拉曼光谱.
拉曼光谱定义

拉曼光谱定义
拉曼光谱(Raman Spectroscopy)是一种非破坏性的分子特征检测手段。
它通过对激发后的分子进行检测,来识别分子中的原子或分子组成部分。
它具有高灵敏度、高准确性和非破坏性,广泛应用于有机/无机化学、生物化学、物理化学等多个学科领域。
拉曼散射是一种被激发光分子而发生的光谱效应,它是物理学家里昂·拉曼在1928年发现的,以他的名字命名。
它的本质是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱就是拉曼散射效应的可视化图形表示,它可以显示出物体内不同原子或分子的激发状态,从而反映出物体的结构和性质。
拉曼光谱的基本原理是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱的基本原理是根据物质的不同结构,被激发的分子状态不同,由此产生出不同的散射光谱来反映它们的特性。
拉曼光谱是一种高灵敏度、高准确性的分子特征检测手段,它可以直接检测分子中的原子或分子组成部分,从而反映物体的结构和性质。
由于它的非破坏性、精确性和
高灵敏度,拉曼光谱已经广泛应用于有机/无机化学、生物化学、物理化学、食品分析、环境分析等诸多领域。
拉曼光谱定义,就是表示一种利用拉曼散射原理来检测物质结构特征的方法,即通过测量拉曼散射光谱,来鉴定和识别物体中不同原子或分子组成部分的特性。
它可以提供客观准确的数据,为研究者提供重要的参考信息,从而更好的了解物质的结构、性质和功能。
第五章拉曼光谱

1第六章拉曼光谱2第一节:引言第二节:拉曼光谱的基本原理 2.1 光散射2.2 拉曼光谱的经典解释 2.3 拉曼光谱的选择定则3第三节:拉曼光谱仪简介第四节:拉曼光谱的应用4.1 在有机化学中的应用 4.2 在无机与材料化学中的应用 4.3 在分析化学中的应用 4.4 在高分子材料中的应用 4.5 在生物学中的应用 4.6 在物理学中的应用 4.7 在催化研究中的应用4第一节引言什么是拉曼散射?假定有一束频率为ν0的单色入射光照射到样品上,除了吸收和透射外,有一部分光将受到样品的散射。
对散射光的频率进行分析,发现部分散射光的频率仍为ν0,而其余散射光的频率分布在ν0两侧,即ν0 ±∆ν, 这种频率发生改变的散射,叫做拉曼散射(Raman Scattering)。
5CCl4的拉曼谱图6拉曼光谱是以印度科学家V. Raman 的名字命名的,因为他和另一个科学家K. S.Krishnan 于1928年最先发现这一散射现象的。
在拉曼散射中,频率的改变是光子与物质相互作用时发生了能量的转移引起的,频率变化的大小以及观察到的拉曼光谱的形式等与散射样品的结构、能级有关,当然用于测定散射的仪器也有一定的影响。
7拉曼光谱的用途:主要用于分子内部转动和振动跃迁的研究。
拉曼散射频率的变化值±∆ν与分子内部的转动和振动能级密切相关。
分子转动能级和几乎所有振动能级的拉曼波数都在0~3500 cm -1之间,当采用400~600 nm 范围任一波长的光作为辐射源,拉曼光谱都处于可见光区域。
用拉曼光谱研究分子的转动和振动,只需一种色散系统和一种探测器。
8在红外光谱中,有些振动模是红外非活性的,如CO 2的对称振动模,这些振动频率可以用拉曼光谱测得,拉曼光谱和红外光谱具有互补性,它们是研究振动和转动的最有效方法,两者缺一不可。
9拉曼光谱的特点:波长位移在中红外区。
有红外及拉曼活性的分子,其红外光谱和拉曼光谱近似。
Raman(拉曼)光谱原理和图解

光散射 - 瑞利散射
• 散射光中,弹性 (瑞利) 散射占主导 • 前… 后…
入射光 分子 分子
散射光
• 散射光与入射光有相同的频率
emission
excitation
光散射 - 拉曼
• 散射光中的1010光子之一是非弹性散射(拉曼) • 前… 后…
入射光 分子 分子振动
散射光
• 光损失能量,使分子振动
采用Leica显微镜 优势 4: 采用Leica显微镜
Ÿ 高热稳定性和机械稳定性 Ÿ 目镜:Leica 原配,符合欧洲及北美等安全标准。好处是 a. 高分辨,大视野,可方便、准确地寻找微米 级样品:如矿物包 裹体等,以及低反差样品;b. 可安全地观察激光焦点,以确认 激光焦点是否聚焦在微米颗粒上。 Ÿ 同时配有摄像机:彩色,高分辨,可观察激光焦点,不饱和 ,提供图像采集卡及软件,可在计算机上存储白光照片,无需 照相机。 Ÿ 照明光源:Leica原配,确保质量。
perpendicular
polarization of Raman peak
拉曼偏振
width of Raman peak
拉曼峰宽
quality of crystal
晶体质量
intensity of Raman peak
拉曼峰强度
amount of material
物质总量
拉曼光谱的特点和主要困难
高灵敏度
优势 1. 高灵敏度:
Ÿ 灵敏度远高于其它同类拉曼谱仪 检验标准:硅三阶峰(约在1440 cm-1)的信噪比≧10:1,检测 条件为:激光输出功率20mW,波长514.5nm,狭缝宽度50微米 ,曝光时间60秒,累加次数5次,binning为1或2,光栅为1800刻 线。显微镜头为 X50常规镜头。
拉曼光谱

受光学系统参数等因素的影响
◆荧光散射现象会对拉曼光谱造成很大
的背景干扰。
4. 拉曼光谱的应用——宝石研究与鉴定
红宝石
蓝宝石
天然宝石和合成宝石的鉴定:
644
天然红宝石
合成红宝石
本图谱采用的是MiniRam微型近红外激光拉曼光谱仪,型号是BTRI11一785
拉曼光谱在其他领域的应用:
(1)拉曼光谱在化学研究中的应用 (2)拉曼光谱在高分子材料中的应用 (3)拉曼光谱技术在材料科学研究中的应用 (4)拉曼光谱在生物学研究中的应用 (5)拉曼光谱在中草药研究中的应用 (6)拉曼光谱技术在宝石研究中的应用
谢 谢!
3.3 Raman散射产生的条件―拉曼活性
★拉曼活性振动
ⅰ诱导偶极矩 = E ⅱ非极性基团,对称分子; 拉曼活性振动—伴随有极化率变化的振动
★红外活性振动
ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子; 红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带
CO2的振动:它有3n-5=4个基本振动
物质总量
拉曼光谱的优点和缺点:
◆拉曼散射信号弱 ►样品无需制备,不受样品形态限制; ►对样品无接触,无损伤;
(比荧光光谱平均小2-3数量级)
◆激光瑞利散射比拉曼信号强 (约1010-1014,对拉曼信号干扰很大) ◆不同振动峰重叠和拉曼散射强度容易
►能适合黑色和含水样品;
►光谱成像快速、简便,分辨率高;
O=C=O
对称伸缩
偶极距不变无红外活性
O=C=O
反对称伸缩
偶极距变有红外活性 极化率不变无拉曼活性
极化率变有拉曼活性
3.4.拉曼光谱提供的物质的信息 拉曼频率的确认 物质的组成
拉曼光谱拉曼谱是以印度物理学家拉曼(C.V.Raman)命名的一种散射光谱

拉曼光谱拉曼谱是以印度物理学家拉曼(C.V.Raman)命名的一种散射光谱.1928年拉曼和克利希南(K.S.Krishnan)在研究单色光在液体中散射时,不仅观察到与入射光频率相同的瑞利散射,而且还发现有强度很弱,与入射光频率不同的散射光谱.同年,前苏联的曼迭利斯塔姆和兰兹贝尔格在石英的散射中也观察到了这一现象.这种新谱线对应于散射分子中能级的跃迁,为研究分子结构提供了一种重要手段,引起学术界极大兴趣,拉曼也因此荣获1930年的诺贝尔物理学奖.但由于拉曼光谱很弱,受当时光源和检测手段的限制,它的发展曾停滞了一段时期.19世纪60年代激光技术的出现使拉曼光谱得以迅速发展,再加上近年来发展的高分辨率的单色仪和高灵敏度的光电检测系统,使拉曼光谱学进入崭新的阶段,应用领域遍及物理、化学、生物、医学等.利用各种类型的材料作为散射物质,几乎都可能得到相应的拉曼谱.这种新型的实验技术正日益显示其重要意义。
通过实验了解激光拉曼光谱仪的基本结构与工作原理;了解拉曼散射的原理及其在现代科学研究中的作用;测量典型的CCl4拉曼散射谱。
一、实验原理当一束单色光入射在固、液或气态介质上时,从介质中有散射光向四面八方射出.散射光中较强的是瑞利散射,其频率与入射光频率ν0相同,其强度和数量级约为入射光强的10-4~10-3.除瑞利散射外还有拉曼散射,拉曼散射的散射光频率ν与入射光频率相比有明显的变化,即ν=ν0±|Δν|,其强度数量级约为瑞利散射的10-8-10-6,最强的也只是瑞利散射的10-3.瑞利线ν0长波一侧出现的散射线ν=ν0-|Δν|称为斯托克斯(Stokes)线,又称为红伴线;把短波一侧出现的ν=ν0+|Δν|称为反斯托克斯(anti-Stokes)线,又称紫伴线.斯托克斯线比反斯托克斯线通常要强一些.散射光频率ν相对于入射光频率ν0的偏移,即拉曼光谱的频移Δν,是拉曼谱的一个重要特征量.散射线的±|Δν|相对于瑞利线是对称的,而且这些谱线的频移Δν不随入射光频率而变化,只决定于散射物质的性质.换句话说,在不同频率单色光的入射下都能得到类似的拉曼谱.拉曼散射是由分子振动,固体中的光学声子等元激发与激发光相互作用产生的非弹性散射。
拉曼光谱

• 拉曼光谱在化学研究中的应用
拉曼光谱在有机化学方面主要是用作结构鉴定和分 子相互作用的手段,它与红外光谱互为补充,可以鉴别特 殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼 峰形状是鉴定化学键、官能团的重要依据。利用偏振特性, 拉曼光谱还可以作为分子异构体判断的依据。在无机化合 物中金属离子和配位体间的共价键常具有拉曼活性,由此 拉曼光谱可提供有关配位化合物的组成、结构和稳定性等 信息。另外,许多无机化合物具有多种晶型结构,它们具 有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光 谱无法完成的无机化合物的晶型结构。
发展前景
• 激光技术 现在国际上推出的从事非线性光谱研究的超快(飞秒或皮 秒)激光器,技术上已经达到比较成熟地步,可以成套购 买,也较稳定。非线性拉曼光谱技术已经在生命科学领域 研究中发挥它的独特和重要作用。例如,美国哈佛大学的 谢晓亮教授在开拓并运用相干反斯托克斯拉曼光谱显微学 (CARS Microscopy)研究活细胞内部三维结构方面取得 一系列重要成果。高质量的超快激光器还推动了另一个极 具前途的表面光谱技术,就是合频(SFG)技术的发展, 它作为具有独特的界面选择性的非线性光谱方法,已经在 界面和表面科学、材料乃至生命领域研究中发挥着越来越 重要的作用。
拉曼光谱
• 拉曼光谱(Raman spectra),是一种散射 光谱。拉曼光谱分析法是基于印度科学家 C.V.拉曼(Raman)所发现的拉曼散射效 应,对与入射光频率不同的散射光谱进行 分析以得到分子振动、转动方面信息,并 应用于分子结构研究的一种分析方法。最 常用的红外及拉曼光谱区域波长是 2.5~25μm。(中红外区)
拉曼光谱的应用 • 拉曼光谱技术以其信息丰富,制样简单,水的干 扰小等独特的优点,在化学、材料、物理、高分 子、生物、医药、地质等领域有广泛的应用。 • 通过对拉曼光谱的分析可以知道物质的振动转动 能级情况,从而可以鉴别物质,分析物质的性质. 例如:天然鸡血石和仿造鸡血石的拉曼光谱有本 质的区别,前者主要是地开石和辰砂的拉曼光谱,后 者主要是有机物的拉曼光谱,利用拉曼光谱可以区 别二者;鉴别毒品;利用拉曼光谱可以监测物质 的制备;监测水果表面残留的农药。 • 激光拉曼光谱法的应用有以下几种:在有机化学 上的应用,在高聚物上的应用,在生物方面上的 应用,在表面和薄膜方子对光子的一种非弹性散射效应。当用一定 频率的激发光照射分子时,一部分散射光的频率和入射光 的频率相等。这种散射是分子对光子的一种弹性散射。只 有分子和光子间的碰撞为弹性碰撞,没有能量交换时,才 会出现这种散射。该散射称为瑞利散射。还有一部分散射 光的频率和激发光的频率不等,这种散射成为拉曼散射。 Raman散射的几率极小,最强的Raman散射也仅占整个 散射光的千分之几,而最弱的甚至小于万分之一。 • 处于振动基态的分子在光子的作用下,激发到较高的、不 稳定的能态(称为虚态),当分子离开不稳定的能态,回 到较低能量的振动激发态时,散射光的能量等于激发光的 能量减去两振动能级的能量差。
拉曼光谱

拉曼光谱(Raman spectra),是一种散射光谱。光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。
拉曼光谱-原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:
c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
.24H-SiC
图4为橙色区域(纵切片上边缘的三角形区域)SiC晶体的显微拉曼光谱图。分析得到各拉曼峰对应的声子模及其简约波矢、对称性分别为:205.8cm-1(FTA,x=0.5,E2),267.1cm-1(FTA,x=1,E1);612.0cm-1(FLA,x=1,A1);778.8cm-1(FTO,x=0.5,E2),796.3cm-1(FTO,x=0,E1);970.0cm-1(LOPC模)。4H-SiC的六方百分比为0.5。简约波矢x=0.5的FTA模(205.8cm-1)和FTO模(778.8cm-1)的强度分别大于其它简约波矢的FTA和FTO模的强度,且其它拉曼峰也与4H-SiC的文献报道值[5]相符,可以判断橙色区域为4H-SiC。值得注意的是,拉曼光谱中出现了187.5cm-1的拉曼峰,这是由于4H-SiC简约波矢x=0.5的FTA模峰形展宽造成的,说明4H-SiC的结晶质量一般[5]。实验测得橙色区域4H-SiC的导电类型也为n-型,说明载流子主要为自由电子。970.0cm-1的拉曼峰为4H-SiC的LOPC模,与本征4H-SiC的FLO模(964.0cm-1,x=0,A1)[Байду номын сангаас]相比较,其拉曼位移值仅仅增大了6.0cm-1;且LOPC模的强度仍可与778.8cm-1(FTO,x=0.5)的强度相比拟,这说明橙色区域4H-SiC晶体中的载流子(主要为自由电子)浓度不高[8]。这说明在掺氮6H-SiC单晶的生长条件下,4H-SiC与6H-SiC的掺氮效应存在明显差异。
拉曼光谱

24
拉曼光谱的应用
同种分子的非极性键S-S,C=C,N=N,C≡C产生强 拉曼谱带,随单键→双键→三键谱带强度增加。 红外光谱中,由C≡N,C=S,S-H伸缩振动产生的谱 带一般较弱或强度可变,而在拉曼光谱中则是强谱 带。
环状化合物的对称呼吸振动常常是最强的拉曼谱带。
25
拉曼光谱的应用
21
拉曼光谱仪使用注意事项
测量前要按照先开硬件再开软件的原则开机,以免 造成开机后的软件报错; 开机完成后,测量前需先进行单晶硅的测量,从而 对仪器进行矫正; 测量聚焦过程中要防止样品碰到物镜,以免造成物 镜损坏或污染; 测量完成后关机,关机顺序与开机相反,为先软件 后硬件的原则。同时务必保证激光器的关闭,以免 影响激光器寿命或发生火灾。
34
拉曼光谱在高分子中的应用
Liem等利用共焦显微拉曼光谱和极化拉曼光谱研究 了聚苯乙烯(PS)薄膜(50~180nm)的玻璃化转 变温度,研究表明当PS薄膜越薄,其玻璃化转变温 度越低,当厚度超过90nm时,其玻璃化转变温度与 本体聚合物相一致,这一测量结果与布里渊散射法 和椭圆偏光仪法一致.
32
拉曼光谱在高分子中的应用
研究聚合物链的构象结构; 研究聚合物的玻璃化转变和结晶; 研究聚合物的扩散界面; 研究聚合物共混体系的相态结构及其高分子多相体 系的相容性。 研究聚合物溶液的相转变。
33
拉曼光谱在高分子中的应用
高分子聚合物可以分为两大类———非晶聚合物和 结晶聚合物。对于非晶聚合物,玻璃化转变是一种 普遍现象,在高聚物发生玻璃化转变时,许多物理 性能发生急剧变化。如作为塑料使用的高聚物,当 温度升高至发生玻璃化转变温度以上时,便丧失了 塑料原有的坚固性,变成了橡胶;而作为橡胶使用 的材料,当温度降低至玻璃化转变温度以下时,便 失去橡胶的高弹性,变成硬而脆的塑料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼光谱拉曼谱是以印度物理学家拉曼(C.V.Raman)命名的一种散射光谱.1928年拉曼和克利希南(K.S.Krishnan)在研究单色光在液体中散射时,不仅观察到与入射光频率相同的瑞利散射,而且还发现有强度很弱,与入射光频率不同的散射光谱.同年,前苏联的曼迭利斯塔姆和兰兹贝尔格在石英的散射中也观察到了这一现象.这种新谱线对应于散射分子中能级的跃迁,为研究分子结构提供了一种重要手段,引起学术界极大兴趣,拉曼也因此荣获1930年的诺贝尔物理学奖.但由于拉曼光谱很弱,受当时光源和检测手段的限制,它的发展曾停滞了一段时期.19世纪60年代激光技术的出现使拉曼光谱得以迅速发展,再加上近年来发展的高分辨率的单色仪和高灵敏度的光电检测系统,使拉曼光谱学进入崭新的阶段,应用领域遍及物理、化学、生物、医学等.利用各种类型的材料作为散射物质,几乎都可能得到相应的拉曼谱.这种新型的实验技术正日益显示其重要意义。
通过实验了解激光拉曼光谱仪的基本结构与工作原理;了解拉曼散射的原理及其在现代科学研究中的作用;测量典型的CCl4拉曼散射谱。
一、实验原理当一束单色光入射在固、液或气态介质上时,从介质中有散射光向四面八方射出.散射光中较强的是瑞利散射,其频率与入射光频率ν相同,其强度和数量级约为入射光强的10-4~10-3.除瑞利散射外还有拉曼散射,拉曼散射的散射光频率ν与入射光频率相比有明显的变化,即ν=ν±|Δν|,其强度数量级约为瑞利散射的10-8-10-6,最强的也只是瑞利散射的10-3.瑞利线ν长波一侧出现的散射线ν=ν0-|Δν|称为斯托克斯(Stokes)线,又称为红伴线;把短波一侧出现的ν=ν+|Δν|称为反斯托克斯(anti-Stokes)线,又称紫伴线.斯托克斯线比反斯托克斯线通常要强一些.散射光频率ν相对于入射光频率ν的偏移,即拉曼光谱的频移Δν,是拉曼谱的一个重要特征量.散射线的±|Δν|相对于瑞利线是对称的,而且这些谱线的频移Δν不随入射光频率而变化,只决定于散射物质的性质.换句话说,在不同频率单色光的入射下都能得到类似的拉曼谱.拉曼散射是由分子振动,固体中的光学声子等元激发与激发光相互作用产生的非弹性散射。
由液体或固体的声学声子产生非弹性散射称为布里渊散射。
用拉曼光谱可以研究固体中的各种元激发的状态,当改变外部条件(如温度和压力等)时,可以研究固体内部状态的变化。
拉曼谱的这个特征是拉曼光谱技术的一大优点,它使得有可能在可见光区研究分子的振动和转动等状态,因此在很多情况下它已成为分子谱中红外吸收方法的一个重要补充。
拉曼光谱的应用范围很广,这里主要介绍应用较多的晶格振动的一级拉曼光谱。
图2-3-1是四氯化碳的拉曼谱,图中央瑞利线的上部已截去,两侧为拉曼线.频率差Δν也可以通过波数差Δv~来表示,二者之比为光速c,即Δν=cΔv~。
图2-3-1 四氯化碳的拉曼谱(一)、激光拉曼散射的经典理论在外加电场E 作用下,分子被极化,产生偶极矩PP=αE (2-3-1) α是极化率张量。
当分子中的原子在平衡位置附近振动时,分子中的电子壳层会发生变形,其极化率也会随之改变,因此极化率可表述为分子简正坐标r 的函数:α=α(r) (2-3-2)上式在平衡位置附近(r=r 0)展开,电谐近似考虑前两项得,α(r)= α(r 0)+()0r r∂∂α(r-r 0) (2-3-3) 设分子的振动是频率为ν得简正振动(简谐近似),振幅为A ,则r=r 0+Acos2πνt (2-3-4)α(r)= α(r 0)+()0r r ∂∂α Acos2πνt (2-3-5) 设入射光是频率为ν0,振幅为E 0得交变电场E=E 0cos2πν0t (2-3-6)由以上几式得P=α(r 0) E 0cos2πν0t +A ()0r r∂∂αE 0cos2πν0t cos2πνt =α(r 0) E 0cos2πν0t, 对应于频率为ν0的瑞利散射; +21 A ()0r r ∂∂αE 0cos2π(ν0+ν)t 对应于频率为ν0+ν的反stocks 散射 +21 A ()0r r∂∂αE 0cos2π(ν0-ν)t ,对应于频率为ν0-ν的stocks 散射; (2-3-7) 即在简正近似和电谐近似条件下,以ν为频率作简谐振动的偶极子被频率为ν0的低强度入射电场调制后引发的散射由瑞利线、stocks 红移线和反stocks 蓝移线三部分构成。
(二)激光拉曼散射的量子理论根据量子理论,当频率为ν0的单色入射光子与物质分子相互作用而散射时,有以下两种情况.一种是弹性散射.散射后光子的能量和频率没有改变,这就是瑞利散射.另一种是非弹性散射.这时入射光子与物质分子之间的相互作用导致能量交换,这个过程又可以看作是入射光子的湮没和另一个能量不同的散射光子的产生,与此同时分子状态发生了跃迁.这种非弹性散射正是本实验中感兴趣的.设E 1和E 2分别代表分子的较低和较高能级,能级差为ΔE =E 2-E 1,如果分子处于能级E 1,它与能量为h ν0的入射光子相互作用导致的结果,分子将被激发到较高的能级E 2,于是散射光子能量为h ν’=h ν0-ΔE (斯托克斯线).另一方面分子处于能级E 2,通过光子的散射,它向下跃迁到较低能级E 1,则散射光子能量为h ν”=h ν0-ΔE (反斯托克斯线).在实际情形中分子不止有两个定态,也就可以有一些不同的值.由以上可知,斯托克斯和反斯托克斯线的频率,ν’和ν”分别为||0ννν∆-='; ||0ννν∆+=''.上述过程中的能量关系可以用图2-3-2来表示,斯托克斯拉曼散射瑞利散射反斯托克斯h(v 0-v)h(v 0+v)hv 0 图2-3-2 拉曼散射的量子解释示意图值得注意的是,图中用虚线表示的能级并不对应于散射分子(或散射系统)的任何许可能级(或状态).它仅仅给出各光子的能量比分子的有关能级高出多少.另外,以上所述的元过程与荧光中的明显不同.在荧光过程中,入射光子被系统所吸收,后者将跃迁到一相应的许可的激发态,经过一定时间后跃迁到某一较低能量的状态并且发射一光子.只有频率合适的入射光子才能引起荧光.而在拉曼散射中入射光子的频率不受限制.这使我们在实验中可选择较强的激光源作入射光.还可以看出,散射光频率的改变取决于物质分子的能级差,所以拉曼散射的频移是一定的,不随入射光频率而变化,只与散射物质本身性质有关.按照统计分布率,分子数在热平衡下按能量的分布为玻耳兹曼分布)(e E N βω-∝,其中ω为能级E 的简并度,β=1/ kT ,k 是玻耳兹常数.因此布居在较高能级上的分子数要少于较低能级上的,这就使频率增加的散射谱线(反斯托克斯线)的强度要比频率减少的散射谱线(斯托克斯线)弱些.二、实验配置(一)拉曼光谱仪结构北大产的RBD-III Raman 光谱仪的主要组成部分有光源、样品、外光路系统、色散系统及信息检测系统.如图2-3-3所示:1、光源.用单色性好、功率强的气体激光器作光源,He-Ne 激光器或Ar+激光器均可。
激光器在低气压和大电流(约为0.4Torr和15A)的弧光放电条件下工作,较强的正离子流将导致严重的气体泵浦效应,使气体集中到放电管的一端,破坏了原来的气压平衡,这对激光的产生很不利.为此,一般在放电管边上加一个回气管,使气体可从压强较高的一端通过回气管扩散到较低的一端,从而减小了气2、外光路系统及样品装置激光器之后到单色仪之前为外光路系统和试样装置,它的作用是为了要在试样上得到最有效的照射,最大限度地收集散射光,还要适合于作不同状态的试样在各种不同条件(如高,低温等)下的测试。
由于拉曼散射的效率很低,试样装置要能以最有效的方式照射样品和聚集散射光,它的光学设计是非常重要的。
通常采用聚焦激光束照射到试样上,以提高试样上的辐照度,产生拉曼散射。
一般用透镜L1聚焦激光束,使其最集中的区域(束腰处直径可达10μm)照射到试样上,试样上的辐照度大约可增大一千倍。
如功率密度太高会损坏样品时,则不用透镜。
透镜L2把样品上被激光束照明的焦柱部分准确地成象在单色仪的入射狭缝上,以最佳的立体角聚集散射光,并使之与单色仪的集光立体角相匹配。
试样室内的凹面镜M2是用以提高散射强度的,M2把反方向的散射光收集起来反射回去,可将进入单色仪的散射光的立体角增加一倍。
(注意:在做单晶体的拉曼散射实验时,由于M2改变了散射的几何配置,所以不用这反射镜。
)3、分光系统分光系统是拉曼谱仪的核心部分,它的主要作用是把散射光分光并减弱杂散光。
分光系统要求有高的分辨率和低的杂散光,一般用双联单色仪。
两个单色仪耦合起来,色散是相加的,可以得到较高的分辨率(约1cm-1)。
双联单色仪的杂散光(在50cm-1处)可以达到10-11。
为了进一步降低杂散光,有时再加一个联动的第三单色仪,此时分辨率提高了,但谱线强度也相应减弱。
4、探测,放大和记录系统拉曼光谱仪的探测器为光电倍增管。
用不同波长的激发光,散射光在不同的光谱区,要选用合适的光谱响应的光电倍增管。
为了减少其暗电流降低噪声,以提高信噪比,需用致冷器冷却光电倍增管。
处理光电倍增管输出的电子脉冲的方法有直流放大法,交流放大法和光子计数法。
当输出电流大于10-9A时用直流放大器,小于10-10A时用光子计数器。
交流放大法目前已较少采用。
在直流测量法中,增大光电倍增管的响应时间,使其倒数大于光子到达速率,则与各个光子对应的脉冲不可分辨,流向光电倍增管的负载电阻的电流是连续的,电流的大小与射到光电阴极的光强成正比,经过直流放大后,可用笔式记录仪记录。
光子计数器适合于探测微弱信号。
它的计数范围为每秒101~105个脉冲,相邻的两个脉冲的时间间隔为0.1s~10μS,而光电倍增管内光电子脉冲形成的时间为0.1~10μS,因此光电倍增管中所产生的电脉冲信号是分立的。
光子计数器就是要算出这些脉冲数目。
光电子脉冲和噪声脉冲在幅度大小和分布上都不相同,可以利用幅度甄别器或脉冲高度分析器部分地将二者分开,再通过脉冲成形电路产生等幅等脉宽的脉冲,用电子计数器计数,送入计算机。
光子计数法不适用于强光信号。
(二)实验样品本次实验中使用的样品是液体CCl4。
三、实验内容与步骤(一)实验步骤1、打开拉曼光谱仪各种设备电源开关,调节好光路(具体操作见说明书),将CCl4样放入样品架。
2、打开操作软件,设置实验参数,测定CCl4拉曼图谱。
3、样品测试完毕之后,,退出拉曼设置。
(二)实验内容1. 进行基线校正及适当的平滑处理,标定峰值,储存数据并打印图谱。
2. 对测定的图谱进行数据检索,作出归属。
思考题1、拉曼图谱的峰强度与那些因素相关?2、依据拉曼光谱的实验方法原理,分析拉曼光谱应用特点。