硫化氢传感器TGS825
硫化氢气体传感器

硫化氢气体传感器硫化氢气体传感器特点:★整机体积小,重量轻★专业精选进口传感器,可以搭载电化学,催化燃烧,红外原理,热导原理的传感器。
★高精度,高分辨率,响应迅速快.★本安电路设计,可带电热拔插操作。
★数据恢复功能,免去误操作引起的后顾之忧.★自动温湿度补偿功能,出厂精准标定,无须再使用标定。
.★模拟电压或电流和串口同事输出,方便客户调试和使用。
★最精密的电路设计和制造工艺,生产复杂,使用简单。
★可与电脑连接通讯,自行标定校准。
★自带零点微调功能,方便选定参照数据。
★低功耗产品,可异动电源供电可大量用于分析仪仪器,大气,环境无人机监测。
硫化氢气体传感器结构尺寸图:硫化氢气体传感器直视图和PIN 脚定义图:硫化氢气体传感器工作电压DC5V±1%/DC24±1%波特率9600测量气体硫化氢H2S 气体检测原理电化学采样精度±2%F.S 响应时间<30S重复性±1%F.S 工作湿度0-95%RH,(无冷凝)工作温度-30~50℃长期漂移≤±1%(F.S/年)存储温度-40~70℃预热时间30S 工作电流≤50mA 工作气压86kpa-106kpa安装方式8脚拔插式质保期1年输出接口8pIN 外壳材质铝合金使用寿命2年外型尺寸(引脚除外)33.5X3121.5X31测量范围详见选型表输出信号TTL(标配)0.4-2.0VDC(常规)定制RS485/4-20mA引脚名称说明1+5V 电源接入PIN 脚2EN Rs485(3.3V),可接MCU Tx 3Rx/A 串口RX(3.3V),可接MCU Rx 5Scl I2C,Scl(3.3v)引脚6SDA I2C(3.3V)引脚7GND 电源GND 引脚8VOUT电压输出,0-5V/0.4-2.0V硫化氢气体传感器串口和电压采集接线定义图:硫化氢气体传感器I2C接线定义图:硫化氢气体传感器I2C接线定义图:硫化氢气体传感器交叉干扰系数高精度的传感器检测原理决定了它有良好的一致性,重复性,温湿度补偿等特性,但也不能忽略被检测气体之间的交叉干扰,为了达到很好的检测精准度,须考虑以下气体对该检测气体的干扰系数。
硫化氢气体报警器的参数

硫化氢气体报警器的参数
硫化氢报警器由气体探测器和气体报警控制器两部分组成,探测器检测浓度,控制器现场显示、声光报警,一般探测器都放在使用、贮存硫化氢的现场,因为探测器防爆防火,控制器放于值班室中,一旦出现泄漏,值班人员能够早发现、早通知,避免事故的发生
硫化氢气体报警器各项参数:
1、检测气体:硫化氢
2、传感器:电化学式
3、检测范围:0-50PPM / 0-100PPM / 0-200PPM
4、分辨率:1PPM/0.1PPM
5、检测原理:自然扩散式
6、检测精度:±5%F.S
7、接线方式:总线式:RVV4*1.0mm2(无信号干扰下);RVVP4*1.0mm2(有信号干扰的情况下)
分线式:RVV3*1.0mm2(无信号干扰下);RVVP3*1.0mm2(有信号干扰的情况下)
8、接线方式:总线式:四线制;分线式:三线制
9、防爆等级:Exd II CT6
10、防护等级:IP65
11、报警点:两级报警点:低报、高报,低报可调
12、相应时间:≤15s
13、压力范围:86-106KPa
14、温度范围:-40℃-70℃
15、湿度范围:≤95%
16、防爆方式:隔爆型
17、工作电压:控制器:AC220V±10%;探测器:DC24V±25%
18、探测器与控制器最大距离:≤1000m
19、安装螺纹:G1/2″内螺纹
硫化氢报警器根据控制方式可分为总线式控制器和分线式控制器,总线式控制方式只需从探测器引出一根四芯线缆将所有探测器并联即可,而分线式控制方式要求每台探测器都要引出一根三芯线缆连接到控制器,因此,需安装多台探测器时,要根据现场情况,选择合适的连接方式。
硫化氢气体检测仪工作原理分析

硫化氢气体检测仪工作原理分析介绍硫化氢气体检测仪是一种可用于检测空气中硫化氢浓度的仪器设备。
由于硫化氢是一种臭鸡蛋味的有毒气体,容易引起人体中枢神经系统的损伤和死亡,因此,硫化氢气体检测仪在化工、制药、环保等工业领域使用得非常广泛。
本文将会从硫化氢气体检测仪的工作原理进行分析。
硫化氢气体检测仪的工作原理硫化氢气体检测仪的工作原理主要基于双极性半导体传感器,采用了化学传感技术。
传感器的灵敏度随着气体浓度的增加而不断提高。
传感器可以在不同的温度下工作,使它们更加适用于不同的工业环境。
下面是硫化氢气体检测仪的详细工作原理:1.空气搜集器首先,空气被搜集器中的泵子吸入,经过滤网和冷却器,完全去除较大的杂质颗粒,并降低空气温度,以确保空气纯净度和检测精确度。
由此得到的空气,将会和燃料气体以非稀释方式混合在一起。
2.燃料电极搜集器中的混合气体被输送到燃料电极上,与燃料电极上的电化学反应发生,使得燃料电极上形成一定浓度的氢离子(H),如下所示:H2 + 2e- -> 2 H+3.检测电极检测电极由双极性半导体材料构成。
由于检测电极与燃料电极之间的距离非常接近,当氢离子(H)与空气中的硫化氢分子(H2S)相互作用时,会产生一定的电信号,并通过检测电极上传到微处理器中进行反馈处理。
4.反馈处理微处理器将检测到的信号进行反馈处理,得到空气中硫化氢的浓度,以及相关的报警信息。
当检测到空气中的硫化氢浓度超过一定的阈值时,硫化氢气体检测仪将立即发出声音和光线警报,通知用户先行撤离。
总结本文从硫化氢气体检测仪的工作原理进行了详细分析。
硫化氢气体检测仪的工作原理主要基于双极性半导体传感器,采用了化学传感技术。
通过合理的空气搜集、燃料电极和检测电极的结构设计以及微处理器的反馈处理,硫化氢气体检测仪实现了对空气中硫化氢浓度的监测和报警。
硫化氢气体检验方法

硫化氢气体检验方法
硫化氢(H₂S)是一种有毒气体,因此需要进行检测以确保环境和工作场所的安全。
以下是一些用于检测硫化氢气体的常见方法:
1.传感器检测器:这是最常见和便捷的检测方法之一。
传感器检
测器通常是手持式的,可以携带到需要检测的地方。
这些检测
器使用化学传感器或电化学传感器,可以快速、准确地检测硫
化氢浓度。
一些传感器检测器还可以提供声音或视觉警告以示
警报。
2.气体检测管:气体检测管是一种使用简便的检测方法,通过颜
色变化来指示硫化氢浓度。
用户将一端打开,将其置于待检测
气体中,通过观察管内试剂颜色变化来判断气体浓度。
3.气体检测仪器:高级的气体检测仪器通常用于长期或定期的气
体监测,尤其在工业环境中。
这些设备可以实时监测硫化氢浓
度,并记录数据。
一旦浓度超过设定的安全水平,检测仪器将
发出警报。
4.固相吸附管:固相吸附管是一种简单但有效的气体检测方法。
用户将吸附管置于空气中,硫化氢会被吸附到管中的吸附剂上。
然后,用户将吸附剂送到实验室进行分析,以确定硫化氢浓度。
5.颗粒计数器:这是一种检测空气中硫化氢颗粒浓度的方法。
颗
粒计数器使用激光或其他技术来计算颗粒数量,从而确定硫化
氢的浓度。
在进行硫化氢气体检测时,务必遵循安全操作规程,并使用经过校
准和合格的检测设备。
如果在工作中发现高浓度的硫化氢,必须立即采取适当的措施,例如通风或撤离,以确保工作环境的安全。
矿用硫化氢传感器

以上就是亿煤小编为您详细介绍的关 于矿用硫化氢传感器的作用与技术参数, 若还有其他疑惑请咨询 四零零00一2九零一
矿用硫化氢传感器
济宁亿煤机械装备制造有限公司#seven#
矿用硫化氢传感器用途
矿用硫化氢传感器是一种用于监测煤矿井下 巷道环境硫化氢的模拟量传感器,GLH硫化氢 传感器能就地显示硫化氢浓度的数字并能与 井下监控系统配套使用。4零零亿00①煤2901 硫化氢传感器可以与系统配合使用,也可 以作为硫化氢传感器单独使用。
矿用硫化氢传感器展示图
矿用硫化氢传感器详细参数
Байду номын сангаас
工作电压:(9~24.5) VDC; 额定工作电压:18.5 VDC; 供电电源:本安12-18v 工作电流:≤80 mA(额定工作电压时); 输出信号制式:频率型(200~1000) Hz(脉冲宽度大于0.3 ms); 测量范围(0-100)×10-6 H2S 相对误差0~100 ±5 传输距离:2 km;#seven# 响应时间:不大于50s; 报警功能:报警声级强度在距其1m远处的声响信号的声压级应不小 于80dB(A); 光信号应能在黑暗中20m远处清晰可见; 防爆型式:ExibdⅠ矿用本 安兼隔爆型。 外形尺寸:165*85*210
矿用硫化氢传感器主要特点
1.采用新型单片微机和高集成数字化电路,使 电路结构简单,性能可靠,便于维修与调试。 2.实现了红外遥控调校零点、灵敏度、报警点 等功能,使调校方便简单。 3.增加了传感器断电控制功能,并可任意设定断 电点,实现了一机多用。 4.采用新型开关电源,降低了整机功耗,增加了仪 器传输距离。 5.增加了故障自检功能,便于使用与维护。 6.设计了新型高强度外壳结构,增强了仪器抗冲 击能力。
硫化氢探头的原理

硫化氢探头的原理
硫化氢探头是一种用来检测硫化氢(H2S)气体浓度的传感器。
硫化氢是一种有毒、易燃气体,具有刺激性和窒息性,在工业生产和环境监测中具有重要的应用。
硫化氢探头的原理主要基于电化学和光学两种方法。
电化学方法是硫化氢探头常用的原理之一。
其原理是通过气体与电极表面的反应产生电流,并根据电流的大小来测量硫化氢气体的浓度。
硫化氢探头通常由两个电极组成,一个是工作电极,另一个是参比电极。
工作电极上覆盖有一种特殊的材料,例如金属氧化物或半导体材料,可以与硫化氢气体发生反应。
当硫化氢气体接触到工作电极上的材料时,会引起电极表面的氧化或还原反应,产生电流。
通过测量电流的大小,可以推断出硫化氢气体的浓度。
参比电极通常是一个稳定的电极,用来提供一个稳定的电势参考,以保证电极反应的可靠性和稳定性。
另一种常用的原理是光学方法。
硫化氢探头采用光学方法是因为硫化氢气体可以与某些化学物质发生反应,并产生特定的光谱信号。
一般来说,硫化氢探头中会有一个感光元件,例如光电二极管或光敏电阻。
当硫化氢气体接触到感光元件上的化学物质时,会引起化学物质的颜色变化或发生化学反应,从而改变感光元件对光的吸收能力。
通过测量感光元件对光信号的响应,可以推断出硫化氢气体的浓度。
总体来说,硫化氢探头的原理基于硫化氢气体与特定材料或化学物质的反应,利用电化学或光学方法测量反应产生的电流或光信号,从而确定硫化氢气体的浓度。
硫化氢探头在工业生产、环境监测等领域具有重要的应用,对于保障人体健康和环境安全具有重要的意义。
硫化氢传感器

硫化氢传感器:一项重要的环境保护技术近年来,环境保护已经成为了全球各国政府和民间团体的热点话题。
随着工业化和城市化的快速发展,大量的有害气体和化学物质排放给环境带来巨大的威胁。
其中,硫化氢被认为是一种高度有害的气体,对人类身体健康和自然生态环境都带来了不可避免的危害。
为了有效地控制和减轻硫化氢对环境的影响,的研发和应用显得尤为重要。
一、的基本原理是用于检测并 quant 转硫化氢浓度的一种设备。
通常工作于一定的温度、湿度和大气压等条件下。
它们的基本结构通常由传感元件、放大器、显示器和控制电路等部分组成。
传感元件一般采用半导体、电化学或红外光学等不同的技术,它们具备不同的检测速度、灵敏度和电子学特性。
其中,半导体是一种最常见的传感器,它是用玻璃或石英管封装一个半导体材料,通过半导体材料与空气接触并发生化学反应,从而测量硫化氢浓度。
电化学则是采用电化学原理测量硫化氢气体的浓度,它们的精度和灵敏度一般比半导体高。
红外线则是利用硫化氢特殊的吸收光谱进行测量,测量精度比较高且对其他气体的干扰较小。
目前研发中的微机电系统(MEMS)具有更高的灵敏度和稳定性。
二、的应用范围硫化氢被广泛应用于生物制造、化学工业、碳化物制造、纺织加工、食品加工、医疗废物处理等领域。
在饲养场等生产领域中,硫化氢是由动物粪便、糞尿、沼气等发酵物质释放出来的。
在化工和制药工业中,硫化氢是生产过程中常见的废气之一。
硫化氢气体浓度高、味道难闻、易燃易爆,如果时间长、浓度过高的话,会对人体、环境产生非常严重的危害。
应用得相当广泛,主要目的是用于环保、安全、减少人力、物力资源浪费等。
以生产领域为例,可以用于检测饲养场的沼气,从而有效地控制有害气体的排放,保护当地生态环境。
在化工和制药工业中,可用于检测和控制生产过程中的硫化氢排放,避免对员工身体健康和环境的影响。
此外,在卫生保洁、医疗等方面,也有着广泛的应用。
三、的发展前景在全球环保政策的倡导下,已经被广泛应用于各个领域。
硫化氢检测传感器资料

目录H2S气体传感器 (2)1、H2S电化学传感器(Transducer 或sensor) (2)2、H2S固体传感器 (3)3、高灵敏光波导传感器检测H2S气体2007、2012年 (4)3.1 玻璃光波导的制备 (4)3.2 检测H2S 的原理 (5)4、基于红外激光光谱的开放式H2S气体传感器 (6)4.1基本原理 (6)4.2实验装置 (7)4.3实验与讨论 (8)5、基于激光吸收光谱天然气脱硫中H2S检测系统研究 (9)5.1 测量原理 (9)5.2 系统设计 (10)5.3 硫化氢吸收波长选择 (10)5.4 Herriot多次反射吸收池 (11)6、检测天然气中H2S气体浓度的光子带隙光纤传感器 (11)6.1 气体的吸收原理 (11)6.2 检测系统结构 (11)7、差分吸收式光纤甲烷气体传感器的研究(也有检测硫化氢的,原理方法相同) 127.1 差分吸收光纤传感机理 (12)7.2 差分吸收光纤传感器及其系统 (14)7.3 试验及其结果 (15)H2S气体传感器畜牧业中会接触到包括H2S,CH4,NH3等有毒有害气体,对动物及工作人员构成健康威胁。
在工业中伴随重大灾难性事故的发生而排放的有毒有害废气,也会对人们的生命健康造成损害。
H2S 是一种无色、易燃、有臭鸡蛋味的气体,作为一种剧毒性物质,对人体具有一定的危害性,因此监测H2S的浓度对人体健康有着重要意义。
H2S传感器的设计涉及多方面技术,大部分H2S检测方法主要应用电分析技术。
传统的H2S 气体检测方法主要有碘量法、分光光度法、汞量滴定法和电化学法等,但是存在灵敏度不高、费时费力,不适合现场实时快速检测。
而传感器具有携带方便、响应快、灵敏度高、易微型化、能用于现场分析和监控等特点。
气体传感器主要有半导体类传感器、质量类传感器、电化学类传感器和光学类传感器。
其中光波导(Optical Waveguide ,OWG)传感器具有常规气体传感器无法比拟的灵敏度高、体积小、抗电磁干扰、便于集成等优点,在传感器领域中占有越来越重要的地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PRODUCT INFORMATION
Applications:
Features:
TGS 825 - Special Sensor for Hydrogen Sulfide
* Hydrogen sulfide detectors/ alarms
* High sensitivity to low concentration of
hydrogen sulfide
* Good repeatability in measurement * Uses simple electrical circuit
* Ceramic base resistant to severe
environment
The sensing element of Figaro gas sensors is a tin dioxide (SnO 2) semiconductor
which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.
The TGS 825 has high sensitivity to hydrogen sulfide. The sensor can detect concentrations of hydrogen sulfide as low as 5ppm, making it ideal for application in gas leak detection.
The figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows: Rs = Sensor resistance of displayed gases at various concentrations Ro = Sensor resistance at 50ppm of hydrogen sulfide at 20°C and 65% R.H.The figure below represents typical temperature and humidity
dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows: Rs = Sensor resistance at 50ppm of hydrogen sulfide at various temp./humidities Ro = Sensor resistance at 50ppm of hydrogen sulfide at 20°C and 65% R.H.
Temperature/Humidity Dependency:
Sensitivity Characteristics:
Rs/Ro RS/Ro
Structure and Dimensions:
1 Sensing Element: SnO
2 is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.2 Sensor Base: Alumina ceramic
3 Flame Arrestor: 100 mesh SUS 316 double gauze
Standard Circuit Conditions:
Pin Connection and Basic Measuring Circuit:
The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V RL ) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.
Sensor Resistance (Rs) is calculated by the following formula:
Power dissipation across sensor electrodes (Ps) is calculated by the following formula:
Standard Test Conditions:
TGS 825 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:
Test Gas Conditions: 20°±2°C, 65±5%R.H.Circuit Conditions: V C = 10.0±0.1V (AC or DC), V H = 5.0±0.05V (AC or DC), R L = 10.0kΩ±1%
Preheating period before testing: More than 7 days
Basic Measuring Circuit:
REV: 11/04
For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc.
Rs = ( -1) x R L
V C
V RL
Ps =
V C 2 x Rs (Rs + R L )
2
um : mm
19.5 ± 0.5
1.0 ± 0.05
13.5
+ 0.3- 0.2
9.5 ± 0.3 11.0 ± 0.2
23.0 ± 1.0
3.0 ± 0.2
6.5 ± 0.2
6
3
4
2
5
1
45˚
45˚。