点坐标A(﹣1,3),∴抛物线的对称轴为直线x=﹣=﹣1,∴2a﹣b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以②错误;∵抛物线与x轴的一个交点为(﹣4,0)而抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(2,0),所以③错误;∵抛物线的顶点坐标A(﹣1,3),∴x=﹣1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以④正确;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(﹣1,3),B点(﹣4,0)∴当﹣4<x<﹣1时,y2<y1,所以⑤正确.故选:C.10. 如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A. B. C. D.【答案】B【解析】首先根据折叠可得CD=AC=3,BC=4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,然后求得△BCF是等腰直角三角形,进而求得∠B/GD=90°,CE-EF=,ED=AE=,从而求得B/D=1,DF=,在Rt△B/DF中,由勾股定理即可求得B/F的长.解:根据首先根据折叠可得CD=AC=3,B/C=B4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,∴BD=4-3=1,∠DCE+∠B/CF=∠ACE+∠BCF,∴∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B/FC=135°,∴∠B/FD=90°,∵S△ABC=AC×BC=AB×CE,∴AC×BC=AB×CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==∴DE=EF-ED=,∴B/F==.故答案为:“点睛”此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是解本题的关键.二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11. ﹣的绝对值是_____.【答案】【解析】分析:根据绝对值的定义和性质即可得解.详解:|﹣|=.故答案为.点睛:本题考查了绝对值的定义和性质,解决本题的关键突破口是熟练掌握绝对值的性质.12. 截止2017年底,中国高速铁路营运里程达到25000km,居世界首位,将25000用科学记数法可表示为_____.【答案】2.5×104【解析】分析:科学记数法的表示形式为a×的形式,其中, n 为整数.确定 n 的值时,要看把原数变成a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值 >1 时, n是正数;当原数的绝对值 <1 时, n是负数.详解:将25000用科学记数法可表示为2.5×104.故答案为:2.5×104.点睛:本题考查了科学计数法的表示方法,科学计数法的表示形式为a×的形式,其中,n为整数,表示时关键是要确定a的值及n的值.13. 函数y=中自变量x的取值范围是_____.【答案】x≥﹣且x≠1【解析】分析:根据二次根式的性质和分式的意义,被开方数大于等于0 ,分母不等于0,就可以求解.详解:由题意得,2x+3≥0,x﹣1≠0,解得,x≥﹣且x≠1,故答案为:x≥﹣且x≠1.点睛:本题考查了函数自变量的取值范围,函数的自变量的范围一般从三个方面考虑:当函数的表达式是整式时,自变量可取全体实数;当自变量表达式是分式时,分式的分母不能为0;当函数的表达式为二次根式时,被开方数为非负数.14. 已知a2﹣4b2=12,且a﹣2b=﹣3,则a+2b=_____.【答案】-4【解析】分析:根据平方差公式得到a2﹣4b2=(a+2b)(a﹣2b)=12,然后把a﹣2b=﹣3代入计算即可. 详解:∵a2﹣4b2=(a+2b)(a﹣2b)=12,a﹣2b=﹣3,∴﹣3(a+2b)=12,a+2b=﹣4.故答案为:﹣4.点睛:本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.15. 如果α,β(α≠β)是一元二次方程x2+2x﹣1=0的两个根,则α2+α﹣β的值是_____.【答案】3【解析】分析:把α代入一元二次方程x2+2x﹣1=0,可得α2+2α﹣1=0,再利用两根之和α+β=﹣2,将式子变形后,整理代入,即可求值.详解:∵α,β(α≠β)是一元二次方程x2+2x﹣1=0的两个根,∴α2+2α﹣1=0,α+β=﹣2,∴α2+α=1﹣α,∴α2+α﹣β=1﹣α﹣β=1+2=3,故答案为3点睛:本题考查了一元二次方程根与系数的关系,及一元二次方程的解,一元二次方程ax²+bx+c=0,(a≠0),当b²-4ac≥0时,方程有解,16. 如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A按逆时针旋转90°后得到△AO1B1,则点B1的坐标是_____.【答案】(﹣1,﹣3)【解析】试题分析:直线与轴、轴分别交于两点,旋转前后三角形全等,轴,点的纵坐标为长,即为3,横坐标为故点的坐标为(7,3).考点:坐标与图形变化——旋转.视频17. 设A(x1,y1)、B(x2,y2)是抛物线y=2x2+4x﹣2上的点,坐标系原点O位于线段AB的中点处,则AB的长为_____.【答案】2【解析】分析:由于原点O是线段AB的中点得到A点和B点关于原点中心对称,则x1=﹣x2,y1=﹣y2,,根据抛物线的位置可确定A点和B点在第一、三象限,设A点在第一象限,再把点A和B点坐标代入解析式得到, y1=2x12+4x1﹣2,﹣y1=2x12﹣4x1﹣2,两式相加可得到x1=1,则y1=4,于是可确定A点和B点坐标,然后利用两点间的距离公式计算.详解:∵原点O是线段AB的中点,∴A(x1,y1)与B(x2,y2)关于原点中心对称,∴x1=﹣x2,y1=﹣y2,∵y=2x2+4x﹣2=2(x+1)2﹣4,∴抛物线的对称轴为直线x=﹣1,顶点坐标为(﹣1,﹣4),∴A点和B点在第一、三象限,设A点在第一象限,∴B点坐标为(﹣x1,﹣y1),∴y1=2x12+4x1﹣2,﹣y1=2x12﹣4x1﹣2,∴x1=1,∴y1=4,∴A(1,4)与B(﹣1,﹣4),∴AB==2.故答案为2.点睛:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了两点间的距离公式.18. 如图,在等腰Rt△ABC中,∠ACB=90°,AB=4,点E为AB的中点.以AE为边作等边△ADE(点D 与点C分别在AB的异侧),连接CD.则△ACD的面积为_____.【答案】1+【解析】分析:根据圆的定义,证明D、A、C、B四点共圆,可得∠ADF=45°,作高线AF,构建等腰直角△ADF和30度的直角△AFC,可以求得AF、DF、CF的长,利用三角形面积公式可得结论.详解:连接CE,∵∠ACB=90°,E为AB的中点,∴CE=AE=BE,∵△ADE是等边三角形,∴DE=AE,∴DE=AE=CE=BE,∴D、A、C、B在以点E为圆心的圆上,作⊙E,∴∠ADC=∠ABC=45°,过A作AF⊥CD于F,∴△ADF是等腰直角三角形,∵AD=AE=AB=2,∴AF=DF==,∵∠CAF=∠DAB+∠BAC﹣∠DAF=60°+45°﹣45°=60°,∴∠ACF=30°,∴AC=2AF=2,由勾股定理得:CF===,∴S △ADC=CD•AF=(+)×=1+,故答案为:1.点睛:本题考查了等腰直角三角形的性质和判定、勾股定理、等边三角形的性质及四点共圆的知识,得出D、A、C、B四点共圆是解答本题的关键.三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤.)19. 计算:(1)(2)【答案】(1)4;(2)1-【解析】分析:(1) 直接利用算术平方根的性质以数的乘方和绝对值的性质分别化简求出答案;(2) 分别进行算术平方根二次根式的化简、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.详解:(1)=2﹣1+3=4;(2)=4+2×﹣×(2+)=4+﹣2﹣3=1﹣.点睛:本题考查了实数的混合运算,解答此题的关键是熟练掌握实数的运算法则.20. 解不等式组,并将解集在数轴上表示出来.【答案】不等式组的解集是﹣1<x≤3.【解析】分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.详解:由①得:x≤3,由②得:x>﹣1,∴不等式组的解集是﹣1<x≤3,在数轴上表示不等式组的解集为:.点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.21. 先化简再求值:,其中a=+2.【答案】-1-【解析】分析:先把分式化简:把分子、分母能分解因式的分解,能约分的约分,然后先除后减,化简为最简形式,最后把a的值代入计算.详解:,=÷,=,=,=,当a=+2时,原式==﹣1﹣.点睛:本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,通分、约分等.22. 解方程:【答案】x=.【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:﹣=,方程两边同时乘以(x+1)(x﹣1)得:4﹣(x+1)=2x(x﹣1),4﹣x﹣1=2x2﹣2x,2x2﹣x﹣3=0,(x+1)(2x﹣3)=0,x1=﹣1,x2=,检验:当x=﹣1时,(x+1)(x﹣1)=0,当x=时,(x+1)(x﹣1)≠0,∴x=﹣1不是原方程的根,x=是原方程的根;∴原方程的根是x=.点睛:本题考查了解分式方程,熟练掌握解分式方程的步骤是解答本题的关键.23. 某中学九年级(1)班为了了解全班学生的兴趣爱好情况,采取全面调查的方法,从舞蹈、书法、唱歌、绘画等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择其中一种自己喜欢的兴趣项目),请你根据图中提供的信息解答下列问题:(1)九年级(1)班的学生人数为,并将图①中条形统计图补充完整;(2)图②中表示“绘画”的扇形的圆心角是度;(3)“舞蹈”兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的舞蹈队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.【答案】(1)40,补图见解析;(2)72;(3).【解析】试题分析:(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解.试题解析:(1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40-4-12-16=40-32=8(人),补全统计图如图所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)=.考点:1.条形统计图;2.扇形统计图;3.概率.24. 已知关于x的方程x2+(k+3)x+=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程两根为x1,x2,那么是否存在实数k,使得等式=﹣1成立?若存在,求出k的值;若不存在,请说明理由.【答案】(1)k>﹣;(2)6.【解析】分析:(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出结论;(2)根据根与系数的关系可得出x1+x2=﹣k﹣3、x1x2=,将其代入中求出k值,再由(1)的结论即可确定k值,进而求解.详解:(1)∵关于x的方程x2+(k+3)x+=0有两个不相等的实数根,∴△=(k+3)2﹣4×1×=6k+9>0,解得:k>﹣.(2)∵方程x2+(k+3)x+=0的两根为x1、x2,∴x1+x2=﹣k﹣3,x1x2=.∵=﹣1,即=﹣1,∴k2﹣4k﹣12=0,解得:k1=﹣2,k2=6.∵k>﹣,∴k=6.点睛:本题考查了根与系数的关系及根的判别式,解题的关键是:知道当△>0时,方程有两个不相等的实数根;关键根与系数的关系结合,找出关于k的方程.25. 如图,在Rt△ABC中,∠C=90°,AC=BC=3,点D在AB上,且BD=2AD,连接CD,将线段CD绕点C逆时针方向旋转90°至CE,连接BE,DE.(1)求证:△ACD≌△BCE;(2)求线段DE的长度.【答案】(1)证明见解析;(2).【解析】分析:(1)先根据旋转的性质,由线段CD绕点C逆时针旋转90°,于是可得∠ACD=∠BCE,然后根据SAS即可得到△ACD≌△BCE;(2)先在RT△中利用勾股定理求出AB=6,由BD=2AD得到AD=2,BD=4,再证明∠DBE=90°,BE=2,然后在RT△BDE中利用勾股定理即可求出DE的长度.详解:(1)证明:∵将线段CD绕点C逆时针方向旋转90°至CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE.在△ACD与△BCE中,,∴△ACD≌△BCE;(2)解:∵在Rt△ABC中,∠C=90°,AC=BC=3,∴AB=6.∵BD=2AD,∴AD=2,BD=4.由(1)可知△ACD≌△BCE,∴∠CBE=∠A=45°,BE=AD=2,∴∠DBE=∠ABC+∠CBE=90°.∵在Rt△BDE中,∠DBE=90°,∴DE2=BE2+BD2,∴DE==2.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质,勾股定理等知识.26. (8分)快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.请结合图象信息解答下列问题:(1)慢车的速度是千米/小时,快车的速度是千米/小时;(2)求m的值,并指出点C的实际意义是什么?(3)在快车按原路原速返回的过程中,快、慢两车相距的路程为150千米时,慢车行驶了多少小时?【答案】(1)60,120;(2)C点表示小时时,慢车在距离乙地280千米处,快车在距离甲地280千米处;慢车行驶了5.5小时.【解析】试题分析:(1)根据速度=路程÷时间求出慢车的速度,再求出快车到达甲地的时间,然后根据速度=路程÷时间列式计算即可求出快车的速度;(2)根据两车距离出发地的路程列出方程,然后求出m的值,再求出y值,然后说出两车的位置即可;(3)利用两车与甲地的距离表示出两车间的距离,然后求解即可.试题解析:(1)慢车速度==60千米/小时,∵快车到达乙地后,停留1小时,快车比慢车晚1小时到达甲地,∴快车返回甲地的时间为6+1﹣1=6,∴快车速度==120千米/小时;故答案为:60,120;(2)由题意得,60m=360×2﹣120(m﹣1),解得m=,60×=280km,所以,C点表示小时时,慢车在距离乙地280千米处,快车在距离甲地280千米处;(3)设慢车行驶了x小时,由题意得,60x﹣120(x﹣﹣1)=150,解得x=5.5小时,答:慢车行驶了5.5小时.考点:一次函数的应用.27. 如图1,一次函数y=kx﹣6(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b= ;k= ;(2)点C是线段AB上一点,过点C且平行于y轴的直线l交该反比例函数的图象于点D,连接OC,OD,BD,若四边形OCBD的面积S四边形OCBD=,求点C的坐标;(3)将第(2)小题中的△OCD沿射线AB方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数图象上(如图2),求此时点D的对应点D'的坐标.【答案】(1)2;2;(2)C(,﹣1);(3)D′(,).【解析】分析:(1)利用待定系数法把点B(4,b)代入y=即可求解;(2)设C(m,2m-6)(0<m<4),则D(m,),根据四边形的面积构建方程即可解决问题;(3)根据一次函数,利用方程组求出点O的坐标,即可解决问题.详解:(1)把点B(4,b)代入y=中,得到b=2,∴B(4,2)代入y=kx﹣6中,得到k=2,故答案为2,2;(2)设C(m,2m﹣6)(0<m<4),则D(m,),∴CD=﹣2m+6,∵S四边形OCBD=,∴•CD•x B=,即(﹣2m+6)×4=,∴10m2﹣9m﹣40=0,∴m1=,m2=﹣,经检验:m1=,m2=﹣是原方程的解,∵0<m<4,∴m=,∴C(,﹣1).(3)由平移可知:OO′∥AB,∴直线OO′的解析式为y=2x,由,解得或(舍弃),∴O′(2,4),∴D′(,).点睛:本题考查了反比例函数的应用,一次函数的应用,解题的关键是熟练掌握待定系数法,学会构建方程解决问题,学会构建一次函数,利用方程组确定交点问题坐标,属于中考常考题型.28. 如图,抛物线y=ax2﹣5ax﹣4交x轴于A,B两点(点A位于点B的左侧),交y轴于点C,过点C作CD∥AB,交抛物线于点D,连接AC、AD,AD交y轴于点E,且AC=CD,过点A作射线AF交y轴于点F,AB平分∠EAF.(1)此抛物线的对称轴是;(2)求该抛物线的解析式;(3)若点P是抛物线位于第四象限图象上一动点,求△APF面积S△APF的最大值,以及此时点P的坐标;(4)点M是线段AB上一点(不与点A,B重合),点N是线段AD上一点(不与点A,D重合),则两线段长度之和:MN+MD的最小值是.【答案】(1)直线x=;(2)抛物线解析式为y=x2﹣x﹣4;(3)当x=4时,S△APF的最大值为,此时P点坐标为(4,﹣);(4).【解析】分析:(1)直接利用抛物线的对称轴方程求解;(2)先确定C(0,4)再利用对称性得到D(5,-4),从而得到CD=AC=5,然后求出A点的坐标,再把A点坐标代入y=ax²-5ax-4中求出a即可;(3)作PQ∥y轴交AF于Q,如图1,先利用待定系数法确定直线AD的解析式为y=﹣x﹣得到E(0,-),再根据等腰三角形的三线合一确定F(0,),则易得直线AF的解析式为y=,设P(x,-4)(0<x<8=,则Q(x,),所以PQ= ,然后利用三角形面积公式,根据可表示出,最后利用二次函数的性质解决问题;(4)作DQ⊥AF于Q,交x轴于M,作MN⊥AD于N,EH⊥AF于H,如图2,利用两点之间线段最短和垂线段最短判断此时MN+MD的值最小,再利用面积法求出EH,然后利用平行线分线段成比例定理计算DQ即可.详解:(1)抛物线的对称轴为直线x=﹣=;(2)当x=0时,y=ax2﹣5ax﹣4=﹣4,则C(0,﹣4);∵CD∥x轴,∴点C与点D关于直线x=对称,∴D(5,﹣4),CD=5,∵AC=CD,∴AC=5,在Rt△AOC中,OA==3,∴A(﹣3,0),把A(﹣3,0)代入y=ax2﹣5ax﹣4得9a+15a﹣4=0,解得a=,∴抛物线解析式为y=x2﹣x﹣4;(3)作PQ∥y轴交AF于Q,如图1,当y=0时,x2﹣x﹣4=0,解得x1=﹣3,x2=8,则P(8,0),设直线AD的解析式为y=kx+b,把A(﹣3,0),D(5,﹣4)代入得,解得,∴直线AD的解析式为y=﹣x﹣,当x=0时,y=﹣x﹣=﹣,则E(0,﹣),∵AB平分∠EAF,AO⊥EF,∴OF=OE=,∴F(0,),易得直线AF的解析式为y=x+,设P(x,x2﹣x﹣4)(0<x<8),则Q(x,x+),∴PQ=x+﹣(x2﹣x﹣4)=﹣x2+x+,∴S△APF=S△PAQ﹣S△PFQ=•3•PQ=﹣x2+2x+=﹣(x﹣4)2+,当x=4时,S△APF的最大值为,此时P点坐标为(4,﹣);(4)作DQ⊥AF于Q,交x轴于M,作MN⊥AD于N,EH⊥AF于H,如图2,∵AB平分∠EAF,∴MQ=MN,∴MN+MD=DQ,∴此时MN+MD的值最小,∵A(﹣3,0),E(0,﹣),D(5,﹣4),∴AE==,AD==4,∵OA•EF=•EH•AF,∴EH==,∵EH∥DQ,∴=,即=,∴DQ=,即MN+MD的最小值是.故答案为直线x=;.点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;会运用勾股定理和相似比进行几何计算;理解坐标与图形性质;会利用两点之间线段最短和垂线段最短解决路径最短问题.。

江苏省苏州市园区2018年5月中考数学模拟试卷含答案

江苏省苏州市园区2018年5月中考数学模拟试卷含答案

2017~2018学年初三教学调研试卷数学2018.04本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分.考试时间120分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卷相应位置上......... 1.12-等于 A.12 B. 2 C. 12- D. 2- 2. 2017年阳澄湖大闸蟹年产量约为1 200 000 kg. 1 200 000用科学记数法表示为 A. 70.1210⨯ B. 61.210⨯ C. 51210⨯ D. 412010⨯3.如图,一个正六边形转盘被分成6个全等的正三角形.任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 A.16 B. 14 C. 13 D. 124.函数21y x =-的自变量x 的取值范围是 A. 0x ≠ B. 1x ≠ C. 1x ≥ D. 1x ≤ 5.如图,已知ABC BAD ∠=∠.下列条件中,不能作为....判定ABC BAD ∆≅∆的条件的是 A. C D ∠=∠ B. BAC ABD ∠=∠ C. BC AD = D. AC BD = 6.一元二次方程2414x x +=的根的情况是A.没有实数根B.有两个不相等的实数根C.只有一个实数根D.有两个相等的实数根7.已知点1(2,)A y 、2(4,)B y 在一次函数3y x b =+的图像上,则下列判断正确的是 A. 12y y > B. 12y y =C. 12y y <D. 1y 、2y 的大小关系无法确定8.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生分别选了一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知“最喜爱机器人”的人数比“最喜爱3D 打印”的人数少5人,则被调查的学生总人数为A. 50人B. 40人C. 30人D. 25人9.如图,在ABC ∆中,35C ∠=︒.点D 、E 分别在BC 、AC 上,将ABC ∆沿DE 折叠,使点C 与点A 重合.若AB AD =,则BAD ∠等于A .20º B.30º C. 40º D. 70º10.如图,在ABC ∆中,90BAC ∠=︒,4AB AC ==.将ABC ∆绕点B 逆时针旋转45º,得''A BC ∆,则阴影部分的面积为A. 2B. 2π C . 4 D. 4π二、填空题:本大题共8小题,每小题3分,共24分.请将答案填在答题卷相应位置上.......... 11.计算:23x x =g .12.甲、乙两人在相同情况下10次射击训练的成绩如图所示,其中成绩比较稳定的是 .13.分解因式:222a -= . 14.某班的中考英语听力口语模拟考试成绩如下:该班中考英语听力口语模拟考试成绩的众数比中位数多 分.15.如图,正五边形ABCDE 的对角线BD 、CE 相交于点F ,则BFC ∠= .16.若二次函数21y ax bx =--的图像经过点(2,1),则代数式20182a b -+的值等于 .17.如图,在笔直的海岸线l 上有两个观测点A 和B ,点A 在点B 的正西方向,2AB =km.若从点A 测得船C 在北偏东60º的方向,从点B 测得船C 在北偏东45º的方向,则船C 离海岸线l 的距离为 km.(结果保留根号)18.如图,AB 是半⊙O 的直径,且8AB =.点C 是半⊙O 上的一个动点(不与点A 、B 重合),过点C 作CD AB ⊥,垂足为D .设,AC x AD y ==,则()x y -的最大值等于 .三、解答题:本大题共10小题,共76分.请将解答过程写在答题卷相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:01)3+-20.(本题满分5分)解不等式组:322(4)42x x x +≥⎧⎨+>+⎩.21.(本题满分6分)先化简,再求值:2121(1)a a a a-+-÷,其中1a =.22.(本题满分6分)在弹性限度内,弹簧长度y (cm)是所挂物体质量x (g)的一次函数.已知一根弹簧挂10g 物体时的长度为11 cm ,挂30 g 物体时的长度为15 cm. (1)求y 与x 之间的函数表达式;(2)若这根弹簧挂物体后的长度为13 cm ,求所挂物体的质量.23.(本题满分8分)从2名男生和2名女生中随机抽取金鸡湖国际半程马拉松赛志愿者. (1)若抽取1名,则恰好是女生的概率是 ;(2)若抽取2名,求恰好是·名男生和·名女生的概率.(用树状图或列表法求解)24.(本题满分8分)如图,AC 是ABCD Y 的对角线.(1)用直尺和圆规作出AC 的垂直平分线EF ,点E 、F 分别在边BC 、AD 上,连接AE 、CF ; (保留作图痕迹,不写作法)(2)求证:四边形AECF 是菱形;(3)若8,6,1AC EF BE ===,求ABCD Y 的面积.25.(本题满分8分) 如图,AOB ∆的边OB 在x 轴上,且90ABO ∠=︒反比例函数(0)ky x x=>的图像与边AO 、AB 分别相交于点C 、D ,连接BC . 已知OC BC =,BOC ∆的面积为12.(1)求k 的值;(2)若6AD =,求直线OA 的函数表达式.26.(本题满分10分)如图,点O 在ABC ∆的BC 边上,⊙O 经过点A 、C ,且与BC 相交于点D .点E 是下半圆弧的中点,连接AE 交BC 于点F ,已知AB BF =. (1)求证:AB 是⊙O 的切线;(2)若4CF =,EF =sin B 的值.27.(本题满分10分)如图,正方形ABCD 与矩形EFGH 在直线l 的同侧,边AD 、EH 在直线l 上.保持正方形ABCD 不动,并将矩形EFGH 以1 cm/s 的速度沿DA 方向移动,移动开始前点E 与点D 重合,当矩形EFGH 完全穿过正方形ABCD (即点H 与A 点重合)时停止移动,设移动时间为t (s).已知5AD =cm ,4EH =cm ,3EF =cm ,连接AF 、CG .(1)矩形EFGH 从开始移动到完全穿过正方形ABCD ,所用时间为 s; (2)当AF CG ⊥时,求t 的值;(3)在矩形EFGH 移动的过程中,AF CG +是否存在最小值?若存在,直接写出这个最小值及相应的t 的值;若不存在,说明理由.28.(本题满分10分)如图,已知二次函数222(1)2y x m x m m =-+++(0)m >的图像与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接AC 、BC .(1)线段AB = ;(2)若AC 平分OCB ∠,求m 的值;(3)该函数图像的对称轴上是否存在点P ,使得PAC ∆为等边二角形?若存在,求出m 的值;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年初三教学调研试卷
数学2018、04 本试卷由选择题、填空题与解答题三大题组成,共28小题,满分130分、考试时间120分钟、一、选择题:本大题共10小题,每小题3分,共30分、在每小题给出得四个选项中,只有一个选
项就是正确得,请将正确选项前得字母填在答题卷相应位置上
........、
1、等于
A、B、C、D、
2、2017年阳澄湖大闸蟹年产量约为1 200 000 kg、 1 200 000用科学记数法表示为
A、B、C、D、
3、如图,一个正六边形转盘被分成6个全等得正三角形、任意旋转这个转盘1次,当旋转停止
时,指针指向阴影区域得概率就是
A、B、C、D、
4、函数得自变量得取值范围就是
A、B、C、D、
5、如图,已知、下列条件中,不能作为
....判定得条件得就是
A、B、
C、D、
6、一元二次方程得根得情况就是
A、没有实数根
B、有两个不相等得实数根
C、只有一个实数根
D、有两个相等得实数根
7、已知点、在一次函数得图像上,则下列判断正确得就是
A、B、
C、D、、得大小关系无法确定
8、某学校在“您最喜爱得课外活动项目”调查中,随机调查了若干名学生(每名学生分别选了一个活动项目),并根据调查结果绘制了如图所示得扇形统计图、已知“最喜爱机器人”得人数比“最喜爱3D打印”得人数少5人,则被调查得学生总人数为
A、50人
B、40人
C、30人
D、25人
9、如图,在中,、点、分别在、上,将沿折叠,使点与点重合、若,则等于
A 、20ºB、30ºC、40ºD、70º
10、如图,在中,,、将绕点逆时针旋转45º,得,则阴影部分得面积为
A、B、 C 、D、
二、填空题:本大题共8小题,每小题3分,共24分、请将答案填在答题卷相应位置上
.........、
11、计算: 、
12、甲、乙两人在相同情况下10次射击训练得成绩如图所示,其中成绩比较稳定得就是、
13、分解因式: 、
14、某班得中考英语听力口语模拟考试成绩如下:
考试成绩/分30 29 28 27 26
学生数/人 3 15 13 6 3
该班中考英语听力口语模拟考试成绩得众数比中位数多分、
15、如图,正五边形得对角线、相交于点,则、
16、若二次函数得图像经过点,则代数式得值等于、
17、如图,在笔直得海岸线上有两个观测点与,点在点得正西方向,km、若从点测得船在北偏东60º得方向,从点测得船在北偏东45º得方向,则船离海岸线得距离为km、(结果保留根号)
18、如图,就是半⊙得直径,且、点就是半⊙上得一个动点(不与点、重合),过点作,垂足为、设,则得最大值等于、
三、解答题:本大题共10小题,共76分、请将解答过程写在答题卷相应位置上
........,解答时应写出必要得计算过程、推演步骤或文字说明、作图时用2B铅笔或黑色墨水签字笔、
19、(本题满分5分)计算:、
20、(本题满分5分)解不等式组:、
21、(本题满分6分)先化简,再求值:,其中、
22、(本题满分6分)在弹性限度内,弹簧长度(cm)就是所挂物体质量(g)得一次函数、已知一根弹簧挂10g物体时得长度为11 cm,挂30 g物体时得长度为15 cm、
(1)求与之间得函数表达式;
(2)若这根弹簧挂物体后得长度为13 cm,求所挂物体得质量、
23、(本题满分8分)从2名男生与2名女生中随机抽取金鸡湖国际半程马拉松赛志愿者、
(1)若抽取1名,则恰好就是女生得概率就是;
(2)若抽取2名,求恰好就是·名男生与·名女生得概率、(用树状图或列表法求解)
24、(本题满分8分)如图,就是得对角线、
(1)用直尺与圆规作出得垂直平分线,点、分别在边、上,连接、; (保留作图痕迹,不写作法)
(2)求证:四边形就是菱形;
(3)若,求得面积、
25、(本题满分8分) 如图,得边在轴上,且反比例函数得图像与边、分别相交于点、,连接、已知,得面积为12、
(1)求得值;
(2)若,求直线得函数表达式、
26、(本题满分10分)如图,点在得边上,⊙经过点、,且与相交于点、点就是下半圆弧得中点,连接交于点,已知、
(1)求证:就是⊙得切线;
(2)若,,求得值、
27、(本题满分10分)如图,正方形与矩形在直线得同侧,边、在直线上、保持正方形不动,并将矩形以1 cm/s得速度沿方向移动,移动开始前点与点重合,当矩形完全穿过正方形(即点与点重合)时停止移动,设移动时间为(s)、已知cm,cm,cm,连接、、
(1)矩形从开始移动到完全穿过正方形,所用时间为s;
(2)当时,求得值;
(3)在矩形移动得过程中,就是否存在最小值?若存在,直接写出这个最小值及相应得得值;若
不存在,说明理由、
28、(本题满分10分)如图,已知二次函数得图像与轴相交于点、(点在点得左侧),与轴相交于点,连接、、
(1)线段;
(2)若平分,求得值;
(3)该函数图像得对称轴上就是否存在点,使得为等边二角形?若存在,求出得值;若不存在,
说明理由、。

相关文档
最新文档