第八章季节时间序列模型与组合模型

合集下载

第八章季节性时间序列分析方法

第八章季节性时间序列分析方法

81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。

如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。

S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。

对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。

影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。

t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。

❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。

比如对于月度数据S 12比如,对于月度数据则与相关性较强。

我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。

简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。

季节性时间序列分析方法(PPT37张)

季节性时间序列分析方法(PPT37张)
(1 1B S B S 1S B S 1 ) X t at 。
(1 1B n B n )(1 S B S ) X t at
(7.3.8)
由此可求得偏自相关函数。这种方法可以推广到 AR(n)模型
( B)U ( B S ) X t at ,
或更一般的情形 即
(7.2.6a)
只考虑不同年份同月的资料之间的相关关系。 (7.2.6b)
表示同年不同月之间几乎不存在依赖关系,但受前一期 扰动的影响。即时间序列资料消除了季节因素之后适合于一 个 MA(1)模型。 更一般的是模型(7.2.5)和(7.2.6)中的周期长度 12 可以用 S 替代。
3. (1 B S ) X t C (1 1B)(1 S B S )at 4. (1 B) X t (1 S B S )at 5. (1 B S ) X t (1 S B S )at 6. (1 1B)(1 B S ) X t (1 S B S )at 7. (1 1B S ) X t C (1 1B)at 8. (1 B S )2 X t C 2 S ( B)at
D (1 1 B S ) S X t et
一阶移动平均季节模型 Wt et 1et S ,或Wt (1 1B S )et
D S X t (1 1B S )et
一般的季节性 ARMA 模型 U ( B S )Wt V ( B S )et
D U ( B S ) S X t V ( B S )et
D X t V ( B S )et 在随机季节模型 U ( B S ) S
(7.1.6)
中,由于 et 不是独立的,因此不妨假设 et 适合一个 ARIMA(n,d,m): ( B) d et ( B)at ,

时间序列分析

时间序列分析
(计算方法)
时期序列
计算公式:
n
YY1Y2Yn
Yi i1
n
n
【例8.1】 根据表8.1中的国内生产总值序 列,计算各年度的平均国内生产总值
n
Yi
Yi1
4288.585 476.95( 43 亿元)
n
9
绝对数序列的序时平均数
(计算方法)
时点序列— 间隔不相等
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
发展速度与增长速度的计算(实例)
【例8.5】 根据表8-3中第三产业国内生产总值序列, 计算各年的环比发展速度和增长速度,及以1994年 为基期的定基发展速度和增长速度
表8- 4 第三产业国内生产总值速度计算表
年份
1994 1995 1996 1997 1998
国内生产总值(亿元)
发展速度 (%)
第8章 时间序列分析
第一节 时间序列的对比分析 第二节 时间序列及其构成因素 第三节 长期趋势分析 第四节 季节变动分析 第五节 循环波动分析
第一节 时间序列的对比分析
一. 时间序列及其分类 二. 时间序列的水平分析 三. 时间序列的速度分析
时间序列及其分类
1. 同一现象在不同时间上的相继观察值排 列而成的数列
803 896 1070 1331 1781 2311 2726 2944 3094
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
时间序列的分类
1. 绝对数时间序列 一系列绝对数按时间顺序排列而成 时间序列中最基本的表现形式 反映现象在不同时间上所达到的绝对水平 分为时期序列和时点序列

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

第八章季节性时间序列模型

第八章季节性时间序列模型
第八章季节性时间序列模型
n
表4.1 单变量时间序列观测数据表
n 例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。
第八章季节性时间序列模型
n 二、季节时间序列的重要特征 n 季节性时间序列的重要特征表现为周期性。在一个序列
第八章季节性时间序列模型
第八章季节性时间序列模型
第八章季节性时间序列模型
n 可见当得到样本的自相关函数后,各滑动平均参数的矩 法估计式也就不难得到了。
n 更一般的情形,如果一个时间序列服从模型
n
n
(8.18)
n 其中,
。整理后可以看出该时间
序列模型是疏系数MA(ms+q),可以求出其自相关函数,
2348 2454.9 2881.7
1998 2549.5 2306.4 2279.7 2252.7 2265.2
2326 2286.1 2314.6 2443.1
2536 2652.2 3131.4
1999 2662.1 2538.4 2403.1 2356.8
2364 2428.8 2380.3 2410.9 2604.3 2743.9 2781.5 3405.7
n 如果这个比值小于1,就说明该季度的值 常常低于总平均值
n 如果序列的季节指数都近似等于1,那就 说明该序列没有明显的季节效应
第八章季节性时间序列模型源自例1 季节指数的计算第八章季节性时间序列模型
季节指数图
第八章季节性时间序列模型
二、综合分析
n 常用综合分析模型
n 加法模型
n 乘法模型
n 混合模型
个模型组合而成。由于序列存在季节趋势,故先

季节时间序列模型

季节时间序列模型

乘积季节模型拟合效果图
黑点为序列观察值,红线为模型拟合值
乘积季节模型
使用场合:
季节序列既有季节效应又有长期趋势效应
模型结构: ARIMA (p,d,q)×(P,D,Q)
BU
BS
d
D S
X
t
B V
BS
t
d
1
B
d

D S
1 BS
D
其中
U
V
BS BS
1 1BS 2B2S 1 1BS 2B2S
P B PS Q BQS
季节时间序列的重要特征表现为周期性。
在一个序列中,如果经过S个时间间隔后观测点呈现出相似性,比如 同处于波峰或波谷,我们就说该序列具有以S为周期的周期特性。
一般,季度资料的一个周期表现为一年的四个季度,月度资料的周期 表现为一年的12各月,周资料表现为一周的7天或5天。
处理季节性时间序列的一个重要工具:
1BS
D
Xt V
BS
t
U BS 11BS 2B2S PBPS
V BS 11BS 2B2S QBQS
消除了序列在 不同周期相同 周期点上的季 节相关成分
D为季节差分阶数,P为季节自回归的阶数,Q 为季节移
动平均的阶数
U(BS)为季节自回归多项式, V(BS)为季节移动平均多项式
EVIEWS上的实现: i S A R iS , j S M A jS
(B)
பைடு நூலகம்
(B)
1 1
1B 1B
2 B 2 2B2
pBp qBq
E V IE W S 实 现 :
i S A R iS i S M A iS i A R i i M A i

时间序列的构成分析

时间序列的构成分析
【例8.17】
@
时间序列的构成分析
1.3 季节变动的测定与分析
1.季节变动分析方法 (1) 同期平均法 ❖ 根据原始资料数据,直接求出各年同月(季)的
平均数与全年各月(季)的总平均数,然后将二 者对比求出各月(季)的季节指数,以表明季节 变动的程度。
@
时间序列的构成分析
同期平均法的具体步骤如下: ❖ 第一步,将各年同月(季)的完整数据资料排列
统计学
时间序列的构成分析
1.1 时间序列的构成因素及组合模型
1.时间序列的构成要素
❖ 时间序列的构成要素通常可以归纳为长期趋势、 季节变动、循环变动和不规则变动四类。
(1)长期趋势也称趋势变动,是指时间序列在较长时 期中所表现出来的持续上升、下降或不变的总态 势。
(2) 季节变动指时间序列在一年内重复出现的周期性 波动。
,而所得新的时间序列的项数则越少。 ❖ 当时距项数为奇数时,一般只需一次移动平均,其
移动平均值作为移动平均项数的中间一期的趋势代 表值;当时距项数为偶数时,移动平均值代表的是 偶数项的中间位置,无法对正某一时期,所以需进 行一次相邻两项平均值的再次移动平均,以移正其 位置。 ❖ 时距项数的选择要根据时间序列和现象的实际情况 。
【例8.14】
@
时间序列的构成分析
2.序时平均法
❖ 对于时点序列而言,各期水平相加没有实际意义 ,因此不能直接用时距扩大法处理,而是需要利 用序时平均法消除偶然因素的影响,以反映现象 的变化趋势。
【例8.15】
@
时间序列的构成分析
3.移动平均法
❖ 移动平均法是采用逐期递推移动的办法将原时间 数列按一定时距扩大,得出一系列扩大时距的序 时平均数。
整齐,并列表于同一栏内; ❖ 第二步,计算各年同月(季)的平均数; ❖ 第三步,计算各年所有月份(或季度)的总平均数; ❖ 第四步,计算季节指数,其公式为:

时间序列模型概述

时间序列模型概述

时间序列模型概述时间序列模型是一种用于对时间序列数据进行建模和预测的统计模型。

时间序列数据是指按照时间顺序记录的一系列观测值,比如股票价格、气温、销售量等。

时间序列模型的目标是通过分析过去的观测值来预测未来的观测值。

这种模型通常基于以下两个假设:1. 时间序列的未来值是过去值的函数;2. 时间序列的未来值受到随机误差的影响。

常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。

ARMA模型是将时间序列的过去值和滞后误差作为解释变量,使用线性回归方法来预测未来值。

它是基于两个基本组件:自回归(AR)和移动平均(MA)。

AR部分建模了时间序列的过去值与当前值之间的关系,MA部分建模了观测误差的相关性。

ARIMA模型是在ARMA模型的基础上引入了差分操作,用于处理非平稳时间序列。

差分操作可以将非平稳时间序列转化为平稳时间序列,从而使得模型更可靠。

SARIMA模型是ARIMA模型的扩展,用于处理季节性时间序列。

它在ARIMA模型的基础上引入了季节差分,以及季节AR和MA项,以更好地拟合和预测季节性变化。

指数平滑模型是一类基于加权平均的模型,根据时间序列数据的特点赋予不同权重,进行预测。

常见的指数平滑模型包括简单指数平滑(SES)、双指数平滑和三指数平滑。

时间序列模型需要通过对历史数据的拟合来估计模型参数,并通过模型参数进行未来观测值的预测。

评估时间序列模型通常使用误差度量指标,比如均方误差(MSE)和平均绝对误差(MAE)。

时间序列模型在很多领域都有广泛的应用,比如经济学、金融学、气象学、销售预测等。

它可以帮助我们理解时间序列数据的动态特征,提供未来预测和决策支持。

然而,在实际应用中,时间序列模型也面临一些挑战,比如数据缺失、异常值和非线性关系等。

因此,选择适合的时间序列模型需要综合考虑数据的特性和模型的假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当ut非平稳且存在ARMA成分时,则可以把ut描述为 Φ p ( L)∆d ut = Θ q ( L)vt p, q 分别表示非季节自回归、移动平均算子的最大阶数,d 表示ut的一阶(非季节)差分次数。于是得到季节时间序 列模型的一般表达式。
Φ p ( L) AP ( Ls )(∆d ∆D yt ) = Θ q ( L) BQ ( Ls )vt s
900 800 700 600 500 400 300 200 100 78 79 80 81 82 83 84 85 86 87 88 89
月度商品零售额时序图 月度商品零售额自相关偏 自相关图
设季节性序列(月度、季度、周度等序列都包括其中) 的变化周期为s,即时间间隔为s 的观测值有相似之处。首 先用季节差分的方法消除周期性变化。季节差分算子定义 为, ∆ = 1 − Ls
通过LnGDPt的相关图和偏相关图可以看到LnGDPt是一个非 平稳序列(相关图衰减得很慢)。
对LnGDPt进行一阶差分,得 DLnGDPt。DLnGDPt的平稳性 得到很大改进,但其季节因素影响还很大。从 DLnGDPt的相 关图和偏相关图也可以明显地看到这个特征。若对LnGDPt直 接进行一次季节差分(四阶差分),得D4LnGDPt。其波动性 也很大。D2LnGDPt显然是过度差分序列。
从上式可以看出SARIMA模型可以展开为ARIMA(p+PS+DS, d, q+QS) 模型。
对乘积季节模型的季节阶数,即周期长度s 的识别可 以通过对实际问题的分析、时间序列图以及时间序列的相 关图和偏相关图分析得到。 以相关图和偏相关图为例,如果相关图和偏相关图不 是呈线性衰减趋势,而是在变化周期的整倍数时点上出现 绝对值相当大的峰值并呈振荡式变化,就可以认为该时间 序列可以用SARIMA 模型描述。
.20 DLNGDP .15 .10 .05 .00 -.05 -.10 -.15 80 82 84 86 88 90 92 94 96 98 00 02
.30 D4LNGDP .25 .20 .15 .10 .05 .00 -.05 -.10 80 82 84 86 88 90 92 94 96 98 00 02
∆∆12 yt = (1 + θ1 L)(1 + β1 L12 )vt
上式的EViews估计命令是: DLOG(Y,1,12) MA(1) SMA(12)
∆∆12 yt = (1 + θ1 L)(1 + β1 L )vt
12
= vt + θ1 Lvt + β1 L12 vt + θ1β1 L13vt = vt + θ1vt −1 + β1vt −12 + θ1β1vt −13
用于预测的模型形式是: yt = yt −1 + yt −12 − yt −13 + vt + θ1vt −1 + β1vt −12 + θ1β1vt −13 由季节时间序列模型的一般表达式。
Φ p ( L) AP ( Ls )(∆d ∆D yt ) = Θ q ( L) BQ ( Ls )vt s 可写成: Φ p ( L) AP ( Ls )∆D (∆d yt ) = Θ q ( L) BQ ( Ls )vt s
6.8 LNY 6.4 6.0 5.6 5.2 4.8 4.4 1978 1980 1982 1984 1986 1988
.3 DLNY
.5 ddlny .4
.2
.3
.1
.2 .1
.0
.0
-.1
-.1 -.2 -.3
-.2
-.3 78 79 80 81 82 83 84 85 86 87 88 89
(1 − φ1 L)(1 − α1 L12 )∆∆12 yt = (1 + θ1 L)(1 + β1 L12 )vt
设log(Yt)=yt,上式的EViews估计命令是: DLOG(Y,1,12) AR(1) SAR(12) MA(1) SMA(12)
(0,1,1)×(0,1,1)12阶月度SARIMA模型表达为
89
建模1: 建模 :用1978:1~1989:11 期间数据,估计yt的 (1, 1, 1) × (1, 1, 0)12阶季节时间序列模型,得结果如下:
(1 + 0.5924 L)(1 + 0.4093L12 ) ∆∆12 Lnyt = (1 + 0.4734 L)vt
注意: (1)仔细对照输出结果,不要把自回归系数估计值的 符号写错。 (2)表达式中,季节和非季节因子(特征多项式)之 间是相乘关系。 (3)在EViews 估计命令中把变量写作DLOG(Y,1,12)的 好处是可以直接对yt和DD12Lnyt预测。 (4)以上EViews 估计命令为例,如果命令中没有AR(1) 项,那么SAR(12) 项的输出结果将变为AR(12),为什么? 为什么? 为什么
R2=0.57 DW=2
F=16.2 DW(36)=19.0<43.8
注意: 注意: (1)不要把自回归系数估计值的符号写错。不要把均值(0.0023)项表达错。EViews仍然是对(D4DLnGDPt+0.0023)建 立(2, 1, 2) × (1, 1, 1)4阶季节时间序列模型,而不是对 D4DLnGDPt建立季节时间序列模型。 (2)季节和非季节因子之间是相乘关系。 (3)在EViews 估计命令中把变量写作DLOG(GDP,1,4),好 处是预测时可直接预测GDPt,也可以预测D4DLnGDPt。
25.0
24.5
24.0 80 82 84 86 88 90 92 94 96 98 00 02
1980:1~2002:4年香港季度GDPt序列(单位:港元)。 1980~1997年GDPt随时间呈指数增长。1997年由于遭受东南 亚金融危机的影响,经济发展处于停滞状态,1998~2002年底 GDPt总量几乎没有增长。另一个特征是GDPt 随时间呈递增 型异方差。所以,用对数的季度GDPt数据(LnGDPt)建立季 节时间序列模型。
D4 D ln GDPt = −0.0026 + ut (-2.4) (1 − 1.22 L + 0.69 L2 )(1 − 0.36 L4 )ut = (1 − 1.16 L + 0.97 L2 )(1 − 0.95 L4 )vt (13.2) (-7.9) (3.0) (-50.1) (67.7) (-36.7)
s
若季= (1 − Ls ) yt = yt − yt − s
对于非平稳季节性时间序列,有时需要进行D次季节 差分之后才能转换为平稳的序列。在此基础上可以建立关 于周期为s的P阶自回归Q阶移动平均季节时间序列模型
AP ( Ls )∆D yt = BQ ( Ls )ut s
其中下标P, Q, p, q分别表示季节与非季节自回归、移动平 均算子的最大滞后阶数,d,D分别表示非季节和季节性差 分次数。上式称作(p,d,q)×(P,D,Q)s阶季节时间序列模型或 乘积季节模型。
当P=D=Q=0时,SARIMA模型退化为ARIMA模型;从 这个意义上说,ARIMA模型是SARIMA模型的特例。当 P=D=Q=p=q=d=0时,SARIMA模型退化为白噪声模型。 (1,1,1)×(1,1,1)12阶月度SARIMA模型表达为
建立SARIMA 模型:
(1)首先要确定d, D。通过差分和季节差分把原序列变 换为一个平稳的序列。 (2)然后用xt建立模型。 注意: 注意: (1)用对数的季节时间序列数据建模时通常D不会大于 1,P 和Q不会大于3。 (2)乘积季节模型参数的估计、检验与前面介绍的估 计、检验方法相同。利用乘积季节模型预测也与上面介 绍的预测方法类似。
-.4 78 79 80 81 82 83 84 85 86 87 88 89
.5 sdlny .4
.3
.2
.1
.0
-.1 78 79 80 81 82 83 84 85 86 87 88 89
.3 .2 .1 .0 -.1 -.2 -.3 78
DSDLNY
79
80
81
82
83
84
85
86
87
88
Inverse Roots of AR/MA Polynomial(s)
1.5 AR roots MA roots 1.0
0.5
0.0
-0.5
-1.0
-1.5 -1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
建模2:进一步分析DD12Lnyt的相关图和偏相关图,也可 以建立成一个纯季节移动平均模型。用1978:1~1989:12 期间数据得(0, 1, 1) × (0, 1, 1)12季节乘积模型EViews 估 计结果如下,
在DLnGDPt的基础上进行一阶季节差分,或在D4LnGDPt基础 上进行一阶非季节差分,得 D4DLnGDPt。D4DLnGDPt 中已 经基本消除了季节变化因素。在D4DLnGDPt的基础上建立时 间序列模型。
.15 D4DLNGDP .10
.05
.00
-.05
-.10
-.15 80 82 84 86 88 90 92 94 96 98 00 02
回归与ARMA 组合模型 第二节 回归与
如果把回归模型和时间序列模型这两种分析方法结 合在一起,有时会得到比其中任何一种方法都好的预测 结果。
例如有如下回归模型:yt = β 0 + β1 xt + ut ˆ ˆ ˆ 上述模型的估计式是:yt = β 0 + β1 xt + ut
ˆ 当 ut存在自相关时,时间序列分析的一个有效应用是对残 ˆ ut 差序列 建立ARMA 模型。然后将上式中的残差 项用ARMA 模型替换。在利用上述模型预测yt时,可以利 ˆ ut 用ARMA 模型先预测出 的值。有时,这会使yt的预测值更 准确。 这种回归与时间序列相结合的模型形式是 ˆ ˆ y = β + β x + Φ −1 ( L)Θ( L)v
相关文档
最新文档